Revistas
Revista:
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
ISSN:
0169-2607
Año:
2022
Vol.:
218
Págs.:
106728
A B S T R A C T Background and objective: Despite advances on signal analysis and artificial intelligence, visual inspection is the gold standard in event detection on electroencephalographic recordings. This process requires much time of clinical experts on both annotating and training new experts for this same task. In scenarios where epilepsy is considered, the need for automatic tools is more prominent, as both seizures and interictal events can occur on hours-or days-long recordings. Although other solutions have already been proposed, most of them are not integrated on clinical and basic science environments due to their complexity and required specialization. Here we present a pipeline that arises from coordinated efforts between life-science researchers, clinicians and data scientists to develop an interactive and iterative workflow to train machine-learning tools for the automatic detection of electroencephalographic events in a variety of scenarios.Methods: The approach consists on a series of subsequent steps covering data loading and configuration, event annotation, model training/re-training and event detection. With slight modifications, the combination of these blocks can cope with a variety of scenarios. To illustrate the flexibility and robustness of the approach, three datasets from clinical (patients of Dravet Syndrome) and basic research environments (mice model of the same disease) were evaluated. From them, and in response to researchers' daily needs, four real world examples of interictal event detection and seizure classification tasks were selected and processed.Results: Results show that the current approach was of great aid for event annotation and model development. It was capable of creating custom machine-learning solutions for each scenario with slight adjustments on the analysis protocol, easily accessible to users without programming skills. Final annotator similarity metrics reached values above 80% on all cases of use, reaching 92.3% on interictal event detection on human recordings.Conclusions: The presented framework is easily adaptable to multiple real world scenarios and the interactive and ease-to-use approach makes it manageable to clinical and basic researches without programming skills. Nevertheless, it is conceived so data scientists can optimize it for specific scenarios, improving the knowledge transfer between these fields.
Revista:
JOURNAL OF NEUROCHEMISTRY
ISSN:
0022-3042
Año:
2022
Vol.:
161
N°:
5
Págs.:
417 - 434
Cognitive deficits and impaired sensory processing are hallmarks of several neurodevelopmental and neuropsychiatric disorders. N-methyl-D-aspartate receptor (NMDAR) hypofunction contributes to these deficits by disrupting the excitation-to-inhibition balance in neuronal networks. Although preclinical data suggest that the activation of gamma-Aminobutyric acid B receptors (GABA(B)R) may restore excitation-to-inhibition balance and rescues some behavioral deficits, GABA(B)R agonists have failed to meet their clinical study endpoints, suggesting more complex interactions at play. Here, we studied the effects of Baclofen (a GABA(B)R agonist) and MK-801 (a non-competitive NMDAR antagonist) on the neurophysiology of limbic-auditory circuits in freely-moving rats. The pharmacological effects were assessed using resting-state EEG, auditory-evoked oscillation, and mismatch negativity paradigms. MK-801 elevated resting-state oscillatory power, mainly in the gamma and higher frequency ranges, and impaired auditory-evoked responses. Baclofen partially normalized resting-state oscillations but failed to rescue auditory-evoked oscillatory abnormalities. Coherence analysis indicated that NMDAR hypofunction alters the functional coupling of limbic and thalamocortical circuits in several frequency bands. Baclofen normalized only a fraction of MK-801-induced abnormalities (e.g., theta coherence between frontal cortex and amygdala) while reducing delta-theta and augmenting gamma coherence in thalamocortical circuits. Finally, we report that Baclofen intensified the MK-801-induced deficits in auditory mismatch responses. In summary, while Baclofen partially normalizes MK-801-induced gamma abnormalities, it either fails to rescue or exacerbates deficits in other phenotypes like functional coupling and auditory processing. We hope that the presented complex interactions between pharmacologically induced NMDAR hypofunction and GABABR agonism inspire a new understanding of the therapeutic potential around GABAergic modulation.
Autores:
Janz, P. (Autor de correspondencia); Bainier, M.; Marashli, S.; et al.
Revista:
TRANSLATIONAL PSYCHIATRY
ISSN:
2158-3188
Año:
2022
Vol.:
12
N°:
1
Págs.:
455
Neurexins are presynaptic transmembrane proteins crucial for synapse development and organization. Deletion and missense mutations in all three Neurexin genes have been identified in psychiatric disorders, with mutations in the NRXN1 gene most strongly linked to schizophrenia (SZ) and autism spectrum disorder (ASD). While the consequences of NRXN1 deletion have been extensively studied on the synaptic and behavioral levels, circuit endophenotypes that translate to the human condition have not been characterized yet. Therefore, we investigated the electrophysiology of cortico-striatal-thalamic circuits in Nrxn1 alpha(-/-) rats and wildtype littermates focusing on a set of translational readouts, including spontaneous oscillatory activity, auditory-evoked oscillations and potentials, as well as mismatch negativity-like (MMN) responses and responses to social stimuli. On the behavioral level Nrxn1 alpha(-/-) rats showed locomotor hyperactivity. In vivo freely moving electrophysiology revealed pronounced increases of spontaneous oscillatory power within the gamma band in all studied brain areas and elevation of gamma coherence in cortico-striatal and thalamocortical circuits of Nrxn1 alpha(-/-) rats. In contrast, auditory-evoked oscillations driven by chirp-modulated tones showed reduced power in cortical areas confined to slower oscillations. Finally, Nrxn1 alpha(-/-) rats exhibited altered auditory evoked-potentials and profound deficits in MMN-like responses, explained by reduced prediction error. Despite deficits for auditory stimuli, responses to social stimuli appeared intact. A central hypothesis for psychiatric and neurodevelopmental disorders is that a disbalance of excitation-to-inhibition is underlying oscillatory and sensory deficits. In a first attempt to explore the impact of inhibitory circuit modulation, we assessed the effects of enhancing tonic inhibition via delta-containing GABA(A) receptors (using Gaboxadol) on endophenotypes possibly associated with network hyperexcitability. Pharmacological experiments applying Gaboxadol showed genotype-specific differences, but failed to normalize oscillatory or sensory processing abnormalities. In conclusion, our study revealed endophenotypes in Nrxn1 alpha(-/-) rats that could be used as translational biomarkers for drug development in psychiatric disorders.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2021
Vol.:
11
N°:
1
Págs.:
8437
Revista:
BRITISH JOURNAL OF ANAESTHESIA
ISSN:
0007-0912
Año:
2021
Vol.:
127
N°:
2
Págs.:
245 - 253
Background: Dexmedetomidine is frequently used for sedation during deep brain stimulator implantation in patients with Parkinson's disease, but its effect on subthalamic nucleus activity is not well known. The aim of this study was to quantify the effect of increasing doses of dexmedetomidine in this population. Methods: Controlled clinical trial assessing changes in subthalamic activity with increasing doses of dexmedetomidine (from 0.2 to 0.6 mg kg(-1) h(-1)) in a non-operating theatre setting. We recorded local field potentials in 12 patients with Parkinson's disease with bilateral deep brain stimulators (24 nuclei) and compared basal activity in the nuclei of each patient and activity recorded with different doses. Plasma levels of dexmedetomidine were obtained and correlated with the dose administered. Results: With dexmedetomidine infusion, patients became clinically sedated, and at higher doses (0.5-0.6 mg kg(-1) h(-1)) a significant decrease in the characteristic Parkinsonian subthalamic activity was observed (P<0.05 in beta activity). All subjects awoke to external stimulus over a median of 1 (range: 0-9) min, showing full restoration of subthalamic activity. Dexmedetomidine dose administered and plasma levels showed a positive correlation (repeated measures correlation coefficient=0.504; P<0.001). Conclusions: Patients needing some degree of sedation throughout subthalamic deep brain stimulator implantation for Parkinson's disease can probably receive dexmedetomidine up to 0.6 mg kg(-1) h(-1) without significant alteration of their characteristic subthalamic activity. If patients achieve a 'sedated' state, subthalamic activity decreases, but they can be easily awakened with a non-pharmacological external stimulus and recover baseline subthalamic activity patterns in less than 10 min.
Revista:
ANNALS OF BIOMEDICAL ENGINEERING
ISSN:
0090-6964
Año:
2021
Vol.:
49
N°:
2
Págs.:
746 - 756
Imaging of small laboratory animals in clinical MRI scanners is feasible but challenging. Compared with dedicated preclinical systems, clinical scanners have relatively low B(0)field (1.5-3.0 T) and gradient strength (40-60 mT/m). This work explored the use of wireless inductively coupled coils (ICCs) combined with appropriate pulse sequence parameters to overcome these two drawbacks, with a special emphasis on the optimization of the coil passive detuning circuit for this application. A Bengal rose photothrombotic stroke model was used to induce cortical infarction in rats and mice. Animals were imaged in a 3T scanner using T2 and T1-weighted sequences. In all animals, the ICCs allowed acquisition of high-quality images of the infarcted brain at acute and chronic stages. Images obtained with the ICCs showed a substantial increase in SNR compared to clinical coils (by factors of 6 in the rat brain and 16-17 in the mouse brain), and the absence of wires made the animal preparation workflow straightforward.
Revista:
MOLECULAR THERAPY - NUCLEIC ACIDS
ISSN:
2162-2531
Año:
2021
Vol.:
25
Págs.:
585 - 602
Dravet syndrome is a genetic encephalopathy characterized by severe epilepsy combined with motor, cognitive, and behavioral abnormalities. Current antiepileptic drugs achieve only partial control of seizures and provide little benefit on the patient's neurological development. In >80% of cases, the disease is caused by haploinsufficiency of the SCN1A gene, which encodes the alpha subunit of the Nav1.1 voltage-gated sodium channel. Novel therapies aim to restore SCN1A expression in order to address all disease manifestations. We provide evidence that a high-capacity adenoviral vector harboring the 6-kb SCN1A cDNA is feasible and able to express functional Nav1.1 in neurons. In vivo, the best biodistribution was observed after intracerebral injection in basal ganglia, cerebellum, and prefrontal cortex. SCN1A A1783V knockin mice received the vector at 5 weeks of age, when most neurological alterations were present. Animals were protected from sudden death, and the epileptic phenotype was attenuated. Improvement of motor performance and interaction with the environment was observed. In contrast, hyperactivity persisted, and the impact on cognitive tests was variable (success in novel object recognition and failure in Morris water maze tests). These results provide proof of concept for gene supplementation in Dravet syndrome and indicate new directions for improvement.
Revista:
EUROPEAN JOURNAL OF PAEDIATRIC NEUROLOGY
ISSN:
1090-3798
Año:
2020
Vol.:
24
Págs.:
134 - 141
Objective: To evaluate the capability of children with Dravet syndrome to generate brain gamma-oscillatory activity in response to auditory steady-state stimulation. Methods: Fifty-one subjects were included: 13 with Dravet syndrome with SCN1A gene alterations, 26 with non-Dravet epilepsies and 12 healthy controls. Responses to auditory steady-state stimulation elicited with a chirp-modulated tone between 1 and 120 Hz were collected in subjects and compared across groups. Results: Subjects with Dravet syndrome showed weak or no responses in the 1-120 Hz frequency range. Healthy controls showed oscillatory responses following the frequency of the modulation that were maximal in the low (30-70 Hz) and high (80-120) gamma-ranges both, in the power and inter-trial coherence estimates. Non-Dravet epileptic children showed differences in the auditory responses when compared with the healthy controls but were able to generate oscillatory evoked activities following the frequency-varying stimulation. Conclusions: The ability to generate brain gamma-oscillatory activity of children with Dravet in response to a chirp-modulated auditory stimulus is highly impaired, is not due to epilepsy and is consistent with the Nav1.1 channel dysfunction affecting interneuron activity seen in Dravet mouse models. Significance: The reported deficits in the brain oscillatory activity evoked by chirp modulated tones in children with Dravet is compatible with Dravet syndrome disease mechanisms and constitutes a potential biomarker for future disease-modifying interventions. (C) 2019 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Autores:
Dautan, D. (Autor de correspondencia); Huerta-Ocampo, I. ; Gut, N. K.; et al.
Revista:
NATURE COMMUNICATIONS
ISSN:
2041-1723
Assimilation of novel strategies into a consolidated action repertoire is a crucial function for behavioral adaptation and cognitive flexibility. Acetylcholine in the striatum plays a pivotal role in such adaptation, and its release has been causally associated with the activity of cholinergic interneurons. Here we show that the midbrain, a previously unknown source of acetylcholine in the striatum, is a major contributor to cholinergic transmission in the striatal complex. Neurons of the pedunculopontine and laterodorsal tegmental nuclei synapse with striatal cholinergic interneurons and give rise to excitatory responses. Furthermore, they produce uniform inhibition of spiny projection neurons. Inhibition of acetylcholine release from midbrain terminals in the striatum impairs the association of contingencies and the formation of habits in an instrumental task, and mimics the effects observed following inhibition of acetylcholine release from striatal cholinergic interneurons. These results suggest the existence of two hierarchically-organized modes of cholinergic transmission in the striatum, where cholinergic interneurons are modulated by cholinergic neurons of the midbrain. Acetylcholine (ACh) in the striatum is involved in mediating action flexibility. Here the authors show that midbrain cholinergic nuclei provide a new source of Ach in the striatum, form excitatory synapses with striatal cholinergic interneurons (CIN) and contribute to instrumental learning.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2019
Vol.:
9
Págs.:
14172
Dravet Syndrome (DS) is an encephalopathy with epilepsy associated with multiple neuropsychiatric comorbidities. In up to 90% of cases, it is caused by functional happloinsufficiency of the SCN1A gene, which encodes the alpha subunit of a voltage-dependent sodium channel (Nav1.1). Preclinical development of new targeted therapies requires accessible animal models which recapitulate the disease at the genetic and clinical levels. Here we describe that a C57BL/6 J knock-in mouse strain carrying a heterozygous, clinically relevant SCN1A mutation (A1783V) presents a full spectrum of DS manifestations. This includes 70% mortality rate during the first 8 weeks of age, reduced threshold for heat-induced seizures (4.7 degrees C lower compared with control littermates), cognitive impairment, motor disturbances, anxiety, hyperactive behavior and defects in the interaction with the environment. In contrast, sociability was relatively preserved. Electrophysiological studies showed spontaneous interictal epileptiform discharges, which increased in a temperature-dependent manner. Seizures were multifocal, with different origins within and across individuals. They showed intra/inter-hemispheric propagation and often resulted in generalized tonic-clonic seizures. F-18-labelled flourodeoxyglucose positron emission tomography (FDG-PET) revealed a global increase in glucose uptake in the brain of Scn1a(WT/A1783V) mice. We conclude that the Scn1a(WT/A1783V) model is a robust research platform for the evaluation of new therapies against DS.
Revista:
BRAIN STIMULATION
ISSN:
1935-861X
Año:
2018
Vol.:
11
N°:
1
Págs.:
231 - 238
Background: High-frequency deep brain stimulation (DBS) has become a widespread therapy used in the treatment of Parkinson's Disease (PD) and other diseases. Although it has proved beneficial, much recent attention has been centered around the potential of new closed-loop DBS implementations. Objective: Here we present a new closed-loop DBS scheme based on the phase of the theta activity recorded from the motor cortex. By testing the implementation on freely moving 6-OHDA lesioned and control rats, we assessed the behavioral and neurophysiologic effects of this implementation and compared it against the classical high-frequency DBS. Results: Results show that both stimulation modalities produce significant and opposite changes on the movement and neurophysiological activity. Close-loop stimulation, far from improving the animals' behavior, exert contrary effects to those of high-frequency DBS which reverts the parkinsonian symptoms. Motor improvement during open-loop, high-frequency DBS was accompanied by a reduction in the amount of cortical beta oscillations while akinetic and disturbed behavior during close-loop stimulation coincided with an increase in the amplitude of beta activity. Conclusion: Cortical-phase-dependent close-loop stimulation of the STN exerts significant behavioral and oscillatory changes in the rat model of PD. Open-loop and close-loop stimulation outcomes differed dramatically, thus suggesting that the scheme of stimulation determines the output of the modulation even if the target structure is maintained. The current framework could be extended in future studies to identify the correct parameters that would provide a suitable control signal to the system. It may well be that with other stimulation parameters, this sort of DBS could be beneficial. (C) 2017 Elsevier Inc. All rights reserved.
Revista:
PSYCHIATRY RESEARCH
ISSN:
0165-1781
Año:
2017
Vol.:
247
Págs.:
214 - 221
The symptoms of schizophrenia might be mediated by a cortical network disconnection which may disrupt the cortical oscillatory activity. Steady-state responses are an easy and consistent way to explore cortical oscillatory activity. A chirp-modulated tone (increasing the frequency of the modulation in a linear manner) allows a fast measure of the steady-state response to different modulation rates. With this approach, we studied the auditory steady-state responses in two groups of patients with schizophrenia (drug-naive and treated with atypical antipsychotic drugs), in order to assess the differences in their responses with respect to healthy subjects, and study any potential effect of medication. Drug-naive patients had reduced amplitude and inter-trial phase coherence of the response in the 30-50Hz range, and reduced amplitude of the response in the 90-100Hz range, when compared to controls. In the treated patients group, the response in the 30-50Hz range was normalized to values similar to the control group, but the reduction in amplitude in the 90-100Hz range remained as in the drug-naive group. These results suggest that gamma activity impairment in schizophrenia is a complex phenomenon that affects a wide band of frequencies and may be influenced by antipsychotic treatment.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2017
Vol.:
12
N°:
9
Págs.:
e0184044
Idiopathic epilepsy is characterized by generalized seizures with no apparent cause. One of its main problems is the lack of biomarkers to monitor the evolution of patients. The only tools they can use are limited to inspecting the amount of seizures during previous periods of time and assessing the existence of interictal discharges. As a result, there is a need for improving the tools to assist the diagnosis and follow up of these patients. The goal of the present study is to compare and find a way to differentiate between two groups of patients suffering from idiopathic epilepsy, one group that could be followed-up by means of specific electroencephalographic (EEG) signatures (intercritical activity present), and another one that could not due to the absence of these markers. To do that, we analyzed the background EEG activity of each in the absence of seizures and epileptic intercritical activity. We used the Shannon spectral entropy (SSE) as a metric to discriminate between the two groups and performed permutation-based statistical tests to detect the set of frequencies that show significant differences. By constraining the spectral entropy estimation to the [6.25-12.89) Hz range, we detect statistical differences (at below 0.05 alpha-level) between both types of epileptic patients at all available recording channels. Interestingly, entropy values follow a trend that is inversely related to the elapsed time from the last seizure. Indeed, this trend shows asymptotical convergence to the SSE values measured in a group of healthy subjects, which present SSE values lower than any of the two groups of patients. All these results suggest that the SSE, measured in a specific range of frequencies, could serve to follow up the evolution of patients suffering from idiopathic epilepsy. Future studies remain to be conducted in order to assess the predictive value of this approach for the anticipation of seizures.
Revista:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN:
0027-8424
Año:
2017
Vol.:
114
N°:
39
Págs.:
E8274 ¿ E8283
Alpha-Synuclein (aSyn) is the main driver of neurodegenerative diseases known as ¿synucleinopathies,¿ but the mechanisms underlying this toxicity remain poorly understood. To investigate aSyn toxic mechanisms, we have developed a primary neuronal model in which a longitudinal survival analysis can be performed by following the overexpression of fluorescently tagged WT or pathologically mutant aSyn constructs. Most aSyn mutations linked to neurodegenerative disease hindered neuronal survival in this model; of these mutations, the E46K mutation proved to be the most toxic. While E46K induced robust PLK2-dependent aSyn phosphorylation at serine 129, inhibiting this phosphorylation did not alleviate aSyn toxicity, strongly suggesting that this pathological hallmark of synucleinopathies is an epiphenomenon. Optical pulse-chase experiments with Dendra2-tagged aSyn versions indicated that the E46K mutation does not alter aSyn protein turnover. Moreover, since the mutation did not promote overt aSyn aggregation, we conclude that E46K toxicity was driven by soluble species. Finally, we developed an assay to assess whether neurons expressing E46K aSyn affect the survival of neighboring control neurons. Although we identified a minor non¿cell-autonomous component spatially restricted to proximal neurons, most E46K aSyn toxicity was cell autonomous. Thus, we have been able to recapitulate the toxicity of soluble aSyn species at a stage preceding aggregation, detecting non¿cell-autonomous
Revista:
ANESTHESIOLOGY
ISSN:
0003-3022
Año:
2017
Vol.:
126
N°:
6
Págs.:
1033 - 1042
Background: Deep brain stimulation electrodes can record oscillatory activity from deep brain structures, known as local field potentials. The authors' objective was to evaluate and quantify the effects of dexmedetomidine (0.2 mu g.kg(-1).h(-1)) on local field potentials in patients with Parkinson disease undergoing deep brain stimulation surgery compared with control recording (primary outcome), as well as the effect of propofol at different estimated peak effect site concentrations (0.5, 1.0, 1.5, 2.0, and 2.5 mu g/ml) from control recording.
Methods: A nonrandomized, nonblinded controlled clinical trial was carried out to assess the change in local field potentials activity over time in 10 patients with Parkinson disease who underwent deep brain stimulation placement surgery (18 subthalamic nuclei). The relationship was assessed between the activity in nuclei in the same patient at a given time and repeated measures from the same nucleus over time.
Results: No significant difference was observed between the relative beta power of local field potentials in dexmedetomidine and control recordings (- 7.7; 95% CI, - 18.9 to 7.6). By contrast, there was a significant decline of 12.7% (95% CI, - 21.3 to - 4.7) in the relative beta power of the local field potentials for each increment in the estimated peak propofol concentrations at the effect site relative to the control recordings.
Conclusions: Dexmedetomidine (0.2 mu g.kg(-1).h(-1)) did not show effect on local field potentials compared with control recording. A significant deep brain activity decline from control recording was observed with incremental doses of propofol.
Autores:
Fallani, F. D.; Clausi, S.; Leggio, M.; et al.
Revista:
CEREBELLUM
ISSN:
1473-4222
Año:
2017
Vol.:
16
N°:
2
Págs.:
358 - 375
Although cerebellar-cortical interactions have been studied extensively in animal models and humans using modern neuroimaging techniques, the effects of cerebellar stroke and focal lesions on cerebral cortical processing remain unknown. In the present study, we analyzed the large-scale functional connectivity at the cortical level by combining high-density electroencephalography (EEG) and source imaging techniques to evaluate and quantify the compensatory reorganization of brain networks after cerebellar damage. The experimental protocol comprised a repetitive finger extension task by 10 patients with unilateral focal cerebellar lesions and 10 matched healthy controls. A graph theoretical approach was used to investigate the functional reorganization of cortical networks. Our patients, compared with controls, exhibited significant differences at global and local topological level of their brain networks. An abnormal rise in small-world network efficiency was observed in the gamma band (30-40 Hz) during execution of the task, paralleled by increased long-range connectivity between cortical hemispheres. Our findings show that a pervasive reorganization of the brain network is associated with cerebellar focal damage and support the idea that the cerebellum boosts or refines cortical functions. Clinically, these results suggest that cortical changes after cerebellar damage are achieved through an increase in the interactions between remote cortical areas and that rehabilitation should aim to reshape functional activation patterns. Future studies should determine whether these hypotheses are limited to motor tasks or if they also apply to cerebro-cerebellar dysfunction in general.
Autores:
Dautan, Daniel; Souza, Albert S.; Huerta-Ocampo, Icnelia; et al.
Revista:
NATURE NEUROSCIENCE
ISSN:
1097-6256
Año:
2016
Vol.:
19
N°:
8
Págs.:
1025 - 1033
Revista:
SENSORS AND ACTUATORS A-PHYSICAL
ISSN:
0924-4247
Año:
2016
Vol.:
251
Págs.:
241 - 247
A surface sensor has been developed in order to record the cortical activity in animal models for neuro-science research. The device is made of gold on Cyclic Olefin Polymer (COP) and Cyclic Olefin Copolymer (COC) soft polymers using microsystems technology. The resulting system is flexible, customizable, bio-compatible, and fulfills reproducibility standards during the manufacturing process. Impedances are in the range of 100k Omega, thus making the system suitable for recording field potentials on the cortical surface. This paper explains the implementation process together with the implantation procedures and the results obtained in behaving rats. Results show that COP-based sensors are preferable to COC due to their higher flexibility and ease of manipulation. The versatility of COP polymers offers the possibility to adapt the electrode array to the cortical surface thus increasing surface of contact with the brain tissue. To validate the current approach, 8-contact sensors were implanted bilaterally over the motor cortices of awake, free moving rats. Cortical activity was evaluated on free moving animals and under the effect of different drugs. The quality and features of the recordings was in accordance with that of the current state of art systems thus demonstrating the feasibility of using COP-based systems for electrophysiological recordings in experimental investigation.
Revista:
HUMAN BRAIN MAPPING
ISSN:
1065-9471
Año:
2016
Vol.:
37
N°:
5
Págs.:
1722 - 1737
The central nervous system has the ability to adapt our locomotor pattern to produce a wide range of gait modalities and velocities. In reacting to external pacing stimuli, deviations from an individual preferred cadence provoke a concurrent decrease in accuracy that suggests the existence of a trade-off between frequency and precision; a compromise that could result from the specialization within the control centers of locomotion to ensure a stable transition and optimal adaptation to changing environment. Here, we explore the neural correlates of such adaptive mechanisms by visually guiding a group of healthy subjects to follow three comfortable stepping frequencies while simultaneously recording their BOLD responses and lower limb kinematics with the use of a custom-built treadmill device. In following the visual stimuli, subjects adopt a common pattern of symmetric and anti-phase movements across pace conditions. However, when increasing the stimulus frequency, an improvement in motor performance (precision and stability) was found, which suggests a change in the control mode from reactive to predictive schemes. Brain activity patterns showed similar BOLD responses across pace conditions though significant differences were observed in parietal and cerebellar regions. Neural correlates of stepping precision were found in the insula, cerebellum, dorsolateral pons and inferior olivary nucleus, whereas neural correlates of stepping stability were found in a distributed network, suggesting a transition in the control strategy across the stimulated range of frequencies: from unstable/reactive at lower paces (i.e., stepping stability managed by subcortical regions) to stable/predictive at higher paces (i.e., stability managed by cortical regions).
Revista:
EUROPEAN NEUROPSYCHOPHARMACOLOGY
ISSN:
0924-977X
Año:
2015
Vol.:
25
N°:
8
Págs.:
1375 - 1387
Recent studies have suggested the implication of the basal ganglia in the pathogenesis of schizophrenia. To investigate this hypothesis, here we have used the ketamine model of schizophrenia to determine the oscillatory abnormalities induced in the rat motor circuit of the basal ganglia. The activity of free moving rats was recorded in different structures of the cortico-basal ganglia circuit before and after an injection of a subanesthesic dose of ketamine (10mg/kg). Spectral estimates of the oscillatory activity, phase-amplitude cross-frequency coupling interactions (CFC) and imaginary event-related coherence together with animals¿ behavior were analyzed. Oscillatory patterns in the cortico-basal ganglia circuit were highly altered by the effect of ketamine. CFC between the phases of low-frequency activities (delta, 1-4; theta 4-8Hz) and the amplitude of high-gamma (~80Hz) and high-frequency oscillations (HFO) (~150Hz) increased dramatically and correlated with the movement increment shown by the animals. Between-structure analyses revealed that ketamine had also a massive effect in the low-frequency mediated synchronization of the HFO's across the whole circuit. Our findings suggest that ketamine administration results in an aberrant hypersynchronization of the whole cortico-basal circuit where the tandem theta/HFO seems to act as the main actor in the hyperlocomotion shown by the animals. Here we stress the importance of the basal ganglia circuitry in the ketamine model of schizophrenia and leave the door open to further investigations devoted to elucidate to what extent these abnormalities also reflect the prominent neurophysiological deficits observed in schizophrenic patients.
Revista:
FRONTIERS IN NEURAL CIRCUITS
ISSN:
1662-5110
Año:
2015
Vol.:
9
Págs.:
68
Revista:
NEUROSCIENCE
ISSN:
1873-7544 (Electronic); 0306-4522 (Linking)
Año:
2015
Vol.:
287
Págs.:
157 - 163
Revista:
CLINICAL AUTONOMIC RESEARCH
ISSN:
0959-9851
Año:
2015
Vol.:
25
N°:
4
Págs.:
225 - 232
BACKGROUND:
Cardiac autonomic tone after long-term continuous positive airway pressure therapy in patients with obstructive sleep apnea remains unexplored.
METHODS:
Thirty patients with obstructive sleep apnea (14 with moderate and 16 with severe obstructive sleep apnea) were studied during a baseline polysomnographic study, after a full night of acute continuous positive airway pressure treatment, and after long-term (~2 years) chronic continuous positive airway pressure therapy. Twenty age- and gender-matched controls with baseline sleep study were selected for comparison purposes. Cross-spectral analysis and the low-frequency (LF) and high-frequency (HF) components of the heart rate variability were computed separately over 10-min ECG epochs during rapid eye movement sleep, non-rapid eye movement sleep, and wakefulness.
RESULTS:
During the baseline study, obstructive sleep apnea patients exhibited increased LF, decreased HF, and increased LF/HF ratio during sleep when compared to controls. In a multiple regression model, the mean oxygen saturation explained the increased LF during rapid and non-rapid eye movement sleep in obstructive sleep apnea patients. Acute continuous positive airway pressure therapy decreased the LF modulations and the LF/HF ratio and increased the HF modulations during sleep in patients with severe obstructive sleep apnea. Long-term continuous positive airway pressure therapy decreased LF modulations and LF/HF ratio with increased HF modulations during sleep in patients with moderate and severe obstructive sleep apnea.
CONCLUSIONS:
Long-term continuous positive airway pressure reduces the sympathovagal imbalance in patients with moderate and severe obstructive sleep apnea, both during rapid and non-rapid eye movement sleep. Continuous positive airway pressure seems to exert its changes in cardiac autonomic modulation by decreasing the burden of nocturnal hypoxia.
Revista:
JOURNAL OF NEUROPHYSIOLOGY
ISSN:
1522-1598
Año:
2014
Vol.:
111
N°:
2
Págs.:
434 - 440
Revista:
JOURNAL OF NEURAL TRANSMISSION
Año:
2014
Vol.:
121
N°:
4
Págs.:
385 - 390
Revista:
CLINICAL NEUROPHYSIOLOGY: OFFICIAL JOURNAL OF THE INTERNATIONAL FEDERATION OF CLINICAL NEUROPHYSIOLOGY
ISSN:
1872-8952
Año:
2014
Vol.:
125
N°:
1
Págs.:
208 - 210
Revista:
CLINICAL NEUROPHYSIOLOGY
ISSN:
1388-2457
Año:
2014
Vol.:
125
N°:
9
Págs.:
1783 - 1791
OBJECTIVE:
The pathophysiological basis of obstructive sleep apnea (OSA) is not completely understood and likely varies among patients. In this regard, some patients with OSA do not exhibit hypoxemia. We aimed to analyze the clinical, sleep, and autonomic features of a group of patients with severe OSA without hypoxia (OSA-h) and compare to OSA patients with hypoxia (OSA+h) and controls.
METHODS:
Fifty-six patients with OSA-h, 64 patients with OSA+h, and 44 control subjects were studied. Clinical and sleep features were analyzed. Besides, time- and frequency-domain heart rate variability (HRV) measures comprising the mean R-R interval, the standard deviation of the RR intervals (SDNN), the low frequency (LF) oscillations, the high frequency (HF) oscillations, and the LF/HF ratio, were calculated across sleep stages during a one-night polysomnography.
RESULTS:
OSA-h patients had a lower body mass index, a lower waist circumference, lower apnea duration, and a higher frequency of previous naso-pharyngeal surgery when compared to OSA+h patients. In terms of heart rate variability, OSA+h had increased LF oscillations (i.e., baroreflex function) during N1-N2 and rapid eye movement (REM) sleep when compared to OSA-h and controls. Both OSA+h and OSA-h groups had decreased HF oscillations (i.e., vagal inputs) during N1-N2, N3 and REM sleep when compared to controls. The LF/HF ratio was increased during N1-N2 and REM sleep, only in patients with OSA+h.
CONCLUSIONS:
Patients with OSA-h exhibit distinctive clinical, sleep, and autonomic features when compared to OSA with hypoxia.
SIGNIFICANCE:
OSA is a heterogeneous entity. These differences must be taken into account in future studies when analyzing therapeutic approaches for sleep apnea patients.
Revista:
NEUROBIOLOGY OF DISEASE
Año:
2014
Vol.:
64
Págs.:
60 - 65
Revista:
CLINICAL NEUROPHYSIOLOGY
ISSN:
1388-2457
Año:
2013
Vol.:
124
N°:
6
Págs.:
1163 - 1168
OBJECTIVE:
Cardiac physiology during sleep in Parkinson's disease (PD) remains poorly explored. We studied heart rate variability (HRV) across sleep stages in PD patients and correlated the results with clinical features.
METHODS:
Cross-sectional study comprising 33 patients with PD and 29 controls matched for age, gender, and number of apneas/hypopneas per hour. HRV measures, (mean R-R interval, SDNN, ULF, VLF, LF, HF and LF/HF) were calculated separately for all sleep stages as well as wakefulness just before and after sleep during one-night polysomnography. Correlation analysis was performed between HRV values and PD patients' characteristics.
RESULTS:
The mean R-R interval was lower in all sleep stages in PD patients when compared with controls. VLF and LF were lower during REM sleep in PD patients. HF during N1-N2 stage was higher in PD. We found inverse correlations between VLF and LF during REM sleep and UPDRS-ON and UPDRS-OFF.
CONCLUSION:
VLF and LF during REM sleep might constitute surrogate markers of disease severity.
SIGNIFICANCE:
These findings provide additional clinical evidence of the autonomic impairment commonly observed in PD, and prove that cardiac autonomic dysfunction during REM sleep is correlated with disease severity.
Autores:
López, Jon; Nicolas, Maria Jesus; Cordón, Iván; et al.
Revista:
FRONTIERS IN NEURAL CIRCUITS
ISSN:
1662-5110
Año:
2013
Vol.:
7
Págs.:
155
Revista:
{PLOS} ONE
ISSN:
1932-6203
Año:
2013
Vol.:
8
N°:
7
Págs.:
e67540
Autores:
Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi (Autor de correspondencia)
Revista:
FRONTIERS IN NEURAL CIRCUITS
ISSN:
1662-5110
Año:
2013
Vol.:
7
Págs.:
199
Autores:
Chavez, Mario (Autor de correspondencia); De Vico Fallani, Fabrizio; Valencia, Miguel; et al.
Revista:
NEUROINFORMATICS
ISSN:
1559-0089
Año:
2013
Vol.:
11
N°:
3
Págs.:
355 - 366
Recent findings suggest that the preparation and execution of voluntary self-paced movements are accompanied by the coordination of the oscillatory activities of distributed brain regions. Here, we use electroencephalographic source imaging methods to estimate the cortical movement-related oscillatory activity during finger extension movements. Then, we apply network theory to investigate changes (expressed as differences from the baseline) in the connectivity structure of cortical networks related to the preparation and execution of the movement. We compute the topological accessibility of different cortical areas, measuring how well an area can be reached by the rest of the network. Analysis of cortical networks reveals specific agglomerates of cortical sources that become less accessible during the preparation and the execution of the finger movements. The observed changes neither could be explained by other measures based on geodesics or on multiple paths, nor by power changes in the cortical oscillations.
Revista:
EXPERIMENTAL NEUROLOGY
ISSN:
00144886
Año:
2013
Vol.:
248
Págs.:
183 - 186
Autores:
Nicosia, Vincenzo (Autor de correspondencia); Valencia, Miguel; Chavez, Mario; et al.
Revista:
PHYSICAL REVIEW LETTERS
ISSN:
1079-7114
Año:
2013
Vol.:
110
N°:
17
Págs.:
174102
We study a Kuramoto model in which the oscillators are associated with the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result, and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.
Revista:
EXPERIMENTAL NEUROLOGY
ISSN:
0014-4886
Año:
2013
Vol.:
239
Págs.:
1 - 12
Normal actions and behaviors often require inhibition of unwanted and inadequate movements. Motor inhibition has been studied using the stop signal task, in which participants are instructed to respond to a go signal. Sporadically, a stop signal is also delivered after a short interval following the go signal, prompting participants to inhibit their already started response to the go signal. Functional MRI studies using this paradigm have implicated the activation of the subthalamic nucleus in motor inhibition. We directly recorded subthalamic nucleus activity from bilaterally implanted deep brain stimulation electrodes in a group of 10 patients with Parkinson's disease, during performance of the stop signal task. Response inhibition was associated with specific changes in subthalamic activity in three different frequency bands. Response preparation was associated with a decrease in power and cortico-subthalamic coherence in the beta band (12-30 Hz), which was smaller and shorter when the response was successfully inhibited. In the theta band, we observed an increase in frontal cortico-subthalamic coherence related to the presence of the stop signal, which was highest when response inhibition was unsuccessful. Finally, a specific differential pattern of gamma activity was observed in the "on" motor state. Performance of the response was associated with a significant increase in power and cortico-subthalamic coherence, while successful inhibition of the response was associated with a bilateral decrease in subthalamic power and cortico-subthalamic coherence. Importantly, this inhibition-related decrease in gamma activity was absent in the four patients with dopamine-agonist related impulse-control disorders. Our results provide direct support for the involvement of the subthalamic nucleus in response inhibition and suggest that this function may be mediated by a specific reduction in gamma oscillations in the cortico-subthalamic connection.
Autores:
De Vico Fallani, Fabrizio (Autor de correspondencia); Chessa, Alessandro; Valencia, Miguel; et al.
Revista:
CHAOS, SOLITONS & FRACTALS
Año:
2012
Vol.:
45
N°:
5
Págs.:
603 - 610
The purpose of the present work is to evaluate the community structure of the cortical network subserving the neurophysiologic processes in simple motor acts.
To this end, we studied the topological properties of the functional brain connectivity in the frequency domain. The functional networks were estimated by means of the imaginary coherence from a dataset of high-resolution EEG recordings (4094 cortical sources) in a group of healthy subjects (n = 10) during a finger extension task. The analysis of the community structure was addressed through a particular detection algorithm that optimizes the modularity, a function related to the level of internal clustering inside the communities in the network. The principal results indicate that the cortical network changes its structural organization during the motor execution with respect to a baseline condition. Notably in the Beta band (12.5-30 Hz), the level of intra-module connectivity decreases, while inter-module connectivity increases reflecting the need for a neural integration of distant regions. Notably, this distributed interaction involves anatomical regions belonging to both the hemispheres including pre-motor and primary motor areas in the frontal and central part of the cortex as well as parietal associative regions, which are related to the planning, selection and execution of actions.
Revista:
CHAOS, SOLITONS & FRACTALS
Año:
2012
Vol.:
45
N°:
5
Págs.:
619 - 628
Revista:
MOVEMENT DISORDERS
ISSN:
0885-3185
Año:
2012
Vol.:
27
N°:
9
Págs.:
1176 - 1179
From a neurophysiological viewpoint, patients exhibited oscillatory activity typical of the "on" medication state during diphasic dyskinesias. The minimal presence of gamma activity during diphasic dyskinesias, however, suggests that this "on" state might be incomplete or limited to dopaminergic mechanisms affecting the lower limbs.
Revista:
BRAIN
ISSN:
0006-8950
Año:
2011
Vol.:
134
N°:
1
Págs.:
36-49
Behavioural abnormalities such as impulse control disorders may develop when patients with Parkinson's disease receive dopaminergic therapy, although they can be controlled by deep brain stimulation of the subthalamic nucleus. We have recorded local field potentials in the subthalamic nucleus of 28 patients with surgically implanted subthalamic electrodes. According to the predominant clinical features of each patient, their Parkinson's disease was associated with impulse control disorders (n = 10), dyskinesias (n = 9) or no dopaminergic mediated motor or behavioural complications (n = 9). Recordings were obtained during the OFF and ON dopaminergic states and the power spectrum of the subthalamic activity as well as the subthalamocortical coherence were analysed using Fourier transform-based techniques. The position of each electrode contact was determined in the postoperative magnetic resonance image to define the topography of the oscillatory activity recorded in each patient. In the OFF state, the three groups of patients had similar oscillatory activity. By contrast, in the ON state, the patients with impulse control disorders displayed theta-alpha (4-10 Hz) activity (mean peak: 6.71 Hz) that was generated 2-8 mm below the intercommissural line. Similarly, the patients with dyskinesia showed theta-alpha activity that peaked at a higher frequency (mean: 8.38 Hz) and was generated 0-2 mm below the intercommissural line. No such activity was detected in patients that displayed no dopaminergic side effects. Cortico-subthalamic coherence was more frequent in the impulsive patients in the 4-7.5 Hz range in scalp electrodes placed on the frontal regions anterior to the primary motor cortex, while in patients with dyskinesia it was in the 7.5-10 Hz range in the leads overlying the primary motor and supplementary motor area. Thus, dopaminergic side effects in Parkinson's disease are associated with oscillatory activity in the theta-alpha band, but at different frequencies and with different topography for the motor (dyskinesias) and behavioural (abnormal impulsivity) manifestations. These findings suggest that the activity recorded in parkinsonian patients with impulse control disorders stems from the associative-limbic area (ventral subthalamic area), which is coherent with premotor frontal cortical activity. Conversely, in patients with l-dopa-induced dyskinesias such activity is recorded in the motor area (dorsal subthalamic area) and it is coherent with cortical motor activity. Consequently, the subthalamic nucleus appears to be implicated in the motor and behavioural complications associated with dopaminergic drugs in Parkinson's disease, specifically engaging different anatomo-functional territories
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2011
Vol.:
6
N°:
7
Págs.:
e21814-
Revista:
THESCIENTIFICWORLDJOURNAL
ISSN:
1537-744X
Año:
2011
Vol.:
11
Págs.:
1995 - 2010
Understanding the trafficking of G-protein-coupled receptors (GPCRs) and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08¿¿m/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.
Autores:
Chavez, M (Autor de correspondencia); Valencia, Miguel; Latora, V; et al.
Revista:
International Journal of Bifurcation and Chaos
ISSN:
0218-1274
Año:
2010
Vol.:
20
N°:
6
Págs.:
1677 - 1686
Today, the human brain can be studied as a whole. Electroencephalography, magnetoencephalography, or functional magnetic resonance imaging (fMRI) techniques provide functional connectivity patterns between different brain areas, and during different pathological and cognitive neuro-dynamical states. In this tutorial, we review novel complex networks approaches to unveil how brain networks can efficiently manage local processing and global integration for the transfer of information, while being at the same time capable of adapting to satisfy changing neural demands.
Read More: http://www.worldscientific.com/doi/abs/10.1142/S0218127410026757
Revista:
BRAIN RESEARCH
ISSN:
1872-6240
Año:
2010
Vol.:
1310
Págs.:
58 - 67
Revista:
THE JOURNAL OF NEUROSCIENCE
ISSN:
1529-2401
Año:
2010
Vol.:
30
N°:
19
Págs.:
6667 - 6677
Revista:
PHYSICAL REVIEW LETTERS
ISSN:
0031-9007
Año:
2010
Vol.:
104
N°:
11
Págs.:
118701