Revistas
Revista:
JOURNAL OF IMMUNOLOGY
ISSN 0022-1767
Vol. 206
N° 8
Año 2021
Págs.1932 - 1942
The cell has several mechanisms to sense and neutralize stress. Stress-related stimuli activate pathways that counteract danger, support cell survival, and activate the inflammatory response. We use human cells to show that these processes are modulated by EGOT, a long noncoding RNA highly induced by viral infection, whose inhibition results in increased levels of antiviral IFNstimulated genes (ISGs) and decreased viral replication. We now show that EGOT is induced in response to cell stress, viral replication, or the presence of pathogen-associated molecular patterns via the PI3K/AKT, MAPKs, and NF-kappa B pathways, which lead to cell survival and inflammation. Transcriptome analysis and validation experiments show that EGOT modulates PI3K/AKT and NF-kappa B responses. On the one hand, EGOT inhibition decreases expression of PI3K/AKT-induced cellular receptors and cell proliferation. In fact, EGOT levels are increased in several tumors. On the other hand, EGOT inhibition results in decreased levels of key NF-kappa B target genes, including those required for inflammation and ISGs in those cells that build an antiviral response. Mechanistically, EGOT depletion decreases the levels of the key coactivator TBLR1, essential for transcription by NF-kappa B. In summary, EGOT is induced in response to stress and may function as a switch that represses ISG transcription until a proper antiviral or stress response is initiated. EGOT then helps PI3K/AKT, MAPKs, and NF-kappa B pathways to activate the antiviral response, cell inflammation, and growth. We believe that modulation of EGOT levels could be used as a therapy for the treatment of certain viral infections, immune diseases, and cancer.
Revista:
TRANSLATIONAL LUNG CANCER RESEARCH
ISSN 2218-6751
Vol. 10
N° 3
Año 2021
Págs.1327 - +
Background: Tobacco is the main risk factor for developing lung cancer. Yet, some heavy smokers do not develop lung cancer at advanced ages while others develop it at young ages. Here, we assess for the first time the genetic background of these clinically relevant extreme phenotypes using whole exome sequencing (WES).
Methods: We performed WES of germline DNA from heavy smokers who either developed lung adenocarcinoma at an early age ( extreme cases, n=50) or did not present lung adenocarcinoma or other tumors at an advanced age (extreme controls, n=50). We selected non-synonymous variants located in exonic regions and consensus splice sites of the genes that showed significantly different allelic frequencies between both cohorts. We validated our results in all the additional extreme cases (i.e., heavy smokers who developed lung adenocarcinoma at an early age) available from The Cancer Genome Atlas (TCGA).
Results: The mean age for the extreme cases and controls was respectively 49.7 and 77.5 years. Mean tobacco consumption was 43.6 and 56.8 pack-years. We identified 619 significantly different variants between both cohorts, and we validated 108 of these in extreme cases selected from TCGA. Nine validated variants, located in relevant cancer related genes, such as PARP4, HLA-A or NQO1, among others, achieved statistical significance in the False Discovery Rate test. The most significant validated variant (P=4.48x10(-5)) was located in the tumor-suppressor gene ALPK2.
Conclusions: We describe genetic variants associated with extreme phenotypes of high and low risk for the development of tobacco-induced lung adenocarcinoma. Our results and our strategy may help to identify high-risk subjects and to develop new therapeutic strategies.
Revista:
BIOINFORMATICS
ISSN 1367-4803
Vol. 36
N° 4
Año 2020
Págs. 1279-1280
The protein detection and quantification using high-throughput proteomic technologies is still challenging due to the stochastic nature of the peptide selection in the mass spectrometer, the difficulties in the statistical analysis of the results and the presence of degenerated peptides. However, considering in the analysis only those peptides that could be detected by mass spectrometry, also called proteotypic peptides, increases the accuracy of the results. Several approaches have been applied to predict peptide detectability based on the physicochemical properties of the peptides. In this manuscript, we present DeepMSPeptide, a bioinformatic tool that uses a deep learning method to predict proteotypic peptides exclusively based on the peptide amino acid sequences.
Revista:
BIOINFORMATICS
ISSN 1367-4803
Vol. 36
N° 1
Año 2020
Págs.205 - 211
Motivation The principal lines of research in MS/MS based Proteomics have been directed toward the molecular characterization of the proteins including their biological functions and their implications in human diseases. Recent advances in this field have also allowed the first attempts to apply these techniques to the clinical practice. Nowadays, the main progress in Computational Proteomics is based on the integration of genomic, transcriptomic and proteomic experimental data, what is known as Proteogenomics. This methodology is being especially useful for the discovery of new clinical biomarkers, small open reading frames and microproteins, although their validation is still challenging. Results We detected novel peptides following a proteogenomic workflow based on the MiTranscriptome human assembly and shotgun experiments. The annotation approach generated three custom databases with the corresponding peptides of known and novel transcripts of both protein coding genes and non-coding genes. In addition, we used a peptide detectability filter to improve the computational performance of the proteomic searches, the statistical analysis and the robustness of the results. These innovative additional filters are specially relevant when noisy next generation sequencing experiments are used to generate the databases. This resource, MiTPeptideDB, was validated using 43 cell lines for which RNA-Seq experiments and shotgun experiments were available. Availability and implementation MiTPeptideDB is available at http://bit.ly/MiTPeptideDB. Supplementary information Supplementary data are available at Bioinformatics online.
Revista:
JOURNAL OF PROTEOME RESEARCH
ISSN 1535-3893
Vol. 19
N° 12
Año 2020
Págs.4795 - 4807
The Human Proteome Project (HPP) is leading the international effort to characterize the human proteome. Although the main goal of this project was first focused on the detection of missing proteins, a new challenge arose from the need to assign biological functions to the uncharacterized human proteins and describe their implications in human diseases. Not only the proteins with experimental evidence (uPE1 proteins) but also the uncharacterized missing proteins (uMPs) were the objects of study in this challenge, neXt-CP50. In this work, we developed a new bioinformatic approach to infer biological annotations for the uPE1 proteins and uMPs based on a "guilt-by-association" analysis using public RNA-Seq data sets. We used the correlation of these proteins with the well-characterized PE1 proteins to construct a network. In this way, we applied the PageRank algorithm to this network to identify the most relevant nodes, which were the biological annotations of the uncharacterized proteins. All of the generated information was stored in a database. In addition, we implemented the web application UPEFinder (https://upefinder. proteored.org ) to facilitate the access to this new resource. This information is especially relevant for the researchers of the HPP who are interested in the generation and validation of new hypotheses about the functions of these proteins. Both the database and the web application are publicly available (https://github.com/tibioinformat/UPEfinder).
Revista:
HAEMATOLOGICA
ISSN 0390-6078
Vol. 104
Año 2019
Págs.11 - 11
Revista:
HAEMATOLOGICA
ISSN 0390-6078
Vol. 104
N° 8
Año 2019
Págs.1572 - 1579
In this study we interrogated the DNA methylome of myelofibrosis patients using high-density DNA methylation arrays. We detected 35,215 differentially methylated CpG, corresponding to 10,253 genes, between myelofibrosis patients and healthy controls. These changes were present both in primary and secondary myelofibrosis, which showed no differences between them. Remarkably, most differentially methylated CpG were located outside gene promoter regions and showed significant association with enhancer regions. This aberrant enhancer hypermethylation was negatively correlated with the expression of 27 genes in the myelofibrosis cohort. Of these, we focused on the ZFP36L1 gene and validated its decreased expression and enhancer DNA hypermethylation in an independent cohort of patients and myeloid cell-lines. In vitro reporter assay and 5'-azacitidine treatment confirmed the functional relevance of hypermethylation of ZFP36L1 enhancer. Furthermore, in vitro rescue of ZFP36L1 expression had an impact on cell proliferation and induced apoptosis in SET-2 cell line indicating a possible role of ZFP36L1 as a tumor suppressor gene in myelofibrosis. Collectively, we describe the DNA methylation profile of myelofibrosis, identifying extensive changes in enhancer elements and revealing ZFP36L1 as a novel candidate tumor suppressor gene.
Revista:
CANCER RESEARCH
ISSN 0008-5472
Vol. 79
N° 20
Año 2019
Págs.5167 - 5180
The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets allow unprecedented gene expression analyses. Here, using these datasets, we performed pan-cancer and pan-tissue identification of coding and long noncoding RNA (lncRNA) transcripts differentially expressed in tumors and preferentially expressed in healthy tissues and/or tumors. Pan-cancer comparison of mRNAs and lncRNAs showed that lncRNAs were deregulated in a more tumor-specific manner. Given that lncRNAs are more tissue-specific than mRNAs, we identified healthy tissues that preferentially express lncRNAs upregulated in tumors and found that testis, brain, the digestive tract, and blood/spleen were the most prevalent. In addition, specific tumors also upregulate lncRNAs preferentially expressed in other tissues, generating a unique signature for each tumor type. Most tumors studied downregulated lncRNAs preferentially expressed in their tissue of origin, probably as a result of dedifferentiation. However, the same lncRNAs could be upregulated in other tumors, resulting in "bimorphic" transcripts. In hepatocellular carcinoma (HCC), the upregulated genes identified were expressed at higher levels in patients with worse prognosis. Some lncRNAs upregulated in HCC and preferentially expressed in healthy testis or brain were predicted to function as oncogenes and were significantly associated with higher tumor burden, and poor prognosis, suggesting their relevance in hepatocarcinogenesis and/or tumor evolution. Taken together, therapies targeting oncogenic lncRNAs should take into consideration the healthy tissue, where the lncRNAs are preferentially expressed, to predict and decrease unwanted secondary effects and increase potency. Significance: Comprehensive analysis of coding and noncoding genes expressed in different tumors and normal tissues, which should be taken into account to predict side effects from potential coding and noncoding gene-targeting therapies.
Revista:
INTERNATIONAL JOURNAL OF CANCER
ISSN 0020-7136
Vol. 145
N° 7
Año 2019
Págs.1991 - 2001
Sunitinib is one of the most widely used targeted therapeutics for renal cell carcinoma (RCC), but acquired resistance against targeted therapies remains a major clinical challenge. To dissect mechanisms of acquired resistance and unravel reliable predictive biomarkers for sunitinib in RCC, we sequenced the exons of 409 tumor-suppressor genes and oncogenes in paired tumor samples from an RCC patient, obtained at baseline and after development of acquired resistance to sunitinib. From newly arising mutations, we selected, using in silico prediction models, six predicted to be deleterious, located in G6PD, LRP1B, SETD2, TET2, SYNE1, and DCC. Consistently, immunoblotting analysis of lysates derived from sunitinib-desensitized RCC cells and their parental counterparts showed marked differences in the levels and expression pattern of the proteins encoded by these genes. Our further analysis demonstrates essential roles for these proteins in mediating sunitinib cytotoxicity and shows that their loss of function renders tumor cells resistant to sunitinib in vitro and in vivo. Finally, sunitinib resistance induced by continuous exposure or by inhibition of the six proteins was overcome by treatment with cabozantinib or a low-dose combination of lenvatinib and everolimus. Collectively, our results unravel novel markers of acquired resistance to sunitinib and clinically relevant approaches for overcoming this resistance in RCC.
Revista:
INTERNATIONAL JOURNAL OF CANCER
ISSN 0020-7136
Vol. 145
N° 7
Año 2019
Págs.1991 - 2001
Sunitinib is one of the most widely used targeted therapeutics for renal cell-cancer (RCC) but acquired resistance against targeted therapies remains a major clinical challenge. To dissect mechanisms of acquired resistance and unravel reliable predictive biomarkers for sunitinib in renal cell-cancer (RCC), we sequenced the exons of 409 tumor-suppressor genes and oncogenes in paired tumor samples from an RCC patient, obtained at baseline and following development of acquired resistance to sunitinib. From newly arising mutations, we selected, using in-silico prediction models, 6 predicted to be deleterious, located in G6PD, LRP1B, SETD2, TET2, SYNE1 and DCC. Consistently, immunoblotting analysis of lysates derived from sunitinib-desensitized RCC cells and their parental counterparts showed marked differences in the levels and expression pattern of the proteins encoded by these genes. Our further analysis demonstrates essential roles for these proteins in mediating sunitinib cytotoxicity and shows that their loss of function render tumor cells resistant to sunitinib in vitro and in vivo. Finally, sunitinib resistance induced by continuous exposure or by inhibition of the 6 proteins was overcome by treatment with cabozantinib or a low-dose combination of lenvatinib and everolimus. Collectively, our results unravel novel markers of acquired resistance to sunitinib and clinically relevant approaches for overcoming this resistance in RCC.
Revista:
EXPERT REVIEW OF PROTEOMICS
ISSN 1478-9450
Vol. 16
N° 3
Año 2019
Págs.267 - 275
Introduction: The technological and scientific progress performed in the Human Proteome Project (HPP) has provided to the scientific community a new set of experimental and bioinformatic methods in the challenging field of shotgun and SRM/MRM-based Proteomics. The requirements for a protein to be considered experimentally validated are now well-established, and the information about the human proteome is available in the neXtProt database, while targeted proteomic assays are stored in SRMAtlas. However, the study of the missing proteins continues being an outstanding issue. Areas covered: This review is focused on the implementation of proteogenomic methods designed to improve the detection and validation of the missing proteins. The evolution of the methodological strategies based on the combination of different omic technologies and the use of huge publicly available datasets is shown taking the Chromosome 16 Consortium as reference. Expert commentary: Proteogenomics and other strategies of data analysis implemented within the C-HPP initiative could be used as guidance to complete in a near future the catalog of the human proteins. Besides, in the next years, we will probably witness their use in the B/D-HPP initiative to go a step forward on the implications of the proteins in the human biology and disease.
Revista:
FRONTIERS IN AGING NEUROSCIENCE
ISSN 1663-4365
Vol. 11
Año 2019
Págs.149
The discouraging results with therapies for Alzheimer's disease (AD) in clinical trials, highlights the urgent need to adopt new approaches. Like other complex diseases, it is becoming clear that AD therapies should focus on the simultaneous modulation of several targets implicated in the disease. Recently, using reference compounds and the first-in class CM-414, we demonstrated that the simultaneous inhibition of histone deacetylases [class I histone deacetylases (HDACs) and HDAC6] and phosphodiesterase 5 (PDE5) has a synergistic therapeutic effect in AD models. To identify the best inhibitory balance of HDAC isoforms and PDEs that provides a safe and efficient therapy to combat AD, we tested the compound CM-695 in the Tg2576 mouse model of this disease. CM-695 selectively inhibits HDAC6 over class I HDAC isoforms, which largely overcomes the toxicity associated with HDAC class 1 inhibition. Furthermore, CM-695 inhibits PDE9, which is expressed strongly in the brain and has been proposed as a therapeutic target for AD. Chronic treatment of aged Tg2576 mice with CM-695 ameliorates memory impairment and diminishes brain A beta although its therapeutic effect was no longer apparent 4 weeks after the treatment was interrupted. An increase in the presence of 78-KDa glucose regulated protein (GRP78) and heat shock protein 70 (Hsp70) chaperones may underlie the therapeutic effect of CM-695. In summary, chronic treatment with CM-695 appears to reverse the AD phenotype in a safe and effective manner. Taking into account that AD is a multifactorial disorder, the multimodal action of these compounds and the different events they affect may open new avenues to combat AD.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 25
N° 10
Año 2019
Págs.3176 - 3187
Purpose: Knowledge about the mechanism of action (MoA) of monoclonal antibodies (mAb) is required to understand which patients with multiple myeloma (MM) benefit the most from a given mAb, alone or in combination therapy. Although there is considerable research about daratumumab, knowledge about other anti-CD38 mAbs remains scarce.
Experimental Design: We performed a comprehensive analysis of the MoA of isatuximab.
Results: Isatuximab induces internalization of CD38 but not its significant release from MMcell surface. In addition, we uncovered an association between levels of CD38 expression and different MoA: (i) Isatuximab was unable to induce direct apoptosis on MM cells with CD38 levels closer to those in patients with MM, (ii) isatuximab sensitized CD38(hi) MMcells to bortezomib plus dexamethasone in the presence of stroma, (iii) antibody-dependent cellular cytotoxicity (ADCC) was triggered by CD38(lo) and CD38(hi) tumor plasma cells (PC), (iv) antibody-dependent cellular phagocytosis (ADCP) was triggered only by CD38(hi) MM cells, whereas (v) complement-dependent cytotoxicity could be triggered in less than half of the patient samples (those with elevated levels of CD38). Furthermore, we showed that isatuximab depletes CD38(hi) B-lymphocyte precursors and natural killer (NK) lymphocytes ex vivo-the latter through activation followed by exhaustion and eventually phagocytosis.
Conclusions: This study provides a framework to understand response determinants in patients treated with isatuximab based on the number of MoA triggered by CD38 levels of expression, and for the design of effective combinations aimed at capitalizing disrupted tumor-stroma cell protection, augmenting NK lymphocyte-mediated ADCC, or facilitating ADCP in CD38(lo) MM patients.
Revista:
JOURNAL OF CLINICAL ONCOLOGY
ISSN 0732-183X
Vol. 37
N° 15
Año 2019
Autores:
Suarez-Amaran, L.; Usai, C.; Di Scala, M.; et al.
Revista:
JOURNAL OF HEPATOLOGY
ISSN 1600-0641
Vol. 69
N° 1
Año 2018
Págs.262 - 264
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 29
N° Supl. 8
Año 2018
Págs.viii651 - viii652
Revista:
ONCOTARGET
ISSN 1949-2553
Vol. 9
N° 16
Año 2018
Págs.12842 - 12852
Long Non-Coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides in length. Several lncRNAs are involved in cell proliferation and are deregulated in several human tumors. Few lncRNAs have been described to play a role in Acute Lymphoblastic Leukemia (ALL). In this study, we carried out a genome wide lncRNA expression profiling in ALL samples and peripheral blood samples obtained from healthy donors. We detected 43 lncRNAs that were aberrantly expressed in ALL. Interestingly, among them, linc-PINT showed a significant downregulation in T and B-ALL. Re-expression of linc-PINT in ALL cells induced inhibition of leukemic cell growth that was associated with apoptosis induction and cell cycle arrest in G2/M phase. linc-PINT induced the transcription of HMOX1 which reduced the viability of ALL cells. Intriguingly, we observed that treatment with anti-tumoral epigenetic drugs like LBH-589 (Panobinostat) and Curcumin induced the expression of linc-PINT and HMOX1 in ALL. These results indicate that the downregulation of linc-PINT plays a relevant role in the pathogenesis of ALL, and linc-PINT re-expression may be one of the mechanisms exerted by epigenetic drugs to reduce cell proliferation in ALL.
Revista:
PROTEOMES
ISSN 2227-7382
Vol. 6
N° 1
Año 2018
Págs.8
Monocytes are bone marrow-derived leukocytes that are part of the innate immune system. Monocytes are divided into three subsets: classical, intermediate and non-classical, which can be differentiated by their expression of some surface antigens, mainly CD14 and CD16. These cells are key players in the inflammation process underlying the mechanism of many diseases. Thus, the molecular characterization of these cells may provide very useful information for understanding their biology in health and disease. We performed a multicentric proteomic study with pure classical and non-classical populations derived from 12 healthy donors. The robust workflow used provided reproducible results among the five participating laboratories. Over 5000 proteins were identified, and about half of them were quantified using a spectral counting approach. The results represent the protein abundance catalogue of pure classical and enriched non-classical blood peripheral monocytes, and could serve as a reference dataset of the healthy population. The functional analysis of the differences between cell subsets supports the consensus roles assigned to human monocytes.
Revista:
EPIGENOMICS
ISSN 1750-1911
Vol. 10
N° 1
Año 2018
Págs.91 - 103
Aim: To analyze whether preterm newborns show differences in methylation patterns in comparison to full-term newborns in white blood cells. Patients & methods: Anthropometrical, biochemical features and methylation levels of preterm newborns (n = 24) and full-term newborns (n = 22) recruited in La Paz University Hospital (Spain) were assessed at 12 months of gestational age, whereas Bayley Scale of Infant Development was evaluated at 24/36 months. Results: From all the statistically significant CpGs, methylation levels of cg00997378 (SLC6A3 gene) showed the highest differences (p < 0.0001), being associated with prematurity risk factors. Conclusion: SLC6A3 methylation, previously related to attention-deficit/hyperactivity disorder, neuronal function and behavior, might be a potential epigenetic biomarker with value in the early diagnosis and management of neurodevelopmental diseases in newborns.
Revista:
JOURNAL OF PATHOLOGY
ISSN 0022-3417
Vol. 245
N° 1
Año 2018
Págs.61 - 73
The increased risk of Richter transformation (RT) in patients with chronic lymphocytic leukaemia (CLL) due to Epstein-Barr virus (EBV) reactivation during immunosuppressive therapy with fludarabine other targeted agents remains controversial. Among 31 RT cases classified as diffuse large B-cell lymphoma (DLBCL), seven (23%) showed EBV expression. In contrast to EBV- tumours, EBV+ DLBCLs derived predominantly from IGVH-hypermutated CLL, and they also showed CLL-unrelated IGVH sequences more frequently. Intriguingly, despite having different cellular origins, clonally related and unrelated EBV+ DLBCLs shared a previous history of immunosuppressive chemo-immunotherapy, a non-germinal centre DLBCL phenotype, EBV latency programme type II or III, and very short survival. These data suggested that EBV reactivation during therapy-related immunosuppression can transform either CLL cells or non-tumoural B lymphocytes into EBV+ DLBCL. To investigate this hypothesis, xenogeneic transplantation of blood cells from 31 patients with CLL and monoclonal B-cell lymphocytosis (MBL) was performed in Rag2(-/-) IL2c(-/-) mice. Remarkably, the recipients' impaired immunosurveillance favoured the spontaneous outgrowth of EBV+ B-cell clones from 95% of CLL and 64% of MBL patients samples, but not from healthy donors. Eventually, these cells generated monoclonal tumours (mostly CLL-unrelated but also CLL-related), recapitulating the principal features of EBV+ DLBCL in patients. Accordingly, clonally related and unrelated EBV+ DLBCL xenografts showed indistinguishable cellular, virological and molecular features, and synergistically responded to combined inhibition of EBV replication with ganciclovir and B-cell receptor signalling with ibrutinib in vivo. Our study underscores the risk of RT driven by EBV in CLL patients receiving immunosuppressive therapies, and provides the scientific rationale for testing ganciclovir and ibrutinib in EBV+ DLBCL. Copyright (c) 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Autores:
Caballero, C. J.; Menendez-Gil, P.; Catalan-Moreno, A.; et al.
Revista:
NUCLEIC ACIDS RESEARCH
ISSN 0305-1048
Vol. 46
N° 3
Año 2018
Págs.1345 - 1361
RNA-binding proteins (RBPs) are essential to fine-tune gene expression. RBPs containing the cold-shock domain are RNA chaperones that have been extensively studied. However, the RNA targets and specific functions for many of them remain elusive. Here, combining comparative proteomics and RBP-immunoprecipitation-microarray profiling, we have determined the regulon of the RNA chaperone CspA of Staphylococcus aureus. Functional analysis revealed that proteins involved in carbohydrate and ribonucleotide metabolism, stress response and virulence gene expression were affected by cspA deletion. Stress-associated phenotypes such as increased bacterial aggregation and diminished resistance to oxidative-stress stood out. Integration of the proteome and targetome showed that CspA post-transcriptionally modulates both positively and negatively the expression of its targets, denoting additional functions to the previously proposed translation enhancement. One of these repressed targets was its own mRNA, indicating the presence of a negative post-transcriptional feedback loop. CspA bound the 5' UTR of its own mRNA disrupting a hairpin, which was previously described as an RNase III target. Thus, deletion of the cspA 5' UTR abrogated mRNA processing and auto-regulation. We propose that CspA interacts through a U-rich motif, which is located at the RNase III cleavage site, portraying CspA as a putative RNase III-antagonist.
Revista:
NEUROPSYCHOPHARMACOLOGY
ISSN 0893-133X
Vol. 42
N° 2
Año 2017
Págs.524 - 539
The targeting of two independent but synergistic enzymatic activities, histone deacetylases (HDACs, class I and HDAC6) and phosphodiesterase 5 (PDE5), has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). Here we report the discovery of a new first-in-class small-molecule (CM-414) that acts as a dual inhibitor of PDE5 and HDACs. We have used this compound as a chemical probe to validate this systems therapeutics strategy, where an increase in the activation of cAMP/cGMP-responsive element-binding protein (CREB) induced by PDE5 inhibition, combined with moderate HDAC class I inhibition, leads to efficient histone acetylation. This molecule rescued the impaired long-term potentiation evident in hippocampal slices from APP/PS1 mice. Chronic treatment of Tg2576 mice with CM-414 diminished brain Aß and tau phosphorylation (pTau) levels, increased the inactive form of GSK3ß, reverted the decrease in dendritic spine density on hippocampal neurons, and reversed their cognitive deficits, at least in part by inducing the expression of genes related to synaptic transmission. Thus, CM-414 may serve as the starting point to discover balanced dual inhibitors with an optimal efficacy and safety profile for clinical testing on AD patients.
Revista:
NATURE COMMUNICATIONS
ISSN 2041-1723
Vol. 8
Año 2017
Págs.15424
The indisputable role of epigenetics in cancer and the fact that epigenetic alterations can be reversed have favoured development of epigenetic drugs. In this study, we design and synthesize potent novel, selective and reversible chemical probes that simultaneously inhibit the G9a and DNMTs methyltransferase activity. In vitro treatment of haematological neoplasia (acute myeloid leukaemia-AML, acute lymphoblastic leukaemia-ALL and diffuse large B-cell lymphoma-DLBCL) with the lead compound CM-272, inhibits cell proliferation and promotes apoptosis, inducing interferon-stimulated genes and immunogenic cell death. CM-272 significantly prolongs survival of AML, ALL and DLBCL xenogeneic models. Our results represent the discovery of first-in-class dual inhibitors of G9a/DNMTs and establish this chemical series as a promising therapeutic tool for unmet needs in haematological tumours.
Revista:
HAEMATOLOGICA-THE HEMATOLOGY JOURNAL
ISSN 0390-6078
Vol. 102
N° Supl. 4
Año 2017
Págs.10
Revista:
HAEMATOLOGICA
ISSN 0390-6078
Vol. 102
N° Supl. 2
Año 2017
Págs.502 - 502
Autores:
Talamillo, A.; Grande, L.; Ruiz-Ontanon, P.; et al.
Revista:
ONCOGENE
ISSN 0950-9232
Vol. 36
N° 12
Año 2017
Págs.1733 - 1744
Long-term survival remains low for most patients with glioblastoma (GBM), which reveals the need for markers of disease outcome and novel therapeutic targets. We describe that ODZ1 (also known as TENM1), a type II transmembrane protein involved in fetal brain development, plays a crucial role in the invasion of GBM cells. Differentiation of glioblastoma stem-like cells drives the nuclear translocation of an intracellular fragment of ODZ1 through proteolytic cleavage by signal peptide peptidase-like 2a. The intracellular fragment of ODZ1 promotes cytoskeletal remodelling of GBM cells and invasion of the surrounding environment both in vitro and in vivo. Absence of ODZ1 by gene deletion or downregulation of ODZ1 by small interfering RNAs drastically reduces the invasive capacity of GBM cells. This activity is mediated by an ODZ1-triggered transcriptional pathway, through the E-box binding Myc protein, that promotes the expression and activation of Ras homolog family member A (RhoA) and subsequent activation of Rho-associated, coiled-coil containing protein kinase (ROCK). Overexpression of ODZ1 in GBM cells reduced survival of xenografted mice. Consistently, analysis of 122 GBM tumour samples revealed that the number of ODZ1-positive cells inversely correlated with overall and progression-free survival. Our findings establish a novel marker of invading GBM cells and consequently a potential marker of disease progression and a therapeutic target in GBM.
Revista:
EXPERT REVIEW OF PROTEOMICS
ISSN 1478-9450
Vol. 14
N° 1
Año 2017
Págs.9 - 14
Introduction: The Human Proteome Project was launched with two main goals: the comprehensive and systematic definition of the human proteome map and the development of ready to use analytical tools to measure relevant proteins in their biological context in health and disease. Despite the great progress in this endeavour, there is still a group of reluctant proteins with no, or scarce, experimental evidence supporting their existence. These are called the 'missing proteins' and represent one of the biggest challenges to complete the human proteome map. Areas covered: This review focuses on the description of the missing proteome based on the HUPO standards, the analysis of the reasons explaining the difficulty of detecting missing proteins and the strategies currently used in the search for missing proteins. The present and future of the quest for the missing proteins is critically revised hereafter. Expert commentary: An overarching multidisciplinary effort is currently being done under the HUPO umbrella to allow completion of the human proteome map. It is expected that the detection of missing proteins will grow in the coming years since the methods and the best tissue/cell type sample for their search are already on the table.
Revista:
PLOS ONE
ISSN 1932-6203
Vol. 12
N° 12
Año 2017
Págs.e0190275
The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of iPSCs and could be used for disease modelling, high throughput screenings and/or regenerative medicine applications. In this study, we showed that a new first-in-class reversible dual G9a/DNMT1 inhibitor compound (CM272) improves the efficiency of human cell reprogramming and iPSC generation from primary cells of healthy donors and patient samples, using both integrative and non-integrative methods. Moreover, CM272 facilitates the generation of human iPSC with only two factors allowing the removal of the most potent oncogenic factor cMYC. Furthermore, we demonstrated that mechanistically, treatment with CM272 induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to OSKM refractory binding regions that are required for iPSC establishment, and enhances mesenchymal to epithelial transition during the early phase of cell reprogramming. Thus, the use of this new G9a/DNMT reversible dual inhibitor compound may represent an interesting alternative for improving cell reprogramming and human iPSC derivation for many different applications while providing interesting insights into reprogramming mechanism
Revista:
CANCER TREATMENT REVIEWS
ISSN 0305-7372
Vol. 53
Año 2017
Págs.79 - 97
The discovery of reliable biomarkers to predict efficacy and toxicity of anticancer drugs remains one of the key challenges in cancer research. Despite its relevance, no efficient study designs to identify promising candidate biomarkers have been established. This has led to the proliferation of a myriad of exploratory studies using dissimilar strategies, most of which fail to identify any promising targets and are seldom validated. The lack of a proper methodology also determines that many anti-cancer drugs are developed below their potential, due to failure to identify predictive biomarkers. While some drugs will be systematically administered to many patients who will not benefit from them, leading to unnecessary toxicities and costs, others will never reach registration due to our inability to identify the specific patient population in which they are active. Despite these drawbacks, a limited number of outstanding predictive biomarkers have been successfully identified and validated, and have changed the standard practice of oncology. In this manuscript, a multidisciplinary panel reviews how those key biomarkers were identified and, based on those experiences, proposes a methodological framework the DESIGN guidelines-to-standardize the clinical design of biomarker identification studies and to develop future research in this pivotal field. (C) 2017 The Authors. Published by Elsevier Ltd.
Revista:
GASTROENTEROLOGY
ISSN 0016-5085
Vol. 152
N° 5
Año 2017
Págs.1203 - 1216.e15
BACKGROUND & AIMS: Liver regeneration after partial hepatectomy ( PH) increases the protein folding burden at the endoplasmic reticulum of remnant hepatocytes, resulting in induction of the unfolded protein response. We investigated the role of the core unfolded protein response transcription factor X-box binding protein 1 ( XBP1) in liver regeneration using genome-wide chromatin immunoprecipitation analysis. METHODS: We performed studies with C57Bl6-J ( control) and interleukin 6-knockout mice. Mice underwent PH or sham surgeries. In some mice, hepatic expression of XBP1 was knocked down by injection of adenoviral vectors encoding small hairpin RNAs against Xbp1 messenger RNA. Liver tissues were collected before surgery and at 6 and 48 hours after surgery and analyzed by chromatin immunoprecipitation followed by sequencing. We also performed functional analyses of HepG2 cells. RESULTS: Expression of XBP1 by hepatocytes increased immediately after PH ( priming phase of liver regeneration) in control mice, but this effect was delayed in interleukin 6-deficient mice. In mice with knockdown of XBP1, we observed of liver tissue persistent endoplasmic reticulum stress, defects in acute-phase response, and increased hepatocellular damage, compared with control mice. Chromatin immunoprecipitation analyses of liver tissue showed that at 6 hours after PH, liver XBP1 became bound to a large set of genes implicated in proteostasis, the acute-phase response, metabolism, and the DNA damage response ( DDR). At this time point, XBP1 bound the promoter of the signal transducer and activator of transcription 3 gene ( Stat3). Livers of XBP1-knockdown mice showed reduced expression of STAT3 and had lower levels of STAT3 phosphorylation at Ser727, a modification that promotes cell proliferation and the DDR. Regenerating livers from XBP1-knockdown mice expressed high levels of a marker of DNA double-strand breaks, phosphorylated histone 2A, member X ( H2AX), compared with control mice. The inhibition of XBP1 expression caused a reduced up-regulation of DDR messenger RNAs in regenerating hepatocytes. CONCLUSION: In livers of mice, we found that PH induces expression of XBP1, and that this activity requires interleukin 6. XBP1 expression regulates the unfolded protein response, acute-phase response, and DDR in hepatocytes. In regenerating livers, XBP1 deficiency leads to endoplasmic reticulum stress and DNA damage.
Revista:
BLOOD
ISSN 0006-4971
Vol. 130
N° Supl. 1
Año 2017
Revista:
BLOOD
ISSN 0006-4971
Vol. 128
N° 22
Año 2016
Revista:
ONCOTARGET
ISSN 1949-2553
Vol. 7
N° 16
Año 2016
Págs.22752 - 22769
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, which highlights the need of innovative therapeutic options. Although targeted therapies can be successfully used in a subset of patients with lung adenocarcinomas (ADC), they are not appropriate for patients with squamous cell carcinomas (SCC). In addition, there is an unmet need for the identification of prognostic biomarkers that can select patients at risk of relapse in early stages. Here, we have used several cohorts of NSCLC patients to analyze the prognostic value of both protein expression and DNA promoter methylation status of the prometastatic serine protease TMPRSS4. Moreover, expression and promoter methylation was evaluated in a panel of 46 lung cancer cell lines. We have demonstrated that a high TMPRSS4 expression is an independent prognostic factor in SCC. Similarly, aberrant hypomethylation in tumors, which correlates with high TMPRSS4 expression, is an independent prognostic predictor in SCC. The inverse correlation between expression and methylation status was also observed in cell lines. In vitro studies showed that treatment of cells lacking TMPRSS4 expression with a demethylating agent significantly increased TMPRSS4 levels. In conclusion, TMPRSS4 is a novel independent prognostic biomarker regulated by epigenetic changes in SCC and a potential therapeutic target in this tumor type, where targeted therapy is still underdeveloped.
Revista:
HEPATOLOGY
ISSN 0270-9139
Vol. 64
N° Supl. 1
Año 2016
Págs.266A
Revista:
NATURE COMMUNICATIONS
ISSN 2041-1723
Vol. 7
Año 2016
Págs.11889
NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-¿B and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas
Revista:
CLINICAL EPIGENETICS
ISSN 1868-7083
Vol. 7
Año 2015
Págs.108
BACKGROUND:
Given the implication of histone acetylation in memory processes, histone deacetylase inhibitors (HDACIs) have been postulated as potential modulators of cognitive impairment in Alzheimer's disease (AD). However, dose-dependent side effects have been described in patients with the currently available broad-spectrum HDACIs, explaining why their therapeutic potential has not been realized for chronic diseases. Here, by simultaneously targeting two independent enzyme activities, histone deacetylase (HDAC) and phosphodiesterase-5 (PDE5), we propose a novel mode of inhibitory action that might increase the therapeutic specificity of HDACIs.
RESULTS:
The combination of vorinostat, a pan-HDACI, and tadalafil, a PDE5 inhibitor, rescued the long-term potentiation impaired in slices from APP/PS1 mice. When administered in vivo, the combination of these drugs alleviated the cognitive deficits in AD mice, as well as the amyloid and tau pathology, and it reversed the reduced dendritic spine density on hippocampal neurons. Significantly, the combination of vorinostat and tadalafil was more effective than each drug alone, both against the symptoms and in terms of disease modification, and importantly, these effects persisted after a 4-week washout period.
CONCLUSIONS:
The results highlight the pharmacological potential of a combination of molecules that inhibit HDAC and PDE5 as a therapeutic approach for AD treatment.
Revista:
HAEMATOLOGICA
ISSN 0390-6078
Vol. 100
N° Supl. 4
Año 2015
Págs.60 - 61
Revista:
HAEMATOLOGICA
ISSN 0390-6078
Vol. 100
Año 2015
Págs.27
Revista:
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
ISSN 0066-4804
Vol. 59
N° 12
Año 2015
Págs.7581 - 7592
Therapies that are safe, effective, and not vulnerable to developing resistance are highly desirable to counteract bacterial infections. Host-directed therapeutics is an antimicrobial approach alternative to conventional antibiotics based on perturbing host pathways subverted by pathogens during their life cycle by using host-directed drugs. In this study, we identified and evaluated the efficacy of a panel of host-directed drugs against respiratory infection by nontypeable Haemophilus influenzae(NTHi). NTHi is an opportunistic pathogen that is an important cause of exacerbation of chronic obstructive pulmonary disease (COPD). We screened for host genes differentially expressed upon infection by the clinical isolate NTHi375 by analyzing cell whole-genome expression profiling and identified a repertoire of host target candidates that were pharmacologically modulated. Based on the proposed relationship between NTHi intracellular location and persistence, we hypothesized that drugs perturbing host pathways used by NTHi to enter epithelial cells could have antimicrobial potential against NTHi infection. Interfering drugs were tested for their effects on bacterial and cellular viability, on NTHi-epithelial cell interplay, and on mouse pulmonary infection. Glucocorticoids and statins lacked in vitroand/or in vivoefficacy. Conversely, the sirtuin-1 activator resveratrol showed a bactericidal effect against NTHi, and the PDE4 inhibitor rolipram showed therapeutic efficacy by lowering NTHi375 counts intracellularly and in the lungs of infected mice. PDE4 inhibition is currently prescribed in COPD, and resveratrol is an attractive geroprotector for COPD treatment. Together, these results expand our knowledge of NTHi-triggered host subversion and frame the antimicrobial potential of rolipram and resveratrol against NTHi respiratory infection.
Autores:
Díez, P.; Droste, C.; Dégano, R.; et al.
Revista:
JOURNAL OF PROTEOME RESEARCH
ISSN 1535-3893
Vol. 14
N° 9
Año 2015
Págs.3530-3540
A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of combining -omics for a comprehensive characterization of specific biological systems.
Revista:
HAEMATOLOGICA
ISSN 0390-6078
Vol. 100
N° Supl. 4
Año 2015
Págs.41 - 42
Revista:
HAEMATOLOGICA
ISSN 0390-6078
Vol. 100
N° Supl 1
Año 2015
Págs.338
Revista:
JOURNAL OF PROTEOMICS
ISSN 1874-3919
Vol. 127
Año 2015
Págs.377 - 385
Acute intermittent porphyria (AIP) is an autosomal dominant metabolic disorder caused by a deficiency of hepatic porphobilinogen deaminase (PBGD). The disease is characterized by life threatening acute neurovisceral attacks. The aim of this study was to identify metabolites secreted by the hepatocytes that reflect differential metabolic status in the liver and that may predict response to the acute attack treatment. Plasma vitamin D binding protein (VDBP) from a mouse model of AIP displayed an abnormal migration in 2D-electrophoresis that is efficiently recovered upon gene therapy leading to liver specific over-expression of the PBGD protein. The change in VDBP mobility results from a differential isoelectric point suggesting a post-translational modification that takes place preferably in the liver. Liquid chromatography-mass spectrometry (LC-MS) analysis of human samples before and after glycosidase treatment revealed glycosylated plasma VDBP specifically in patients with recurrent attacks of ALP. Glycosylated VDBP recovered normal values in three severely afflicted AIP patients submitted to therapeutic liver transplantation. Our findings suggest that post-translational modification of VDBP might be considered as a promising biomarker to study and monitor the liver metabolic status in patients with AIP.
Significance: We describe an increased glycosylation of VDBP in porphyric livers. Normal glycosylation was recovered upon liver gene therapy in a mouse model of porphyria or after liver transplantation in severely afflicted patients with AIP. Moreover, quantification of glycosylated VDBP by our ELISA immunoassay or LC-MS protocol in patients undergoing PBGD-gene therapy (www.aipgene.org) may be used as a marker indicating improvement or normalization of the patient's hepatic metabolism.
Revista:
GENOME RESEARCH
ISSN 1088-9051
Vol. 25
N° 4
Año 2015
Págs.478 - 487
While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM.
Revista:
JOURNAL OF CLINICAL INVESTIGATION
ISSN 0021-9738
Vol. 124
N° 7
Año 2014
Págs.2909-2920
A precise equilibrium between cellular differentiation and proliferation is fundamental for tissue homeostasis. Maintaining this balance is particularly important for the liver, a highly differentiated organ with systemic metabolic functions that is endowed with unparalleled regenerative potential. Carcinogenesis in the liver develops as the result of hepatocellular de-differentiation and uncontrolled proliferation. Here, we identified SLU7, which encodes a pre-mRNA splicing regulator that is inhibited in hepatocarcinoma, as a pivotal gene for hepatocellular homeostasis. SLU7 knockdown in human liver cells and mouse liver resulted in profound changes in pre-mRNA splicing and gene expression, leading to impaired glucose and lipid metabolism, refractoriness to key metabolic hormones, and reversion to a fetal-like gene expression pattern. Additionally, loss of SLU7 also increased hepatocellular proliferation and induced a switch to a tumor-like glycolytic phenotype. Slu7 governed the splicing and/or expression of multiple genes essential for hepatocellular differentiation, including serine/arginine-rich splicing factor 3 (Srsf3) and hepatocyte nuclear factor 4¿ (Hnf4¿), and was critical for cAMP-regulated gene transcription. Together, out data indicate that SLU7 is central regulator of hepatocyte identity and quiescence.
Revista:
HAEMATOLOGICA-THE HEMATOLOGY JOURNAL
ISSN 0390-6078
Vol. 98
N° 9
Año 2013
Págs.1414 - 1420
Most DNA methylation studies in classic Philadelphia-negative myeloproliferative neoplasms have been performed on a gene-by-gene basis. Therefore, a more comprehensive methylation profiling is needed to study the implications of this epigenetic marker in myeloproliferative neoplasms. Here, we have analyzed 71 chronic (24 polycythemia vera, 23 essential thrombocythemia and 24 primary myelofibrosis) and 13 transformed myeloproliferative neoplasms using genome-wide DNA methylation arrays. The three types of chronic Philadelphia-negative myeloproliferative neoplasms showed a similar aberrant DNA methylation pattern when compared to control samples. Differentially methylated regions were enriched in a gene network centered on the NF-¿B pathway, indicating that they may be involved in the pathogenesis of these diseases. In the case of transformed myeloproliferative neoplasms, we detected an increased number of differentially methylated regions with respect to chronic myeloproliferative neoplasms. Interestingly, these genes were enriched in a list of differentially methylated regions in primary acute myeloid leukemia and in a gene network centered around the IFN pathway. Our results suggest that alterations in the DNA methylation landscape play an important role in the pathogenesis and leukemic transformation of myeloproliferative neoplasms. The therapeutic modulation of epigenetically-deregulated pathways may allow us to design targeted therapies for these patients.
Autores:
Ruiz-Ontañon P; Orgaz JL; Aldaz B; et al.
Revista:
STEM CELLS
ISSN 1066-5099
Vol. 31
N° 6
Año 2013
Págs.1075-1085
Glioblastoma (GBM) is associated with infiltration of peritumoral (PT) parenchyma by isolated tumor cells that leads to tumor regrowth. Recently, GBM stem-like or initiating cells (GICs) have been identified in the PT area, but whether these GICs have enhanced migratory and invasive capabilities compared with GICs from the tumor mass (TM) is presently unknown. We isolated GICs from the infiltrated PT tissue and the TM of three patients and found that PT cells have an advantage over TM cells in two-dimensional and three-dimensional migration and invasion assays. Interestingly, PT cells display a high plasticity in protrusion formation and cell shape and their migration is insensitive to substrate stiffness, which represent advantages to infiltrate microenvironments of different rigidity. Furthermore, mouse and chicken embryo xenografts revealed that only PT cells showed a dispersed distribution pattern, closely associated to blood vessels. Consistent with cellular plasticity, simultaneous Rac and RhoA activation are required for the enhanced invasive capacity of PT cells. Moreover, Rho GTPase signaling modulators ¿Vß3 and p27 play key roles in GIC invasiveness. Of note, p27 is upregulated in TM cells and inhibits RhoA activity. Gene silencing of p27 increased the invasive capacity of TM GICs. Additionally, ß3 integrin is upregulated in PT cells. Blockade of dimeric integrin ¿Vß3, a Rac activator, reduced the invasive capacity of PT GICs in vitro and abrogated the spreading of PT cells into chicken embryos. Thus, our results describe the invasive features acquired by a unique subpopulation of GICs that infiltrate neighboring tissue.
Autores:
Romero-Camarero I; Jiang X; Natkunam Y; et al.
Revista:
NATURE COMMUNICATIONS
ISSN 2041-1723
Vol. 4
N° 1338
Año 2013
The human germinal centre-associated lymphoma gene is specifically expressed in germinal centre B-lymphocytes and germinal centre-derived B-cell lymphomas, but its function is largely unknown. Here we demonstrate that human germinal centre-associated lymphoma directly binds to Syk in B cells, increases its kinase activity on B-cell receptor stimulation and leads to enhanced activation of Syk downstream effectors. To further investigate these findings in vivo, human germinal centre-associated lymphoma transgenic mice were generated. Starting from 12 months of age these mice developed polyclonal B-cell lymphoid hyperplasia, hypergammaglobulinemia and systemic reactive amyloid A (AA) amyloidosis, leading to shortened survival. The lymphoid hyperplasia in the human germinal centre-associated lymphoma transgenic mice are likely attributable to enhanced B-cell receptor signalling as shown by increased Syk phosphorylation, ex vivo B-cell proliferation and increased RhoA activation. Overall, our study shows for the first time that the germinal centre protein human germinal centre-associated lymphoma regulates B-cell receptor signalling in B-lymphocytes which, without appropriate control, may lead to B-cell lymphoproliferation.
Revista:
NEOPLASIA
ISSN 1522-8002
Vol. 15
N° 8
Año 2013
Págs.913 - 924
The association between inflammation and lung tumor development has been clearly demonstrated. However, little is known concerning the molecular events preceding the development of lung cancer. In this study, we characterize a chemically induced lung cancer mouse model in which lung cancer developed in the presence of silicotic chronic inflammation. Silica-induced lung inflammation increased the incidence and multiplicity of lung cancer in mice treated with N-nitrosodimethylamine, a carcinogen found in tobacco smoke. Histologic and molecular analysis revealed that concomitant chronic inflammation contributed to lung tumorigenesis through induction of preneoplastic changes in lung epithelial cells. In addition, silica-mediated inflammation generated an immunosuppressive microenvironment in which we observed increased expression of programmed cell death protein 1 (PD-1), transforming growth factor-beta 1, monocyte chemotactic protein 1 (MCP-1), lymphocyte-activation gene 3 (LAG3), and forkhead box P3 (FOXP3), as well as the presence of regulatory T cells. Finally, the K-RAS mutational profile of the tumors changed from Q61R to G12D mutations in the inflammatory milieu. In summary, we describe some of the early molecular changes associated to lung carcinogenesis in a chronic inflammatory microenvironment and provide novel information concerning the mechanisms underlying the formation and the fate of preneoplastic lesions in the silicotic lung.
Revista:
PLOS ONE
ISSN 1932-6203
Vol. 8
N° 4
Año 2013
Págs.e60260
Current or former smokers expressing a well-defined disease characteristic such as emphysema, has a specific plasma cytokine profile. This includes a decrease of cytokines mainly implicated in activation of apoptosis or decrease of immunosurveillance. This information should be taken into account when evaluated patients with tobacco respiratory diseases
Revista:
JOURNAL OF PROTEOME RESEARCH
ISSN 1535-3893
Vol. 12
N° 1
Año 2013
Págs.112-122
The Chromosome 16 Consortium forms part of the Human Proteome Project that aims to develop an entire map of the proteins encoded by the human genome following a chromosome-centric strategy (C-HPP) to make progress in the understanding of human biology in health and disease (B/D-HPP). A Spanish consortium of 16 laboratories was organized into five working groups: Protein/Antibody microarrays, protein expression and Peptide Standard, S/MRM, Protein Sequencing, Bioinformatics and Clinical healthcare, and Biobanking. The project is conceived on a multicenter configuration, assuming the standards and integration procedures already available in ProteoRed-ISCIII, which is encompassed within HUPO initiatives. The products of the 870 protein coding genes in chromosome 16 were analyzed in Jurkat T lymphocyte cells, MCF-7 epithelial cells, and the CCD18 fibroblast cell line as it is theoretically expected that most chromosome 16 protein coding genes are expressed in at least one of these. The transcriptome and proteome of these cell lines was studied using gene expression microarray and shotgun proteomics approaches, indicating an ample coverage of chromosome 16. With regard to the B/D section, the main research areas have been adopted and a biobanking initiative has been designed to optimize methods for sample collection, management, and storage under normalized conditions and to define QC standards. The general strategy of the Chr-16 HPP and the current state of the different initiatives are discussed.
Revista:
BLOOD
ISSN 0006-4971
Vol. 122
N° 24
Año 2013
Págs.3982 - 3992
Endothelial cells (ECs) lining arteries and veins have distinct molecular/functional signatures. The underlying regulatory mechanisms are incompletely understood. Here, we established a specific fingerprint of freshly isolated arterial and venous ECs from human umbilical cord comprising 64 arterial and 12 venous genes, representing distinct functions/pathways. Among the arterial genes were 8 transcription factors (TFs), including Notch target HEY2, the current "gold standard" determinant for arterial EC (aEC) specification. Culture abrogated differential gene expression in part due to gradual loss of canonical Notch activity and HEY2 expression. Notably, restoring HEY2 expression or Delta-like4-induced Notch signaling in cultured ECs only partially reinstated the aEC gene signature, whereas combined overexpression of the 8 TFs restored this fingerprint more robustly. Whereas some TFs stimulated few genes, others boosted a large proportion of arterial genes. Although there was some overlap and crossregulation, the TFs largely complemented each other in regulating the aEC gene profile. Finally, overexpression of the 8 TFs in human umbilical vein ECs conveyed an arterial-like behavior upon their implantation in a Matrigel plug in vivo. Thus, our study shows that Notch signaling determines only part of the aEC signature and identifies additional novel and complementary transcriptional players in the complex regulation of human arteriovenous EC identity. (Blood. 2013;122(24):3982-3992)
Revista:
THROMBOSIS AND HAEMOSTASIS
ISSN 0340-6245
Vol. 108
N° 4
Año 2012
Págs.742 - 749
The leading cause of cardioembolic stroke is atrial fibrillation (AF), which predisposes to atrial thrombus formation. Although rheological alterations promote a hypercoagulable environment, as yet undefined factors contribute to thrombogenesis. The role of the endocardium has barely been explored. To approach this topic, rapid atrial pacing (RAP) was applied in four pigs to mimic AF. Left and right endocardial cells were isolated separately and their gene expression pattern was compared with that of four control pigs. The AF-characteristic rhythm disorders and endothelial nitric oxide synthase down-regulation were successfully reproduced, and validated RAP to mimic AF. A change was observed in the transcriptonnic endocardial profile after RAP: the expression of 364 genes was significantly altered (p < 0.01), 29 of them having passed the B > 0 criteria. The left atrial endocardium [325 genes (7 genes, B > 0)] was largely responsible for such alterations. Blood coagulation, blood vessel morphogenesis and inflammatory response are among the most significant altered functions, and help to explain the activation of coagulation observed after RAP: D-dimer, 0.49 (1.63) vs. 0.23 (0.24) mg/l [median (interquartile range)] in controls, p=0.02. Furthermore, three genes directly related to thrombotic processes were differentially expressed after RAP: FGL2 [fold change (FC)=0.85; p=0.007], APLP2 (FC=-0.47; p=0.005) and ADAMTS-18 (FC=-0.69; p=0.004). We demonstrate for the first time that AF induces a global expression change in the left atrial endocardium associated with an activation of blood coagulation. The nature of some of the altered functions and genes provides clues to identify new therapeutic targets.
Revista:
JOURNAL OF AFFECTIVE DISORDERS
ISSN 0165-0327
Vol. 138
N° 3
Año 2012
Págs.479-484
Background: As marker genes for bipolar disorder (BP) and attention deficit hyperactivity disorder (ADHD) are not fully identified, we carried out a complete genome analysis to search for genes differentially expressed in ADHD and BP. Materials and methods: We recruited 39 patients (30 ADHD, 9 BP), aged 7 to 23 years. For evaluation of the psychiatric diagnosis, we used a semi-structured interview based on the K-SADS-PL (DSM-IV). RNA was extracted from peripheral blood and analyzed with the GeneChip (R) Human Genome U133-Plus 2.0 (Affymetrix). For the validation of differentially expressed genes, real-time PCR was used. Results: Hybridization and subsequent statistical analysis found 502 probe-sets with significant differences in expression in ADHD and BP patients. Of these, 82 had highly significant differences. Neuregulin (NRG1), cathepsins B and D (CTSB, CTSD) and prostaglandin-D2-synthase (FTGDS) were chosen for semi-quantitative mRNA determination. The expression of PTGDS was statistically increased in ADHD relative to BP patients (p = 0.01). We found no such differential expression with NRG1, CTSB and CTSD genes (p > 0.05). Conclusions: The gene coding for FTGDS was found to be more expressed in patients with ADHD relative to patients with BP, indicating a possible link with the differential etiology of ADHD. The experimental approach we have used is, at least in part, validated by the detection of proteins directly concerned with brain functions, and shows a possible way forward for studies of the connection between brain function genes and psychiatric disorders. Limitations: Confirmation of our findings requires a larger sample of patients with clearly-defined phenotypes. (C) 2012 Elsevier B.V. All rights reserved.
Autores:
Vicente-Duenas, C.; Fontan, L. ; Gonzalez-Herrero, I. ; et al.
Revista:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN 0027-8424
Vol. 109
N° 26
Año 2012
Págs.10534 - 10539
Chromosomal translocations involving the MALT1 gene are hallmarks of mucosa-associated lymphoid tissue (MALT) lymphoma. To date, targeting these translocations to mouse B cells has failed to reproduce human disease. Here, we induced MALT1 expression in mouse Sca1(+)Lin(-) hematopoietic stem/progenitor cells, which showed NF-kappa B activation and early lymphoid priming, being selectively skewed toward B-cell differentiation. These cells accumulated in extranodal tissues and gave rise to clonal tumors recapitulating the principal clinical, biological, and molecular genetic features of MALT lymphoma. Deletion of p53 gene accelerated tumor onset and induced transformation of MALT lymphoma to activated B-cell diffuse large-cell lymphoma (ABC-DLBCL). Treatment of MALT1-induced lymphomas with a specific inhibitor of MALT1 proteolytic activity decreased cell viability, indicating that endogenous Malt1 signaling was required for tumor cell survival. Our study shows that human-like lymphomas can be modeled in mice by targeting MALT1 expression to hematopoietic stem/progenitor cells, demonstrating the oncogenic role of MALT1 in lymphomagenesis. Furthermore, this work establishes a molecular link between MALT lymphoma and ABC-DLBCL, and provides mouse models to test MALT1 inhibitors. Finally, our results suggest that hematopoietic stem/progenitor cells may be involved in the pathogenesis of human mature B-cell lymphomas.
Revista:
PLOS ONE
ISSN 1932-6203
Vol. 7
N° 8
Año 2012
Págs.e42086
Lung cancer is a leading cause of cancer death worldwide. Several alterations in RNA metabolism have been found in lung cancer cells; this suggests that RNA metabolism-related molecules are involved in the development of this pathology. In this study, we searched for RNA metabolism-related genes that exhibit different expression levels between normal and tumor lung tissues. We identified eight genes differentially expressed in lung adenocarcinoma microarray datasets. Of these, seven were up-regulated whereas one was down-regulated. Interestingly, most of these genes had not previously been associated with lung cancer. These genes play diverse roles in mRNA metabolism: three are associated with the spliceosome (ASCL3L1, SNRPB and SNRPE), whereas others participate in RNA-related processes such as translation (MARS and MRPL3), mRNA stability (PCBPC1), mRNA transport (RAE), or mRNA editing (ADAR2, also known as ADARB1). Moreover, we found a high incidence of loss of heterozygosity at chromosome 21q22.3, where the ADAR2 locus is located, in NSCLC cell lines and primary tissues, suggesting that the downregulation of ADAR2 in lung cancer is associated with specific genetic losses. Finally, in a series of adenocarcinoma patients, the expression of five of the deregulated genes (ADAR2, MARS, RAE, SNRPB and SNRPE) correlated with prognosis. Taken together, these results support the hypothesis that changes in RNA metabolism are involved in the pathogenesis of lung cancer, and identify new potential targets for the treatment of this disease.
Revista:
LEUKEMIA
ISSN 0887-6924
Vol. 26
N° 7
Año 2012
Págs.1517 - 1526
Histone deacetylases (HDACs) have been identified as therapeutic targets due to their regulatory function in chromatin structure and organization. Here, we analyzed the therapeutic effect of LBH589, a class I - II HDAC inhibitor, in acute lymphoblastic leukemia ( ALL). In vitro, LBH589 induced dose-dependent antiproliferative and apoptotic effects, which were associated with increased H3 and H4 histone acetylation. Intravenous administration of LBH589 in immunodeficient BALB/c-RAG2(-/-)gamma c(-/-) mice in which human-derived T and B-ALL cell lines were injected induced a significant reduction in tumor growth. Using primary ALL cells, a xenograft model of human leukemia in BALB/c-RAG2(-/-)gamma c(-/-) mice was established, allowing continuous passages of transplanted cells to several mouse generations. Treatment of mice engrafted with T or B-ALL cells with LBH589 induced an in vivo increase in the acetylation of H3 and H4, which was accompanied with prolonged survival of LBH589-treated mice in comparison with those receiving vincristine and dexamethasone. Notably, the therapeutic efficacy of LBH589 was significantly enhanced in combination with vincristine and dexamethasone. Our results show the therapeutic activity of LBH589 in combination with standard chemotherapy in pre-clinical models of ALL and suggest that this combination may be of clinical value in the treatment of patients with ALL.
Revista:
JOURNAL OF PROTEOMICS
ISSN 1874-3919
Vol. 75
N° 18
Año 2012
Págs.5783 - 5792
Liver diseases are the fifth cause of mortality in Western countries, and as opposed to other major causes of mortality, their incidence is increasing. Understanding the molecular background contributing to the progression of liver ailments will surely open new perspectives for the better management of patients. The aim of this study is to elucidate mechanisms underlying the progression of liver injury associated with deficient prohibitin 1, an essential protein to maintain mitochondrial homeostasis and gene expression. PHB1 +/¿ mice developed a more severe steatohepatitis than WT littermates when exposed to a choline and methionine deficient diet. The increased sensitivity was mediated by mitochondrial dysfunction and metabolic impairment in PHB1 +/¿ livers, including inactivation of AMP kinase, measured under a non-restricted diet. Moreover, pro-inflammatory challenges induced higher mortality and liver injury in PHB +/¿ mice. The increased proliferative capacity of PHB +/¿ splenocytes, resulting from constitutive defects in central molecular pathways as stated by deregulation of GSK3ß, Erk, Akt or SHP-1, and the concomitant overproduction of pro-inflammatory mediators in Phb1 deficient mice, might account for these effects. In light of these results it might be concluded that Phb1 deficiency is a potential driver of chronic liver diseases by inducing hepatocyte damage and inflammation.
Revista:
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE
ISSN 1073-449X
Vol. 186
N° 1
Año 2012
Págs.96 - 105
Rationale: Efficient metastasis requires survival and adaptation of tumor cells to stringent conditions imposed by the extracellular milieu. Identification of critical survival signaling pathways in tumor cells might unveil novel targets relevant in disease progression.
Objectives: To investigate the contribution of activated protein C (APC) and its receptor (endothelial protein C receptor [EPCR]) in animal models of lung cancer metastasis and in patients with lung adenocarcinoma.
Methods: Signaling pathway triggered by APC/EPCR and its relevance in apoptosis was studied in vitro. Functional significance was assessed by silencing and blocking antibodies in several in vivo models of lung cancer metastasis in athymic nude Foxn1(nu) mice. We examined EPCR levels using a microarray dataset of 107 patients. Immunohistochemical analysis was performed in an independent cohort of 295 patients with lung adenocarcinoma.
Measurements and Main Results: The effects of APC binding to EPCR rapidly triggered Akt and extracellular signal-regulated kinase signaling pathways, leading to attenuated in vitro apoptosis. In vivo, silencing of EPCR expression or blocking APC/EPCR interaction reduced infiltration in the target organ, resulting in impaired prometastatic activity. Moreover, overexpression of EPCR induced an increased metastatic activity to target organs. Analysis of clinical samples showed a robust association between high EPCR levels and poor prognosis, particularly in stage I patients.
Conclusions: EPCR and its ligand APC promote cell survival that contributes to tumor cell endurance to stress favoring prometastatic activity of lung adenocarcinoma. EPCR/APC is a novel target of relevance in the clinical outcome of early-stage lung cancer.
Revista:
PLOS ONE
ISSN 1932-6203
Vol. 7
N° 2
Año 2012
Págs.e31605
Chronic myelomonocytic leukemia (CMML) has recently been associated with a high incidence of diverse mutations in genes such as TET2 or EZH2 that are implicated in epigenetic mechanisms. We have performed genome-wide DNA methylation arrays and mutational analysis of TET2, IDH1, IDH2, EZH2 and JAK2 in a group of 24 patients with CMML. 249 genes were differentially methylated between CMML patients and controls. Using Ingenuity pathway analysis, we identified enrichment in a gene network centered around PLC, JNK and ERK suggesting that these pathways, whose deregulation has beenrecently described in CMML, are affected by epigenetic mechanisms. Mutations of TET2, JAK2 and EZH2 were found in 15 patients (65%), 4 patients (17%) and 1 patient (4%) respectively while no mutations in the IDH1 and IDH2 genes were identified. Interestingly, patients with wild type TET2 clustered separately from patients with TET2 mutations, showed a higher degree of hypermethylation and were associated with higher risk karyotypes. Our results demonstrate the presence of aberrant DNA methylation in CMML and identifies TET2 mutant CMML as a biologically distinct disease subtype with a different epigenetic profile.
Revista:
BMC BIOINFORMATICS
ISSN 1471-2105
Vol. 13
N° 222
Año 2012
BACKGROUND:
High-density oligonucleotide microarray is an appropriate technology for genomic analysis, and is particulary useful in the generation of transcriptional maps, ChIP-on-chip studies and re-sequencing of the genome.Transcriptome analysis of tiling microarray data facilitates the discovery of novel transcripts and the assessment of differential expression in diverse experimental conditions. Although new technologies such as next-generation sequencing have appeared, microarrays might still be useful for the study of small genomes or for the analysis of genomic regions with custom microarrays due to their lower price and good accuracy in expression quantification.
RESULTS:
Here, we propose a novel wavelet-based method, named ZCL (zero-crossing lines), for the combined denoising and segmentation of tiling signals. The denoising is performed with the classical SUREshrink method and the detection of transcriptionally active regions is based on the computation of the Continuous Wavelet Transform (CWT). In particular, the detection of the transitions is implemented as the thresholding of the zero-crossing lines. The algorithm described has been applied to the public Saccharomyces cerevisiae dataset and it has been compared with two well-known algorithms: pseudo-median sliding window (PMSW) and the structural change model (SCM). As a proof-of-principle, we applied the ZCL algorithm to the analysis of the custom tiling microarray hybridization results of a S. aureus mutant deficient in the sigma B transcription factor. The challenge was to identify those transcripts whose expression decreases in the absence of sigma B.
CONCLUSIONS:
The proposed method archives the best performance in terms of positive predictive value (PPV) while its sensitivity is similar to the other algorithms used for the comparison. The computation time needed to process the transcriptional signals is low as compared with model-based methods and in the same range to those based on the use of filters. Automatic parameter selection has been incorporated and moreover, it can be easily adapted to a parallel implementation. We can conclude that the proposed method is well suited for the analysis of tiling signals, in which transcriptional activity is often hidden in the noise. Finally, the quantification and differential expression analysis of S. aureus dataset have demonstrated the valuable utility of this novel device to the biological analysis of the S. aureus transcriptome.
Revista:
Functional & Integrative Genomics
ISSN 1438-793X
Vol. 11
N° 3
Año 2011
Págs.419 - 429
Revista:
EUROPEAN NEUROPSYCHOPHARMACOLOGY
ISSN 0924-977X
Vol. 21
N° 1
Año 2011
Págs.23-32
Revista:
Molecular and Cellular Proteomics
ISSN 1535-9476
Vol. 10
N° 6
Año 2011
Págs. -
Herpesvirus type 1 (HSV-1) based oncolytic vectors arise as a promising therapeutic alternative for neoplastic diseases including hepatocellular carcinoma. However, the mechanisms mediating the host cell response to such treatments are not completely known. It is well established that HSV-1 infection induces functional and structural alterations in the nucleus of the host cell. In the present work, we have used gel-based and shotgun proteomic strategies to elucidate the signaling pathways impaired in the nucleus of human hepatoma cells (Huh7) upon HSV-1 Cgal+ infection. Both approaches allowed the identification of differential proteins suggesting impairment of cell functions involved in many aspects of host-virus interaction such as transcription regulation, mRNA processing, and mRNA splicing. Based on our proteomic data and additional functional studies, cellular protein quaking content (QKI) increases 4 hours postinfection (hpi), when viral immediate-early genes such as ICP4 and ICP27 could be also detected. Depletion of QKI expression by small interfering RNA results in reduction of viral immediate-early protein levels, subsequent decrease in early and late viral protein content, and a reduction in the viral yield indicating that QKI directly interferes with viral replication. In particular, HSV-1 Cgal+ induces a transient increase in quaking I-5 isoform (QKI-5) levels, in parallel with an enhancement of p27Kip1 protein content. Moreover, immunofluorescence microscopy showed an early nuclear redistribution of QKI-5, shuttling from the nucleus to the cytosol and colocalizing with nectin-1 in cell to cell contact regions at 16¿24 hpi. This evidence sheds new light on mechanisms mediating hepatoma cell response to HSV-1 vectors highlighting QKI as a central molecular mediator.
Revista:
Nucleic acids research (print)
ISSN 0305-1048
Vol. 38
N° 3
Año 2010
Págs.750 - 763
Revista:
METHODS IN MOLECULAR BIOLOGY
ISSN 1064-3745
Vol. 593
Año 2010
Págs.157 - 174
High-throughput gene expression technologies based on DNA microarrays allow the examination of biological systems. However, the interpretation of the complex molecular descriptions generated by these approaches is still challenging. The development of new methodologies to identify common regulatory mechanisms involved in the control of the expression of a set of co-expressed genes might enhance our capacity to extract functional information from genomic data sets. In this chapter, we describe a method that integrates different sources of information: gene expression data, genome sequence information, described transcription factor binding sites (TFBSs), functional information, and bibliographic data. The starting point of the analysis is the extraction of promoter sequences from a whole genome and the detection of TFBSs in each gene promoter. This information allows the identification of enriched TFBSs in the proximal promoter of differentially expressed genes. The functional and bibliographic interpretation of the results improves our biological insight into the regulatory mechanisms involved in a microarray experiment.
Revista:
PROSTATE
ISSN 0270-4137
Vol. 70
N° 6
Año 2010
Págs.630 - 645
BACKGROUND:
Prostate cancer (PrCa) has a high incidence in Western countries and at present, there is no cure for hormone refractory prostate cancer. Transgenic mouse models have proven useful for understanding mechanisms of prostate carcinogenesis. The characterization of genetically modified mouse PrCa models using high-throughput genomic analyses provides important information to guide appropriate experiment applications for such model.
METHODS:
We have analyzed the transcriptome of the hormone refractory and highly metastatic Fetal Globin-SV40/T-antigen (Ggamma-globin-Tag) transgenic mouse model for PrCa compared to normal mouse prostate tissue. Gene expression patterns found in Ggamma-globin-Tag mouse prostate tumors were compared with publicly available human localized and metastatic prostate tumors (GEO accession # GSE3325) through hierarchical cluster analysis, Pearson's rank correlation coefficient, and Self Organizing Feature Maps (SOM) analyses.
RESULTS:
Ggamma-globin-Tag tumors clustered closely with human metastatic tumors and gene expression patterns had a significant correlation (P < 0.01), unlike human localized primary tumors (P > 0.6). Bioinformatic analyses identified deregulated genetic pathways and networks in Ggamma-globin-Tag tumors, which displayed similarities to alterations in human PrCa. Changes in the expression of genes involved in DNA replication and repair (Rb1, p53, Myc, PCNA, DNMT3A) and growth factor signaling pathways (TGFbeta2, ERK1/2, NRas, and Notch1) are deregulated in the Ggamma-globin-Tag tumors, suggesting their key role in the oncogenic process. Identification of an enrichment of putative binding sites for transcription factors revealed eight transcription factors that may be important in Ggamma-globin-Tag carcinogenesis, including SP1, NF-Y, CREB, Elk1, and E2F. Novel genes related to microtubule regulation were also identified in Ggamma-globin-Tag tumors as potentially important candidate targets for PrCa. Overexpression of stathmin-1, whose expression was increased in human metastatic prostate tumors, was validated in Ggamma-globin-Tag tumors by immunohistochemistry. This protein belongs to the SV40/T-antigen cancer signature identified in previous studies in prostate, breast, and lung cancer mouse models.
CONCLUSIONS:
Our results show that the Ggamma-globin-Tag model for hormone refractory PrCa shares important features with aggressive, metastatic human PrCa. Given the role of stathmin-1 in the destabilization of microtubles and taxane resistance, the Ggamma-globin-Tag model and other SV40/T-antigen driven transgenic models may be useful for testing potential therapies directed at stathmin-1 in human prostate tumors.
Revista:
PROTEOMICS
ISSN 1615-9853
Vol. 10
N° 8
Año 2010
Págs.1609 - 1620
Prohibitin is a multifunctional protein participating in a plethora of essential cellular functions, such as cell signaling, apoptosis, survival and proliferation. In the liver, deficient prohibitin activity participates in the progression of non-alcoholic steatohepatitis and obesity, according to mechanisms that still must be elucidated. In this study, we have used a combination of transcriptomics and proteomics technologies to investigate the response of human hepatoma PLC/PRF/5 cells to prohibitin silencing to define in detail the biological function of hepatic Phb1 and to elucidate potential prohibitin-dependent mechanisms participating in the maintenance of the transformed phenotype. Abrogation of prohibitin reduced proliferation and induced apoptosis in human hepatoma cells in a mechanism dependent on NF kappaB signaling. Moreover, down-regulation of ERp29 together with down-regulation of Erlin 2 suggests ER stress. In agreement, increased C/EBP homologous protein levels, poly-ADP ribose polymerase cleavage and activation of caspase 12 and downstream caspase 7 evidenced ER stress-induced apoptosis. Down-regulation of proteasome activator complex subunit 2 and stathmin as well as accumulation of ubiquitinated proteins suggest interplay between ER stress and proteasome malfunction. Taken together, our results provide evidences for prohibitin having a central role in the maintenance of the transformed and invasive phenotype of human hepatoma cells and may further support previous studies suggesting prohibitin as a potential clinical target.
Revista:
Experimental Cell Research
ISSN 0014-4827
Vol. 316
N° 4
Año 2010
Págs.554 - 567
Vascular endothelial growth factor (VEGF) is overexpressed during the transition from prostate intraepithelial neoplasia (PIN) to invasive carcinoma. We have mimicked such a process in vitro using the PIN-like C3(1)/Tag-derived Pr-111 cell line, which expresses low levels of VEGF and exhibits very low tumorigenicity in vivo. Elevated expression of VEGF164 in Pr-111 cells led to a significant increase in tumorigenicity, invasiveness, proliferation rates and angiogenesis. Moreover, VEGF164 induced strong changes in cell morphology and cell transcriptome through an autocrine mechanism, with changes in TGF-beta1- and cytoskeleton-related pathways, among others. Further analysis of VEGF-overexpressing Pr-111 cells or following exogenous addition of recombinant VEGF shows acquisition of epithelial-mesenchymal transition (EMT) features, with an increased expression of mesenchymal markers, such as N-cadherin, Snail1, Snail2 (Slug) and vimentin, and a decrease in E-cadherin. Administration of VEGF led to changes in TGF-beta1 signaling, including reduction of Smad7 (TGF-beta inhibitory Smad), increase in TGF-betaR-II, and translocation of phospho-Smad3 to the nucleus. Our results suggest that increased expression of VEGF in malignant cells during the transition from PIN to invasive carcinoma leads to EMT through an autocrine loop, which would promote tumor cell invasion and motility. Therapeutic blockade of VEGF/TGF-beta1 in PIN lesions might impair not only tumor angiogenesis, but also the early dissemination of malignant cells outside the epithelial layer.