Revistas
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2022
Vol.:
629
Págs.:
122356
Extracellular vesicles (EVs) are nanosized pArtículos with attractive therapeutic potential for cardiac repair. However, low retention and stability after systemic administration limit their clinical translation. As an alternative, the combination of EVs with biomaterial-based hydrogels (HGs) is being investigated to increase their exposure in the myocardium and achieve an optimal therapeutic effect. In this study, we developed and characterized a novel injectable in-situ forming HG based on alginate and collagen as a cardiac delivery vehicle for EVs. Different concentrations of alginate and collagen crosslinked with calcium gluconate were tested. Based on injectability studies, 1% alginate, 0.5 mg/mL collagen and 0.25% calcium gluconate HG was selected as the idoneous combination for cardiac administration using catheter-based systems. Rheological examination revealed that the HG possessed an internal gel structure, weak mechanical properties and low viscosity, facilitating an easy administration. In addition, EVs were successfully incorporated and homogeneously distributed in the HG. After administration in a rat model of myocardial infarction, the HG showed long-term retention in the heart and allowed for a sustained release of EVs for at least 7 days. Thus, the combination of HGs and EVs represents a promising therapeutic strategy for myocardial repair. Besides EVs delivery, the developed HG could represent a useful platform for cardiac delivery of multiple therapeutic agents.
Revista:
BIOMACROMOLECULES
ISSN:
1525-7797
Año:
2022
Vol.:
23
N°:
11
Págs.:
4629 - 4644
The co-administration of glial cell line-derived neurotrophic factor (GDNF) and mesenchymal stem cells (MSCs) in hydrogels (HGs) has emerged as a powerful strategy to enhance the efficient integration of transplanted cells in Parkinson's disease (PD). This strategy could be improved by controlling the cellular microenvironment and biomolecule release and better mimicking the complex properties of the brain tissue. Here, we develop and characterize a drug delivery system for brain repair where MSCs and GDNF are included in a nanoparticle-modified supramolecular guest-host HA HG. In this system, the nanoparticles act as both carriers for the GDNF and active physical crosslinkers of the HG. The multifunctional HG is mechanically compatible with brain tissue and easily injectable. It also protects GDNF from degradation and achieves its controlled release over time. The cytocompatibility studies show that the developed biomaterial provides a friendly environment for MSCs and presents good compatibility with PC12 cells. Finally, using RNA-sequencing (RNA-seq), we investigated how the three-dimensional (3D) environment, provided by the nanostructured HG, impacted the encapsulated cells. The transcriptome analysis supports the beneficial effect of including MSCs in the nanoreinforced HG. An enhancement in the anti-inflammatory effect of MSCs was observed, as well as a differentiation of the MSCs toward a neuron-like cell type. In summary, the suitable strength, excellent self healing properties, good biocompatibility, and ability to boost MSC regenerative potential make this nanoreinforced HG a good candidate for drug and cell administration to the brain.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2022
Vol.:
175
Págs.:
1 - 6
Edelfosine (ET) is a potent antitumor agent but causes severe side effects that have limited its use in clinical practice. For this reason, nanoencapsulation in lipid nanoparticles (LNs) is advantageous as it protects from ET side-effects. Interestingly, previous studies showed the efficacy of LNs containing ET in various types of tumor. In this paper, biodistribution studies of nanoencapsulated ET, administered by three routes (oral, intravenous (IV) and intraperitoneal (IP)), were tested in order to select the optimal route of administration. To do this, ET-LNs were labeled with Technetium-99 m (Tc-99m) and administered by the oral, IV and IP route in mice. IV administration of the radiolabeled LNs led to fast elimination from the blood circulation and increased accumulation in reticulo-endothelial (RES) organs, while their oral administration could not provide any evidence on their biodistribution since large radiocomplexes were formed in the presence of gastrointestinal fluids. However, when the LNs were administered by the IP route they could access the systemic circulation and provided more constant blood ET-LN levels compared to the IV route. These findings suggest that the IP route can be used to sustain the level of drug in the blood and avoid accumulation in RES organs.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2022
Vol.:
170
Págs.:
187 - 196
Since the discovery of the beneficial therapeutical effects of extracellular vesicles (EVs), these agents have been attracting great interest as next-generation therapies. EVs are nanosized membrane bodies secreted by all types of cells that mediate cell-cell communication. Although the classification of different subpopulations of EVs can be complex, they are broadly divided into microvesicles and exosomes based on their biogenesis and in large and small EVs based on their size. As this is an emerging field, current investigations are focused on basic aspects such as the more convenient method for EV isolation. In the present paper, we used cardiac progenitor cells (CPCs) to study and compare different cell culture conditions for EV isolation as well as two of the most commonly employed purification methods: ultracentrifugation (UC) and size-exclusion chromatography (SEC). Large and small EVs were separately analysed. We found that serum starvation of cells during the EV collecting period led to a dramatic decrease in EV secretion and major cell death. Regarding the isolation method, our findings suggest that UC and SEC gave similar EV recovery rates. Separation of large and small EV-enriched subpopulations was efficiently achieved with both purification protocols although certain difference in sample heterogeneity was observed. Noteworthy, while calnexin was abundant in large EVs, ALIX and CD63 were mainly found in small EVs. Finally, when the functionality of EVs was assessed on primary culture of adult murine cardiac fibroblasts, we found that EVs were taken up by these cells, which resulted in a pronounced reduction in the proliferative and migratory capacity of the cells. Specifically, a tendency towards a larger effect of SEC-related EVs was observed. No differences could be found between large and small EVs. Altogether, these results contribute to establish the basis for the use of EVs as therapeutic platforms, in particular in regenerative fields.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2022
Vol.:
348
Págs.:
553 - 571
Embryonal tumors of the nervous system are neoplasms predominantly affecting the pediatric population. Among the most common and aggressive ones are neuroblastoma (NB) and medulloblastoma (MB). NB is a sympathetic nervous system tumor, which is the most frequent extracranial solid pediatric cancer, usually detected in children under two. MB originates in the cerebellum and is one of the most lethal brain tumors in early childhood. Their tumorigenesis presents some similarities and both tumors often have treatment resistances and poor prognosis. High-risk (HR) patients require high dose chemotherapy cocktails associated with acute and long-term toxicities. Nanomedicine and cell therapy arise as potential solutions to improve the prognosis and quality of life of children suffering from these tumors. Indeed, nanomedicines have been demonstrated to efficiently reduce drug toxicity and improve drug efficacy. Moreover, these systems have been extensively studied in cancer research over the last few decades and an increasing number of anticancer nanocarriers for adult cancer treatment has reached the clinic. Among cell-based strategies, the clinically most advanced approach is chimeric antigen receptor (CAR) T therapy for both pathologies, which is currently under investigation in phase I/II clinical trials. However, pediatric drug research is especially hampered due not only to ethical issues but also to the lack of efficient pre-clinical models and the inadequate design of clinical trials. This review provides an update on progress in the treatment of the main embryonal tumors of the nervous system using nanotechnology and cell-based therapies and discusses key issues behind the gap between preclinical studies and clinical trials in this specific area. Some directions to improve their translation into clinical practice and foster their development are also provided.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2022
Vol.:
177
Págs.:
89 - 90
Revista:
CHEMMEDCHEM
ISSN:
1860-7179
Año:
2021
Vol.:
16
N°:
24
Págs.:
3730 - 3738
Therapeutic perspectives of bone tumors such as osteosarcoma remain restricted due to the inefficacy of current treatments. We propose here the construction of a novel anticancer squalene-based nanomedicine with bone affinity and retention capacity. A squalenyl-hydroxybisphosphonate molecule was synthetized by chemical conjugation of a 1-hydroxyl-1,1-bisphosphonate moiety to the squalene chain. This amphiphilic compound was inserted onto squalenoyl-gemcitabine nanoparticles using the nanoprecipitation method. The co-assembly led to nanoconstructs of 75 nm, with different morphology and colloidal properties. The presence of squalenyl-hydroxybisphosphonate enhanced the nanoparticles binding affinity for hydroxyapatite, a mineral present in the bone. Moreover, the in vitro anticancer activity was preserved when tested in commercial and patient-treated derived pediatric osteosarcoma cells. Further in vivo studies will shed light on the potential of these nanomedicines for the treatment of bone sarcomas.
Revista:
ACTA BIOMATERIALIA
ISSN:
1742-7061
Año:
2021
Vol.:
126
Págs.:
394 - 407
Despite tremendous progress in cell-based therapies for heart repair, many challenges still exist. To enhance the therapeutic potential of cell therapy one approach is the combination of cells with biomaterial delivery vehicles. Here, we developed a biomimetic and biodegradable micro-platform based on polymeric microparticles (MPs) capable of maximizing the therapeutic potential of cardiac progenitor cells (CPCs) and explored its efficacy in a rat model of chronic myocardial infarction. The transplantation of CPCs adhered to MPs within the infarcted myocardial microenvironment improved the long-term engraftment of transplanted cells for up to one month. Furthermore, the enhancement of cardiac cellular retention correlated with an increase in functional recovery. In consonance, better tissue remodeling and vasculogenesis were observed in the animals treated with cells attached to MPs, which presented smaller infarct size, thicker right ventricular free wall, fewer deposition of periostin and greater density of vessels than animals treated with CPCs alone. Finally, we were able to show that part of this beneficial effect was mediated by CPC derived extracellular vesicles (EVs). Taken together, these findings indicate that the biomimetic microcarriers support stem cell survival and increase cardiac function in chronic myocardial infarction through modulation of cardiac remodeling, vasculogenesis and CPCs-EVs mediated therapeutic effects. The biomimetic microcarriers provide a solution for biomaterial-assisted CPC delivery to the heart.
Statement of significance
In this study, we evaluate the possibility of using a biomimetic and biodegradable micro-platform to improve cardiovascular progenitor therapy. The strategy reported herein serves as an injectable scaffold for adherent cells due to their excellent injectability through cardiac catheters, capacity for biomimetic threedimensional stem cell support and controllable biodegradability. In a rat model of chronic myocardial infarction, the biomimetic microcarriers improved cardiac function, reduced chronic cardiac remodeling and increased vasculogenesis through the paracrine signaling of CPCs. We have also shown that extracellular vesicles derived from CPCs cultured on biomimetic substrates display antifibrotic effects, playing an important role in the therapeutic effects of our tissue-engineered approach. Therefore, biomimetic microcarriers represent a promising and effective strategy for biomaterial-assisted CPC delivery to the heart.
Revista:
JOURNAL OF MATERIALS CHEMISTRY B
ISSN:
2050-750X
Año:
2021
Vol.:
9
N°:
9
Págs.:
2233 - 2239
Despite the interesting chemopreventive, antioxidant and antiangiogenic effects of the natural bioflavonoid genistein (GEN), its low aqueous solubility and bioavailability make it necessary to administer it using a suitable drug carrier system. Nanometric porous metal-organic frameworks (nanoMOFs) are appealing systems for drug delivery. Particularly, mesoporous MIL-100(Fe) possesses a variety of interesting features related to its composition and structure, which make it an excellent candidate to be used as a drug nanocarrier (highly porous, biocompatible, can be synthesized as homogenous and stable nanoparticles (NPs), etc.). In this study, GEN was entrapped via simple impregnation in MIL-100 NPs achieving remarkable drug loading (27.1 wt%). A combination of experimental and computing techniques was used to achieve a deep understanding of the encapsulation of GEN in MIL-100 nanoMOF. Subsequently, GEN delivery studies were carried out under simulated physiological conditions, showing on the whole a sustained GEN release for 3 days. Initial pharmacokinetic and biodistribution studies were also carried out upon the oral administration of the GEN@MIL-100 NPs in a mouse model, evidencing a higher bioavailability and showing that this oral nanoformulation appears to be very promising. To the best of our knowledge, the GEN-loaded MIL-100 will be the first antitumor oral formulation based on nanoMOFs studied in vivo, and paves the way to the efficient delivery of nontoxic antitumorals via a convenient oral route.
Revista:
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN:
0021-9797
Año:
2021
Vol.:
582
Págs.:
353-363
Hypothesis: The combination of polymeric surfactants into mixed micelles is expected to improve properties relevant to their use in drug delivery, such as micellar size, gelation, and toxicity. We investigated synergistic effects in mixtures of D-¿-Tocopheryl polyethylene glycol succinate (TPGS), an FDA-approved PEGylated derivative of vitamin E, and Tetronic surfactants, pH-responsive and thermogelling polyethylene oxide (PEO)-polypropylene oxide (PPO) 4-arm block copolymers. We hypothesized that mixed micelles would form under specific conditions and provide a handle to tune formulation characteristics.
Experiments: We examined the morphology of the self-assembled structures in mixtures of TPGS with two Tetronic: T1107 and T908, using a combination of dynamic light scattering (DLS), small-angle neutron scattering (SANS), NMR spectroscopy (NOESY and diffusion NMR) and oscillatory rheology, over a range of compositions, temperatures and pH. Cell viability was assessed in NIH/3T3 fibroblasts.
Findings: The combination of TPGS with either of the two Tetronic produces spherical core-shell micelles that comprise both surfactants in their structure (mixed micelles). T1107 unimers incorporate into TPGS aggregates below the critical micelle temperature of the poloxamine, while mixed micelles only form under limited conditions with T908. At high concentration/temperature, small proportions of TPGS extend the gel phase, more markedly with T1107, with similar elastic moduli (30-50 kPa) and a BCC crystalline structure. Cell viability of NIH/3T3 fibroblasts grown in the hydrogels increases significantly when the poloxamine gels are doped with TPGS, making the combination of poloxamines and TPGS a promising platform for drug delivery.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
ISSN:
0928-0987
Año:
2021
Vol.:
159
Págs.:
105726
Human glial cell line-derived neurotrophic factor (hGDNF) is the most potent dopaminergic factor described so far, and it is therefore considered a promising drug for Parkinson's disease (PD) treatment. However, the production of therapeutic proteins with a high degree of purity and a specific glycosylation pattern is a major challenge that hinders its commercialization. Although a variety of systems can be used for protein production, only a small number of them are suitable to produce clinical-grade proteins. Specifically, the baby hamster kidney cell line (BHK-21) has shown to be an effective system for the expression of high levels of hGDNF, with appropriate post-translational modifications and protein folding. This system, which is based on the electroporation of BHK-21 cells using a Semliki Forest virus (SFV) as expression vector, induces a strong shut-off of host cell protein synthesis that simplify the purification process. However, SFV vector exhibits a temperature-dependent cytopathic effect on host cells, which could limit hGDNF expression. The aim of this study was to improve the expression and purification of hGDNF using a biphasic temperature cultivation protocol that would decrease the cytopathic effect induced by SFV. The protocol described constitutes an efficient and highly scalable method to produce highly pure hGDNF.
Revista:
JOURNAL OF MOLECULAR LIQUIDS
ISSN:
0167-7322
The combination of polymeric surfactants with different features into mixed micelles give access to properties that may be superior to the single-component micelles. In this work, we investigated synergistic effects in mixtures of D-alpha-Tocopheryl polyethylene glycol succinate (TPGS) with poloxamines (also known as Tetronic), pH-responsive and thermogelling polyethylene oxide (PEO)-polypropylene oxide (PPO) 4-arm block copolymers. We examined the morphology of the self-assembled micelles of TPGS with Tetronic 1107 (T1107) and 908 (T908) in the presence of naproxen (NA), used as a model drug, and assessed the capacity of the single and mixed micelles to trap the guest, using a combination of small-angle neutron scattering (SANS) and NMR spectroscopy (1D, 2D-NOESY and diffusion NMR), over a range of compositions and temperatures, in the dilute regime and gel state. NA did not interact with T1107 or T908 in their unimer form, but it was incorporated into the hydrophobic core of the micelles above the critical micellar temperature (CMT). In contrast, TPGS dissolved NA at any temperature, mainly in the tocopherol core, with some partitioning in the PEG-shell. The micellar structure was not altered by the presence of NA, except for an expansion of the core size, a result of the preferential accumulation of NA in that compartment. The solubility of the drug in single component micelles increased markedly with temperature, while mixed micelles produced an intermediate enhancement o
Revista:
DRUG DELIVERY AND TRANSLATIONAL RESEARCH
ISSN:
2190-393X
Año:
2021
Vol.:
11
N°:
2
Págs.:
515 - 523
Glioma is a type of cancer with a very poor prognosis with a survival of around 15 months in the case of glioblastoma multiforme (GBM). In order to advance in personalized medicine, we developed polymeric nanoparticles (PNP) loaded with both SPION (superparamagnetic iron oxide nanoparticles) and doxorubicin (DOX). The former being used for its potential to accumulate the PNP in the tumor under a strong magnetic field and the later for its therapeutic potential. The emulsion solvent and evaporation method was selected to develop monodisperse PNP with high loading efficiency in both SPION and DOX. Once injected in mice, a significant accumulation of the PNP was observed within the tumoral tissue under static magnetic field as observed by MRI leading to a reduction of tumor growth rate.
Autores:
Basso, J.; Mendes, M.; Silva, J.; et al.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2021
Vol.:
592
Págs.:
120095
Cationic compounds have been described to readily penetrate cell membranes. Assigning positive charge to nanosystems, e.g. lipid nanoparticles, has been identified as a key feature to promote electrostatic binding and design ligand-based constructs for tumour targeting. However, their intrinsic high cytotoxicity has hampered their biomedical application. This paper seeks to establish which cationic compounds and properties are compelling for interface modulation, in order to improve the design of tumour targeted nanoparticles against glioblastoma. How can intrinsic features (e.g. nature, structure, conformation) shape efficacy outcomes? In the quest for safer alternative cationic compounds, we evaluate the effects of two novel glycerol-based lipids, GLY1 and GLY2, on the architecture and performance of nanostructured lipid carriers (NLCs). These two molecules, composed of two alkylated chains and a glycerol backbone, differ only in their polar head and proved to be efficient in reversing the zeta potential of the nanosystems to positive values. The use of unsupervised and supervised machine learning (ML) techniques unraveled their structural similarities: in spite of their common backbone, GLY1 exhibited a better performance in increasing zeta potential and cytotoxicity, while decreasing particle size. Furthermore, NLCs containing GLY1 showed a favorable hemocompatible profile, as well as an improved uptake by tumour cells. Summing-up, GLY1 circumvents the intrinsic cytotoxicity of a common surfactant, CTAB, is effective at increasing glioblastoma uptake, and exhibits encouraging anticancer activity. Moreover, the use of ML is strongly incited for formulation design and optimization.
Revista:
DRUG DELIVERY AND TRANSLATIONAL RESEARCH
ISSN:
2190-393X
Año:
2021
Vol.:
11
N°:
2
Págs.:
343 - 344
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2021
Vol.:
608
Págs.:
121058
Treatment in children with high-risk neuroblastoma remains largely unsuccessful due to the development of metastases and drug resistance. The biological complexity of these tumors and their microenvironment represent one of the many challenges to face. Matrix glycoproteins such as vitronectin act as bridge elements between extracellular matrix and tumor cells and can promote tumor cell spreading. In this study, we established through a clinical cohort and preclinical models that the interaction of vitronectin and its ligands, such as alpha v integrins, are related to the stiffness of the extracellular matrix in high-risk neuroblastoma. These marked alterations found in the matrix led us to specifically target tumor cells within these altered matrices by employing nanomedicine and combination therapy. Loading the conventional cytotoxic drug etoposide into nanoparticles significantly increased its efficacy in neuroblastoma cells. We noted high synergy between etoposide and cilengitide, a highaffinity cyclic pentapeptide alpha v integrin antagonist. The results of this study highlight the need to characterize cell-extracellular matrix interactions, to improve patient care in high-risk neuroblastoma.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2020
Vol.:
12
N°:
7
Págs.:
1895
Due to chemoresistance and a high propensity to form lung metastasis, survival rates in pediatric osteosarcoma (OS) are poor. With the aim to improve anticancer activity in pediatric OS, a multidrug nanomedicine was designed using the alkyl-lysophospholipid edelfosine (EF) co-assembled with squalenoyl-gemcitabine (SQ-Gem) to form nanoassemblies (NAs) of 50 nm. SQ-Gem/EF NAs modified the total Gem pool exposure in the blood stream in comparison with SQ-Gem NAs, which correlated with a better tolerability and a lower toxicity profile after multiple intravenous administrations in mice. For in vivo preclinical assessment in an orthotopic OS tumor model, P1.15 OS cells were intratibially injected in athymic nude mice. SQ-Gem/EF NAs considerably decreased the primary tumor growth kinetics and reduced the number of lung metastases. Our findings support the candidature of this anticancer nanomedicine as a potential pediatric OS therapy.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2020
Vol.:
581
Págs.:
119283
Even though substantial advances in understanding glioma pathogenesis have prompted a more rational design of potential therapeutic strategies, glioblastoma multiforme remains an incurable disease with the lowest median overall survival among all malignant brain tumours. Therefore, there is a dire need to find novel drug delivery strategies to improve the current dismal survival outcomes. In this context, nanomedicine offers an appealing alternative as it shows potential to improve brain drug delivery. Accordingly, we here review nanomedicine-based drug delivery strategies tested in orthotopic animal models of glioblastoma intended to improve the efficacy of the drug candidates that are currently used in the clinical setting or that have entered clinical trials for the treatment of glioblastoma multiforme. We also outline the future perspectives of nanotechnology to provide emerging glioblastoma treatment with broad translational clinical potential based on the nanocarriers that have already entered the clinical trials stage for the treatment of malignant glioma.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Despite the great advances accomplished in the treatment of pediatric cancers, recurrences and metastases still exacerbate prognosis in some aggressive solid tumors such as neuroblastoma and osteosarcoma. In view of the poor efficacy and toxicity of current chemotherapeutic treatments, we propose a single multitherapeutic nanotechnology-based strategy by co-assembling in the same nanodevice two amphiphilic antitumor agents: squalenoyl-gemcitabine and edelfosine. Homogeneous batches of nanoassemblies were easily formulated by the nanoprecipitation method. Their anticancer activity was tested in pediatric cancer cell lines and pharmacokinetic studies were performed in mice. In vitro assays revealed a synergistic effect when gemcitabine was co-administered with edelfosine. Squalenoyl-gemcitabine/edelfosine nanoassemblies were found to be capable of intracellular translocation in patient-derived metastatic pediatric osteosarcoma cells and showed a better antitumor profile than squalenoyl-gemcitabine nanoassemblies alone. The intravenous administration of this combinatorial nanomedicine in mice exhibited a controlled release behavior of gemcitabine and diminished edelfosine plasma peak concentrations. These findings make it a suitable pre-clinical candidate for childhood cancer therapy.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2019
Vol.:
144
Págs.:
165 - 173
Among anticancer nanomedicines, squalenoyl nanocomposites have obtained encouraging outcomes in a great variety of tumors. The prodrug squalenoyl-gemcitabine has been chosen in this study to construct a novel multidrug nanosystem in combination with edelfosine, an alkyl-lysophopholipid with proven anticancer activity. Given their amphiphilic nature, it was hypothesized that both anticancer compounds, with complementary molecular targets, could lead to the formation of a new multitherapy nanomedicine. Nanoassemblies were formulated by the nanoprecipitation method and characterized by dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopy. Because free edelfosine is highly hemolytic, hemolysis experiments were performed using human blood erythrocytes and nanoassemblies efficacy was evaluated in a patient-derived metastatic pediatric osteosarcoma cell line. It was observed that these molecules spontaneously self-assembled as stable and monodisperse nanoassemblies of 51 +/- 1 nm in a surfactant/polymer free-aqueous suspension. Compared to squalenoyl-gemcitabine nanoassemblies, the combination of squalenoyl-gemcitabine with edelfosine resulted in smaller pArtículo size and a new supramolecular conformation, with higher stability and drug content, and ameliorated antitumor profile.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2019
Vol.:
145
Págs.:
65 - 75
With a very poor prognosis and no clear etiology, glioma is the most aggressive cancer in the brain. Thanks to its versatility, nanomedicine is a promising option to overcome the limitations on chemotherapy imposed by the blood brain barrier (BBB). The objective of this paper was to obtain monitored tumor-targeted therapeutic nanoparticles (NPs). To that end, theranostic surfactant-coated polymer poly-Lactic-co-Glycolic Acid (PLGA) nanoplatform encapsulating doxorubicin hydrochloride (DOX) and superparamagnetic iron oxide NPs (SPIONs) were developed. Different non-ionic surfactants known as BBB crossing enhancers (Tween 80, Brij-35, Pluronic F68 or Vitamin E-TPGS) were used to develop 4 types of theranostic nanoplatforms, which were characterized in terms of size and morphology by DLS, TEM and STEM-HAADF analyses. Moreover, the 3-month stability test, the therapeutic efficacy against different glioma cell lines (U87-MG, 9L/LacZ and patient derived-neuronal stem cells) and the Magnetic Resonance Imaging (MRI) relaxivity were studied. Results showed that the synthesised nanoplatforms were stable at 4 degrees C after their lyophilization, being that of paramount importance to ensure a long-term stability in a future in vivo application. Furthermore, the theranostic nanoplatforms were efficient in the in vitro treatment of glioma cells, proving to have imaging efficacy as MRI contrast agents. Our results show an efficient loading of drugs and good value of the relaxivity. Therefore, the efficient theranostic hybrid nanoplatform developed here could be used to perform MRI-guided delivery of hydrophobic drugs.
Revista:
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS
ISSN:
0022-3565
Año:
2019
Vol.:
370
N°:
3
Págs.:
761 - 771
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are a promising cell source for cardiac repair after myocardial infarction (MI) because they offer several advantages such as potential to remuscularize infarcted tissue, integration in the host myocardium, and paracrine therapeutic effects. However, cell delivery issues have limited their potential application in clinical practice, showing poor survival and engraftment after transplantation. In this work, we hypothesized that the combination of hiPSC-CMs with microparticles (MPs) could enhance long-term cell survival and retention in the heart and consequently improve cardiac repair. CMs were obtained by differentiation of hiPSCs by small-molecule manipulation of the Wnt pathway and adhered to biomimetic poly(lactic-co-glycolic acid) MPs covered with collagen and poly(D-lysine). The potential of the system to support cell survival was analyzed in vitro, demonstrating a 1.70-fold and 1.99-fold increase in cell survival after 1 and 4 days, respectively. The efficacy of the system was tested in a mouse MI model. Interestingly, 2 months after administration, transplanted hiPSC-CMs could be detected in the peri-infarct area. These cells not only maintained the cardiac phenotype but also showed in vivo maturation and signs of electrical coupling. Importantly, cardiac function was significantly improved, which could be attributed to a paracrine effect of cells. These findings suggest that MPs represent an excellent platform for cell delivery in the field of cardiac repair, which could also be translated into an enhancement of the potential of cell-based therapies in other medical applications.
Revista:
JOURNAL OF DRUG TARGETING
ISSN:
1061-186X
Año:
2019
Vol.:
27
N°:
43987
Págs.:
573 - 581
Neuregulin-1 loaded poly(lactic-co-glycolic acid) (PLGA) microparticles hold great promise for treating acute myocardial infarction, as they have been proved to recover heart function and induce positive heart remodelling in preclinical studies. More recently, the inflammatory response of the heart after acute myocardial infarction (AMI) has been identified as one of the major mechanisms in cardiac tissue remodelling and repair. However, the connection between neuregulin-1 PLGA microparticles and inflammation is still not well characterised. In the present study we assessed this relationship in a mouse AMI model. First, in vitro evidence indicated that neuregulin-1 PLGA microparticles induced a macrophage polarisation toward a regenerative phenotype (CD206+ cells), preventing macrophages from evolving toward the inflammatory phenotype (B7-2+ cells). This correlated with in vivo experiments, where neuregulin-1 PLGA microparticles locally improved the CD206+/B7-2+ ratio. Moreover, neuregulin-1 PLGA microparticles were administered at different time points (15¿min, 24, 72 and 168¿h) after infarction induction without causing secondary inflammatory issues. The time of treatment administration did not alter the inflammatory response. Taken together, these results suggest that neuregulin-1 PLGA microparticles can be administered depending on the therapeutic window of the encapsulated drug and that they enhance the heart's reparative inflammatory response after acute myocardial infarction, helping cardiac tissue repair.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2018
Vol.:
132
Págs.:
11-18
Due to their high porosity and versatile composition and structure, nanoscaled Metal-Organic Frameworks (nanoMOFs) have been recently proposed as novel drug delivery systems, and have been demonstrated to have important capacities and potential for controlled release of different active ingredients. Gentamicin (GM; a broad spectrum aminoglycoside antibiotic indicated in bacterial septicemia therapy) has great therapeutic interest, but the associated bioavailability and toxicity drawbacks accompanying high doses and repeated administration of this free drug make its encapsulation inside new nanocarriers necessary. GM encapsulation within two different porous biofriendly Fe and Zr-carboxylates nanoMOFs was performed by a simple impregnation method, with full characterization of the resulting GM-containing solid using a large panel of techniques (X ray powder diffraction-XRPD, Fourier transform infrared spectroscopy-FTIR, thermogravimetric analysis-TGA, N-2 sorption, scanning electron microscopy-SEM, dynamic light scattering-DLS, zeta-potential, fluorescence spectroscopy and molecular simulations). High reproducible encapsulation rates, reaching 600 mu g of GM per mg of formulation, were obtained using the biocompatible mesoporous iron(III) trimesate nanoparticles (NPs) MIL-100(Fe) (MIL: Materials from Institut Lavoisier). In vitro GM delivery studies were also carried out using different oral and intravenous simulated physiological conditions, with complete antibiotic release within 8 h when using protein free media, but lower release rates in the presence of proteins. Furthermore, in vitro toxicity of GM-containing MIL-100(Fe) NPs was investigated on two different cell lines: a monocyte from leukemia (THP-1) and adherent fibroblastoid cells (NIH/3T3). These nanoMOFs had a low cytotoxic profile with IC50 values up to 1 mg.mL(-1), ensuring adequate cell proliferation after 24 h. Finally, antibacterial activity studies were carried out on two Gram-positive bacteria and one Gram-negative bacterium: S. aureus, S. epidermidis and P. aeruginosa, respectively. GM-loaded MIL-100(Fe) NPs exhibited the same activity as free GM, confirming that the antibiotic activity of the released GM was conserved.
Revista:
MATURITAS
ISSN:
0378-5122
Año:
2018
Vol.:
110
Págs.:
1 - 9
The capacity of the heart to heal after a myocardial infarction is not enough to restore normal cardiac function. Fortunately, delivery of therapeutics such as stem cells, growth factors, exosomes and small interfering ribonucleic acid (siRNA), among other bioactive molecules, has been shown to enhance heart repair and improve cardiac function. Furthermore, new delivery systems for these therapeutic agents have enhanced their regenerative and cardioprotective potential. In particular, nano- and microparticles (NPs and MPs) are promising. These systems may be administered directly in the infarcted myocardium or reach the heart after intravenous injection due to the enhanced permeability and retention effect or active targeting. Thus, NPs and MPs have made it possible to administer a wide range of potential drugs, including therapeutic molecules and/or stem cells, and evidence in favor of their use has been reported in several preclinical studies. Here, we review the studies done over the last 5 years using NPs and MPs loaded with therapeutics for repairing cardiac tissue after a myocardial infarction, and discuss some of the advances, challenges and future prospects in this field. In addition, we address the application of NPs and MPs for cardioprotective purposes.
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2018
Vol.:
430
Págs.:
193 - 200
Osteosarcoma (OS) is the most frequent paediatric bone cancer, responsible for 9% of all cancer-related deaths in children. In this paper, a new strategy based on delivering edelfosine (ET) in lipid nanoparticles (LN) was explored in order to target the primary tumour and eliminate metastases. The in vitro and in vivo efficacy of the free drug, drug loaded into lipid nanoparticles (ET-LN) and doxorubicin (DOX) against osteosarcoma (OS) cells was analysed. ET and ET-LN decreased the growth of OS cells in vitro in a time- and dose-dependent manner. Interestingly, the uptake of ET and ET-LN was lower when OS cells were pre-treated with DOX. In vivo studies revealed that ET and ET-LN slowed down the primary tumour growth in two OS models. However, the combination of both drugs showed no additional anti-tumour effect. Importantly, ET-LN successfully prevented the metastatic spread of OS cells from the primary tumour to the lungs. On the whole, ET-LN are a promising candidate for OS chemotherapy.
Autores:
Puig, Joan; Obregon-Gomez, I.; Monreal-Perez, P. ; et al.
Revista:
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN:
0021-9797
Año:
2018
Vol.:
524
Págs.:
42 - 51
Tetronics are X-shaped block-copolymers of polyethylene oxide and polypropylene oxide, which self-assemble into micelles and can undergo a sol-gel transition; these transitions are dependent on temperature, concentration but also pH, due to the central diamine group of the tetrablock. We report the nanoscale morphologies underlying these different phases and the rheology of the systems for a very large, highly hydrophilic block copolymer, Tetronic 908, through the combined use of oscillatory rheology, steadyblock-state and time-resolved fluorescence, small-angle neutron scattering (SANS), dynamic light scattering (DLS) and Fourier transform infrared attenuated total reflectance (FTIR-ATR). At low concentrations, SANS reveal core-shell micelles of ca. 10 nm radius, presenting a dehydrated core and a highly hydrated shell, with relatively small aggregation numbers (N-agg approximate to 13). The micelles are notably affected by the pH, due to the protonation of the central amine spacer at low pH (pH approximate to 2), which shifts micellization to higher temperature, with smaller micelles than at natural pH. In the intermediate concentration regime (10-15%), micelles become smaller (N-agg approximate to 5), and present a higher hydration of the core. In the high concentration regime, Tetronic 908 undergoes a sol-gel transition above a threshold temperature, which is fully inhibited at acidic pH. SANS data from the gel phase reveal a BCC order of tightly packed spheres. Temperature sweeps in oscillatory rheology show a shift of the onset of gelation towards lower temperatures as concentration increases, an increase in the elastic modulus G' and an expansion of gel region over a larger range of temperatures. SANS and rheology reveal that at pH below the natural pH (ca. 8), gelation is shifted to higher temperatures, but the morphology of the gels is similar, while under highly acidic conditions the gelation is fully suppresed. (C) 2018 Elsevier Inc. All rights reserved.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2017
Vol.:
523
N°:
2
Págs.:
531 - 533
Neuregulin (NRG1) and fibroblast growth factor (FGF1) are well known growth factors implicated in cardiomyocyte proliferation and survival, as well as in angiogenesis, the development of adult heart and the maintenance of cardiac function. NRG1 and FGF1 have become promising therapeutic agents to treat myocardial infarction (MI) disorder. Unfortunately, clinical trials performed so far reported negative efficacy results, because growth factors are rapidly degraded and eliminated from the biological tissues once administered. In order to increase their bioavailability and favour their therapeutic effects, they have been combined with poly(lactic-co-glycolic acid) and polyethylene glycol microparticles (PLGA MPs and PEG-PLGA MPs). Here we compare both types of microparticles loaded with NRG1 or FGF1 in terms of efficacy in a rat MI model. Our results showed that intramyocardial injection of NRG1 or FGF1-loaded PLGA and PEG-PLGA MPs brought about similar improvements in the ejection fraction, angiogenesis and arteriogenesis after administration into the infarcted hearts. PEG coating did not add any effect regarding MP efficacy. Both PLGA and PEG-PLGA MPs were equally phagocyted in the heart. To our knowledge, this is the first study analysing the opsonisation process in heart tissue. The results allow us to conclude that the opsonisation process is different in heart tissue compared to blood. (C) 2016 Elsevier B.V. All rights reserved.
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2017
Vol.:
388
Págs.:
262 - 268
Despite the great advances that have been made in osteosarcoma therapy during recent decades, recurrence and metastases are still the most common outcome of the primary disease. Current treatments include drugs such as doxorubicin (DOX) that produce an effective response during the initial exposure of tumor cells but sometimes induce drug resistance within a few cycles of chemotherapy. New therapeutic strategies are therefore needed to overcome this resistance. To this end, DOX was loaded into lipid nanoparticles (LN) and its efficacy was evaluated in commercial and patient-derived metastatic osteosarcoma cell lines. DOX efficacy was heavily influenced by passage number in metastatic cells, in which an overexpression of P-gp was observed. Notably, DOX-LN overcame the resistance associated with cell passage and improved DOX efficacy fivefold. Moreover, when DOX was co-administered with either free or encapsulated edelfosine (ET), a synergistic effect was observed. This higher efficacy of the combined treatment was found to be at least partially due to an increase in caspase-dependent cell death. The combination of DOX and ET is thus likely to be effective against osteosarcoma. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
Autores:
Alvarez-Lorenzo, C. (Autor de correspondencia); Alonso, M. J.; Blanco, María José; et al.
Revista:
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY
ISSN:
1773-2247
Año:
2017
Vol.:
42
Págs.:
1 - 1
Revista:
BIOMEDICAL MICRODEVICES
ISSN:
1387-2176
Año:
2017
Vol.:
19
N°:
2
Págs.:
35
Cancer is a leading cause of mortality in the world, with osteosarcoma being one of the most common types among children between 1 and 14 years old. Current treatments including preoperative chemotherapy, surgery and postoperative chemotherapy produce several side effects with limited effectiveness. The use of lipid nanoparticles as biodegradable shells for controlled drug delivery shows promise as a more effective and targeted tumor treatment. However, in vitro validation of these vehicles is limited due to fluid stagnation in current techniques, in which nanoparticles sediment onto the bottom of the wells killing the cells by asphyxiation. In the current series of experiments, results obtained with methotrexate-lipid nanoparticles under dynamic assay conditions are presented as a promising alternative to current free drug based therapies. Effects on the viability of the U-2 OS osteosarcoma cell line of recirculation of cell media, free methotrexate and blank and methotrexate containing lipid nanoparticles in a 11 mu M concentration were successfully assessed. In addition, several designs for the microfluidic platform used were simulated using COMSOL-Multiphysics, optimized devices were fabricated using soft-lithography and simulated parameters were experimentally validated. Nanoparticles did not sediment to the bottom of the platform, demonstrating the effectiveness of the proposed system. Moreover, encapsulated methotrexate was the most effective treatment, as after 72 h the cell population was reduced nearly 40% while under free methotrexate circulation the cell population doubled. Overall, these results indicate that methotrexate-lipid nanoparticles are a promising targeted therapy for osteosarcoma treatment.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2017
Vol.:
523
N°:
2
Págs.:
454 - 475
Heart failure still represents the leading cause of death worldwide. Novel strategies using stem cells and growth factors have been investigated for effective cardiac tissue regeneration and heart function recovery. However, some major challenges limit their translation to the clinic. Recently, biomaterials have emerged as a promising approach to improve delivery and viability of therapeutic cells and proteins for the regeneration of the damaged heart. In particular, hydrogels are considered one of the most promising vehicles. They can be administered through minimally invasive techniques while maintaining all the desirable characteristics of drug delivery systems. This review discusses recent advances made in the field of hydrogels for cardiac tissue regeneration in detail, focusing on the type of hydrogel (conventional, injectable, smart or nano-and micro-gel), the biomaterials used for its manufacture (natural, synthetic or hybrid) and the therapeutic agent encapsulated (stem cells or proteins). We expect that these novel hydrogel-based approaches will open up new possibilities in drug delivery and cell therapies. (C) 2016 Elsevier B.V. All rights reserved.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2017
Vol.:
523
N°:
2
Págs.:
439 - 440
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2017
Vol.:
249
Págs.:
23 - 31
Tissue engineering is a promising strategy to promote heart regeneration after a myocardial infarction (MI). In this study, we investigated the reparative potential of a system that combines adipose-derived stem cells (ADSCs) with microparticles (MPs) loaded with neuregulin (NRG), named ADSC-NRG-MPs, on a rat MI model. First, cells were attached to the surface of MPs encapsulating NRG and coated with a 1:1 mixture of collagen and poly-D-lysine. One week after in vivo administration, the system favored the shift of macrophage expression from a pro-inflammatory to a regenerative phenotype. At long-term, the adhesion of ADSCs to MPs resulted in an increased cell engraftment, with cells being detectable in the tissue up to three months. In consonance, better tissue repair was observed in the animals treated with cells attached to MPs, which presented thicker left ventricles than the animals treated with ADSCs alone. Moreover, the presence of NRG in the system promoted a more complete regeneration, reducing the infarct size and stimulating cardiomyocyte proliferation. Regarding vasculogenesis, the presence of ADSCs and NRG-MPs alone stimulated vessel formation when compared to the control group, but the combination of both induced the largest vasculogenic effect, promoting the formation of both arterioles and capillaries. Importantly, only when ADSCs were administered adhered to MPs, they were incorporated into newly formed vessels. Collectively, these findings demonstrate that the combination of ADSCs, MPs and NRG favored a synergy for inducing a greater and more complete improvement in heart regeneration and provided strong evidence to move forward with preclinical studies with this strategy. (C) 2017 Elsevier B.V. All rights reserved.
Revista:
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY
ISSN:
1773-2247
Año:
2017
Vol.:
42
Págs.:
315 - 320
Nanotechnology is growing quickly, with great advances in the area of nanomedicine. Opening the door to personalized medicine, a considerable number of nanosystems have been synthetized for the diagnosis, treatment and monitoring of diseases. Specifically, gold nanoparticles (AuNPs) have been shown to be good contrast agents. However, they have a limited surface area for the transport of active molecules. In this paper, polymeric nanoparticles encapsulating AuNPs have been synthetized by the double emulsion method (w/o/w) and solvent evaporation technique. This approach opens up the possibility of encapsulating hydrophilic and/or lipophilic thermostable biomolecules. The nanoparticles could be monitored in macrophage cells by simple scanning electron microscopy (SEM). Nevertheless, a micro computed tomography (micro-CT) study revealed that they would not be detected in future in vivo studies. In short, this paper explains the difficulty of obtaining nanovehicles that are trackable from early investigation stages to their clinical use, and discusses the controversy surrounding the concentration of AuNPs needed to obtain enough X-ray attenuation with safe doses. (C) 2017 Elsevier B.V. All rights reserved.
Revista:
BIOMATERIALS
ISSN:
0142-9612
Año:
2016
Vol.:
110
Págs.:
11-23
Glial cell line-derived neurotrophic factor (GDNF) remains the most potent neurotrophic factor for dopamine neurons. Despite its potential as treatment for Parkinson's disease (PD), its clinical application has been hampered by safety and efficacy concerns associated with GDNF's short in vivo half-life and with significant brain delivery obstacles. Drug formulation systems such as microparticles (MPs) may overcome these issues providing protein protection from degradation and sustained drug release over time. We therefore sought to evaluate the efficacy and safety of GDNF delivered via injectable biodegradable MPs in a clinically relevant model of PD and to investigate the mechanism contributing to their beneficial effects. MPs were injected unilaterally into the putamen of parkinsonian monkeys with severe nigrostriatal degeneration. Notably, a single administration of the microencapsulated neurotrophic factor achieved sustained GDNF levels in the brain, providing motor improvement and dopaminergic function restoration. This was reflected by a bilateral increase in the density of striatal dopaminergic neurons 9 months after treatment. Moreover, GDNF was retrogradely transported to the substantia nigra increasing bilaterally the number of dopaminergic and total neurons, regardless of the severe degeneration. GDNF-MP injection within the putamen elicited no adverse effects such as immunogenicity, cerebellar degeneration or weight loss. MPs are therefore a safe, efficient vehicle for sustained protein delivery to the brain, supporting the therapeutic benefit of GDNF when encapsulated within MPs for brain repair. Overall, these findings constitute important groundwork for GDNF-MP clinical development.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2016
Vol.:
6
Págs.:
25932
Cardiovascular protein therapeutics such as neuregulin (NRG1) and acidic-fibroblast growth factor (FGF1) requires new formulation strategies that allow for sustained bioavailability of the drug in the infarcted myocardium. However, there is no FDA-approved injectable protein delivery platform due to translational concerns about biomaterial administration through cardiac catheters. We therefore sought to evaluate the efficacy of percutaneous intramyocardial injection of poly(lactic-co-glycolic acid) microparticles (MPs) loaded with NRG1 and FGF1 using the NOGA MYOSTAR injection catheter in a porcine model of ischemia-reperfusion. NRG1- and FGF1-loaded MPs were prepared using a multiple emulsion solvent-evaporation technique. Infarcted pigs were treated one week after ischemia-reperfusion with MPs containing NRG1, FGF1 or non-loaded MPs delivered via clinically-translatable percutaneous transendocardial-injection. Three months post-treatment, echocardiography indicated a significant improvement in systolic and diastolic cardiac function. Moreover, improvement in bipolar voltage and decrease in transmural infarct progression was demonstrated by electromechanical NOGA-mapping. Functional benefit was associated with an increase in myocardial vascularization and remodeling. These findings in a large animal model of ischemia-reperfusion demonstrate the feasibility and efficacy of using MPs as a delivery system for growth factors and provide strong evidence to move forward with clinical studies using therapeutic proteins combined with catheter-compatible biomaterials.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2016
Vol.:
101
Págs.:
112 - 118
The pharmacodynamic effect and the safety of cyclosporine A lipid nanoparticles (CsA LN) for oral administration were investigated using Sandimmune Neoral as reference. First, the biocompatibility of the unloaded LN on Caco-2 cells was demonstrated. The pharmacodynamic response and blood levels of CsA were studied in Balb/c mice after 5 and 10days of daily oral administration equivalent to 5 and 15mg/kg of CsA in different formulations. The in vivo nephrotoxicity after 15days of treatment at the high dose was also evaluated. The results showed a significant decrease in lymphocyte count (indicator of immunosuppression) for the CsA LN groups which was not observed with Sandimmune Neoral. CsA blood levels remained constant over the time after treatment with LN, whereas a proportional increase in drug blood concentration was observed with Sandimmune Neoral. Therefore, CsA LN exhibited a better pharmacological response along with more predictable pharmacokinetic information, diminishing the risk of toxicity. Moreover, a nephroprotective effect against CsA related toxicity was observed in the histopathological evaluation when LN containing Tween 80 were administered. Therefore, our preliminary findings suggest LN formulations would be a good alternative for CsA oral delivery, enhancing efficacy and reducing the risk of nephrotoxicity.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2016
Vol.:
503
N°:
1 - 2
Págs.:
196 - 198
Cyclosporine A (CsA) is a well-known immunosuppressive agent used as rescue therapy in severe steroid-refractory ulcerative colitis (UC). However, toxicity issues associated with CsA when administered in its commercially available formulations have been reported in clinical practice. Since nanotechnology has been proposed as a promising strategy to improve safety and efficacy in the treatment of inflammatory bowel disease (IBD), the main purpose of this study was to evaluate the effect of oral administration of CsA-loaded lipid nanoparticles (LN) in the dextran sodium sulfate (DSS)-induced colitis mouse model using Sandimmune Neoral (R) as reference. The results showed that the formulations used did not decrease colon inflammation in terms of myeloperoxidase activity (MPO), tumor necrosis factor (TNF)-alpha expression, or histological scoring in the acute stage of the disease. However, further studies are needed in order to corroborate the efficacy of these formulations in the chronic phase of the disease.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2016
Vol.:
500
N°:
1 - 2
Págs.:
154 - 161
In the present work, the feasibility of cyclosporine A lipid nanoparticles (CsA LN) for oral administration was investigated. Three CsA LN formulations were developed using Precirol as lipid matrix, one stabilized with Tween(®) 80 (Tw) and the other two with mixtures of phosphatidylcholine or Pluronic(®) F127 with taurocholate (Lec:TC and PL:TC, respectively). The physical characteristics of the LN were studied under gastrointestinal pH and their integrity was found to be dependent on the stabilizers. The in vitro intestinal permeability was assessed with a human colon adenocarcinoma cell model and in vivo pharmacokinetic and biodistribution studies were performed in Balb/c mice using Sandimmune Neoral(®) as reference. In vitro results showed the highest CsA permeability with the LN containing Lec:TC. In contrast, the best in vivo performance was achieved from the LN containing Tw. The bioavailability of CsA was matched and even enhanced with Precirol nanoparticles. This study suggests the suitability of LN as promising vehicles for CsA oral delivery.
Revista:
CRYSTENGCOMM
ISSN:
1466-8033
Año:
2015
Vol.:
17
Págs.:
456 - 462
A novel biocompatible and bioactive Metal¿Organic Framework (BioMOF), named BioMIL-5 (Bioactive Materials from Institut Lavoisier), was hydrothermally synthesized from a Zn2+ salt and azelaic acid, both with interesting antibacterial and dermatological properties. Its structure was determined by high resolution X-ray powder diffraction, and further characterized by infrared spectroscopy, thermogravimetric analysis and elemental analysis. The determination of the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of BioMIL-5 in Staphylococcus aureus and Staphylococcus epidermidis demonstrated that the antimicrobial activity of the individual components of BioMIL-5 were maintained after its synthesis. Moreover, BioMIL-5 was found to be stable in water and in bacterial culture medium, especially in water, leading to the subsequent progressive release of its active constituents, AzA and Zn2+ ions. Interestingly, this slow active delivery allowed control of the growth of a S. epidermidis suspension over 7 days. The high stability of this material and the maintenance of its antibacterial properties make BioMIL-5 a good candidate for future bioapplications, for skin care and in cosmetics.
Revista:
CURRENT PHARMACEUTICAL DESIGN
ISSN:
1381-6128
Año:
2015
Vol.:
21
N°:
42
Págs.:
6104-24
Osteosarcoma is the most frequent primary bone tumor in the pediatric age group. Its aggressive local growth pattern and its high propensity to metastasize, mainly to the lungs, give the disease an unfavorable prognosis that has situated this disease as one of the leading causes of pediatric cancer death. Current protocols for osteosarcoma treatment are based on neo-adjuvant (pre-operatory) chemotherapy followed by surgical resection of the tumor and a new phase of adjuvant chemotherapy. Despite the progress that these protocols have made in improving the outcome of the disease, the limited access of drugs to bone tumor and metastases, their indiscriminate distribution in the organism, the high required doses that cause intolerable toxicity and the development of multidrug resistance, still represent a major challenge. Nanotechnology has emerged as a new strategy to successfully address these problems by the development of nanoscaled drug carriers that present the ability to target the drug to the tumor cells, achieving high drug concentrations in the tumor area, while decreasing its presence in healthy tissues and therefore its potential systemic toxicity. This review summarizes the different lipid nanocarriers developed to deliver first and second-line anti-osteosarcoma drugs as well as emerging agents in the treatment of this disease. Moreover, it also discusses the potential of these nanocarriers for the treatment of osteosarcoma.
Revista:
INTERNATIONAL JOURNAL OF NANOMEDICINE
ISSN:
1176-9114
Año:
2015
Vol.:
10
Págs.:
6541 - 6553
Cyclosporine A (CsA) is an immunosuppressant commonly used in transplantation for prevention of organ rejection as well as in the treatment of several autoimmune disorders. Although commercial formulations are available, they have some stability, bioavailability, and toxicity related problems. Some of these issues are associated with the drug or excipients and others with the dosage forms. With the aim of overcoming these drawbacks, lipid nanoparticles (LN) have been proposed as an alternative, since excipients are biocompatible and also a large amount of surfactants and organic solvents can be avoided. CsA was successfully incorporated into LN using the method of hot homogenization followed by ultrasonication. Three different formulations were optimized for CsA oral administration, using different surfactants: Tween(®) 80, phosphatidylcholine, taurocholate and Pluronic(®) F127 (either alone or mixtures). Freshly prepared Precirol nanoparticles showed mean sizes with a narrow size distribution ranging from 121 to 202 nm, and after freeze-drying were between 163 and 270 nm, depending on the stabilizer used. Surface charge was negative in all LN developed. High CsA entrapment efficiency of approximately 100% was achieved. Transmission electron microscopy was used to study the morphology of the optimized LN. Also, the crystallinity of the nanoparticles was studied by X-ray powder diffraction and differential scanning calorimetry. The presence of the drug in LN surfaces was confirmed by X-ray photoelectron spectroscopy. The CsA LN developed preserved their physicochemical properties for 3 months when stored at 4°C. Moreover, when the stabilizer system was composed of two surfactants, the LN formulations were also stable at room temperature. Finally, the new CsA formulations showed in vitro dose-dependent immuno-suppressive effects caused by the inhibition of IL-2 levels secreted from stimulated Jurkat cells. The findings obtained in this paper suggest that new lipid nanosystems are a good alternative to produce physicochemically stable CsA formulations for oral administration.
Revista:
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY
ISSN:
1550-7033
Año:
2015
Vol.:
11
N°:
4
Págs.:
691 - 701
Protein phosphatase 2A (PP2A) is a serin-threonin phosphatase that regulates many proteins critical for malignant cell behavior; therefore, PP2A is considered to be a human tumor suppressor. In this study, we assessed the pharmacokinetic profile and the antileukemic effects of the PP2A activator FTY720, free or encapsulated in lipid nanoparticles, in in vitro and in vivo models of acute myeloid leukemia. FTY720 lipid nanoparticles presented diameters around 210 nm, with an encapsulation efficiency up to 75% and significantly increased FTY720 oral bioavailability. In addition, FTY720 restores PP2A phosphatase activity and decreases phosphorylation of PP2A and its targets Akt, ERK1/2 and STAT5, all implicated in the pathogenesis of acute myeloid leukemia. Moreover, FTY720 exerts an additive anti-leukemic effect in combination with drugs used in standard induction therapy. Importantly, FTY720 lipid nanoparticles were more efficient at inducing cell growth arrest and apoptosis than FTY720 solution. Finally, oral administration of FTY720 lipid nanoparticles to mice every three days was as effective in reducing acute myeloid leukemia xenograft tumor growth as daily oral administration of FTY720. These results provide the first evidence for the potential use of FTY720 lipid nanoparticles as an oral therapeutic agent in acute myeloid leukemia.
Revista:
TISSUE ENGINEERING
ISSN:
1076-3279
Año:
2015
Vol.:
21
N°:
9-10
Págs.:
1654 - 1661
Cardiovascular disease represents one of the major health challenges in modern times and is the number one cause of death globally. Thus, numerous studies are under way to identify effective cell- and/or growth factor-based therapies for repairing damaged cardiac tissue. In this regard, improving the engraftment or survival of regenerative cells and prolonging growth factor exposure have become fundamental goals in advancing these therapeutic approaches. Therefore, biomaterials have emerged as innovative scaffolds for the delivery of both cells and proteins in tissue engineering applications. In the present study, electrospinning was used to generate smooth homogenous polymeric fibers, which consisted of a PLGA/NCO-sP(EO-stat-PO) polymer blend encapsulating the cardioactive growth factor, Neuregulin-1 (Nrg). We evaluated the biocompatibility and degradation of this Nrg-containing biomaterial in a rat model of myocardial ischemia. Following implantation, histological analysis revealed the presence of an initial acute inflammatory response, which was followed by a chronic inflammatory phase, characterized by the presence of giant cells. Notably, the scaffold remained in the heart after 3 months. Furthermore, increase in the M2:M1 macrophage ratio following implantation suggested the induction of constructive tissue remodeling. Taken together, the combination of Nrg-encapsulating scaffolds with cells capable of inducing cardiac regeneration could represent an ambitious and promising therapeutic strategy for repairing diseased or damaged myocardial tissue.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2015
Vol.:
220
Págs.:
388 - 396
The growth factor neuregulin (NRG) is one of the most promising candidates in protein therapy as potential treatment for myocardial infarction (MI). In the last few years, biomaterial based delivery systems, such as polymeric microparticles (MPs) made of poly(lactic co glycolic acid) and polyethylene glycol (PLGA and PEG-PLGA MPs), have improved the efficacy of protein therapy in preclinical studies. However, no cardiac treatment based on MPs has yet been commercialized since this is a relatively new field and total characterization of polymeric MPs remains mandatory before they reach the clinical arena. Therefore, the objective of this study was to characterize the in vivo release, bioactivity and biodegradation of PLGA and PEG-PLGA MPs loaded with biotinylated NRG in a rat model of MI. The effect of PEGylation in the clearance of the particles from the cardiac tissue was also evaluated. Interestingly, MPs were detected in the cardiac tissue for up to 12 weeks after administration. In vivo release analysis showed that bNRG was released in a controlled manner throughout the twelve week study. Moreover, the biological cardiomyocyte receptor (ErbB4) for NRG was detected in its activated form only in those animals treated with bNRG loaded MPs. On the other hand, the PEGylation strategy was effective in diminishing phagocytosis of these MPs compared to noncoated MPs in the long term(12 weeks after injection). Taking all this together, we report new evidence in favor of the use of polymeric PLGA and PEG-PLGA MPs as delivery systems for treating MI, which could be soon included in clinical trials. (C) 2015 Elsevier B.V. All rights reserved.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2014
Vol.:
173
Págs.:
132 - 139
Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague-Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit ofNRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. (C) 2013 Elsevier B.V. All rights reserved.
Revista:
JOURNAL OF MATERIALS CHEMISTRY
ISSN:
0959-9428
Año:
2014
Vol.:
2
N°:
3
Págs.:
262 - 271
A series of fourteen porous Metal¿Organic Frameworks (MOFs) with different compositions (Fe, Zn, and Zr; carboxylates or imidazolates) and structures have been successfully synthesised at the nanoscale and fully characterised by XRPD, FTIR, TGA, N2 porosimetry, TEM, DLS and z-potential. Their toxicological assessment was performed using two different cell lines: human epithelial cells from foetal cervical carcinoma (HeLa) and murine macrophage cell line (J774). It appears that MOF nanoparticles (NPs) exhibit low cytotoxicity, comparable to those of other commercialised nanoparticulate systems, the less toxic being the Fe carboxylate and the more toxic being the zinc imidazolate NPs. The cytotoxicity values, higher in J774 cells than in HeLa cells, are mainly function of their composition and cell internalisation capacity. Finally, cell uptake of one of the most relevant Fe-MOF-NPs for drug vectorisation has been investigated by confocal microscopy studies, and indicates a faster kinetics of cell penetration within J774 compared to HeLa cells.
Revista:
CURRENT MEDICINAL CHEMISTRY
ISSN:
0929-8673
Año:
2014
Vol.:
21
N°:
36
Págs.:
4100 - 4131
Nanomedicine has recently emerged as an exciting tool able to improve the early diagnosis and treatment of a variety of intractable or age-related brain disorders. The most relevant properties of nanomaterials are that they can be engineered to cross the blood brain barrier, to target specific cells and molecules and to act as vehicles for drugs. Potentially beneficial properties of nanotherapeutics derived from its unique characteristics include improved efficacy, safety, sensitivity and personalization compared to conventional medicines. In this review, recent advances in available nanostructures and nanomaterials for brain applications will be described. Then, the latest applications of nanotechnology for the diagnosis and treatment of neurological disorders, in particular brain tumors and neurodegenerative diseases, will be reviewed. Recent investigations of the neurotoxicity of the nanomaterial both in vitro and in vivo will be summarized. Finally, the ongoing challenges that have to be meet if new nanomedical products are to be put on the market will be discussed and some future directions will be outlined.
Revista:
MOLECULAR PHARMACEUTICS
ISSN:
1543-8384
Año:
2014
Vol.:
11
N°:
8
Págs.:
2650 - 2658
The antitumor ether lipid edelfosine is the prototype of a novel generation of promising anticancer drugs that has been shown to be an effective antitumor agent in numerous malignancies. However, several cancer types display resistance to different antitumoral compounds due to multidrug resistance (MDR). Thus, MDR is a major drawback in anticancer therapy. In that sense, the leukemic cell line K-562 shows resistance to edelfosine. This resistance is overcome by the use of nanotechnology. The present work describes the rate and mechanism of internalization of free and nanoencapsulated edelfosine. The molecular mechanisms underlying cell death are described in the present paper by characterization of several molecules implied in the apoptosic and autophagic pathways (PARP, LC3IIB, caspases-3, -9 and -7), and their pattern of expression is compared with the cell induction in a sensitive cell line HL-60. Results showed different internalization patterns in both cells. Clathrin and lipid raft mediated endocytosis were observable in edelfosine uptake, whereas these mechanism were not visible in the uptake of lipid nanoparticles, which might suffer phagocytosis and macropinocytosis. Both treatments induced caspase-mediated apoptosis in HL-60 cells, whereas this cell death mechanism was unnoticeable in K-562 cells. Moreover, an important increase in autophagic vesicles was visible in K-562 cells. Thus, this mechanism might be implicated in overcoming K-562 resistance with the treatment by lipid nanoparticles.
Revista:
LEUKEMIA
ISSN:
0887-6924
Año:
2014
Vol.:
28
N°:
9
Págs.:
1915 - 1918
Revista:
CURRENT TOPICS IN MEDICINAL CHEMISTRY
ISSN:
1568-0266
Año:
2014
Vol.:
14
N°:
9
Págs.:
1124 - 1132
Nanotechnology is providing a new therapeutic paradigm by enhancing drug efficacy and preventing side-effects. Edelfosine is a synthetic ether lipid analogue of platelet activating factor with high antitumor activity. The encapsulation of this potent antitumor drug in lipid nanoparticles increases its oral bioavailability; moreover, it prevents the hemolytic and gastrointestinal side-effects of the free drug. The literature points towards lymphatic absorption of lipid nanoparticles after oral administration, and previous in vitro and in vivo studies stress the protection against toxicity that these nanosystems provide. The present study is intended to assess the permeability of lipid nanoparticles across the intestinal barrier. Caco-2 monoculture and Caco-2/Raji co-culture were used as in vitro models of enterocytes and Microfold cells respectively. Results showed that free drug is internalized and possibly metabolized in enterocytes. These results do not correlate with those observed in vivo when edelfosine-lipid nanoparticles were administered orally in mice, which suggests that the microfold model is not a good model to study the absorption of edelfosine-lipid nanoparticles across the intestinal barrier in vitro.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2014
Vol.:
474
N°:
1 - 2
Págs.:
1 - 5
Edelfosine, an alkyl-lysophospholipid antitumor drug with severe side-effects, has previously been encapsulated into lipid nanoparticles (LN) with the purpose of improving their toxicity profile. LN are made of lipids recognized as safe by the Food and Drug Administration (FDA) and, therefore, these systems are generally considered as nontoxic vehicles. However, toxicity studies regarding the use of LN as vehicles for drug administration are limited. In the present study, we investigated the in vivo toxicity of free edelfosine, and the protection conferred by LN. The free drug, non-loaded LN and edelfosine-loaded LN were orally administered to mice. Our results show that the oral administration of the free drug at 4 times higher than the therapeutic dose caused the death of the animals within 72 h. Moreover, histopathology revealed gastrointestinal toxicity and an immunosuppressive effect. In contrast, LN showed a protective effect against edelfosine toxicity even at the higher dose and were completely safe. LN are, therefore, a safe vehicle for the administration of edelfosine by the oral route. The nanosystems developed could be further used for the administration of other drugs.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2014
Vol.:
9
N°:
2
Págs.:
e89747
Background: Palonosetron is a potent second generation 5-hydroxytryptamine-3 selective antagonist which can be administered by either intravenous (IV) or oral routes, but subcutaneous (SC) administration of palonosetron has never been studied, even though it could have useful clinical applications. In this study, we evaluate the bioavailability of SC palonosetron. Patients and Methods: Patients treated with platinum-based chemotherapy were randomized to receive SC or IV palonosetron, followed by the alternative route in a crossover manner, during the first two cycles of chemotherapy. Blood samples were collected at baseline and 10, 15, 30, 45, 60, 90 minutes and 2, 3, 4, 6, 8, 12 and 24 h after palonosetron administration. Urine was collected during 12 hours following palonosetron. We compared pharmacokinetic parameters including AUC(0-24h), t(1/2), and C-max observed with each route of administration by analysis of variance (ANOVA). Results: From October 2009 to July 2010, 25 evaluable patients were included. AUC0-24h for IV and SC palonosetron were respectively 14.1 and 12.7 ng x h/ml (p = 0.160). Bioavalability of SC palonosetron was 118% (95% IC: 69-168). C-max was lower with SC than with IV route and was reached 15 minutes following SC administration. Conclusions: Palonosetron bioavailability was similar when administered by either SC or IV route. This new route of administration might be specially useful for outpatient management of emesis and for administration of oral chemotherapy.
Revista:
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
ISSN:
1549-3296
Año:
2014
Vol.:
102
N°:
7
Págs.:
2345 - 2355
We hypothesized that vascular endothelial growth factor (VEGF)-containing hydrogels that gelify in situ after injection into a traumatized spinal cord, could stimulate spinal cord regeneration. Injectable hydrogels composed of 0.5% Pronova UPMVG MVG alginate, supplemented or not with fibrinogen, were used. The addition of fibrinogen to alginate had no effect on cell proliferation in vitro but supported neurite growth ex vivo. When injected into a rat spinal cord in a hemisection model, alginate supplemented with fibrinogen was well tolerated. The release of VEGF that was incorporated into the hydrogel was influenced by the VEGF formulation [encapsulated in microspheres or in nanoparticles or in solution (free)]. A combination of free VEGF and VEGF-loaded nanoparticles was mixed with alginate:fibrinogen and injected into the lesion of the spinal cord. Four weeks post injection, angiogenesis and neurite growth were increased compared to hydrogel alone. The local delivery of VEGF by injectable alginate:fibrinogen-based hydrogel induced some plasticity in the injured spinal cord involving fiber growth into the lesion site.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2013
Vol.:
440
N°:
1
Págs.:
19-26
Human glial cell line-derived neurotrophic factor (hGDNF) is a very promising protein for the treatment of Parkinson's disease and other neurodegenerative disorders. The present work describes a quick and simple method to obtain a high amount of purified hGDNF using a mammalian cell-derived system. The method is based on the high expression level provided by a Semliki Forest virus vector and its ability to induce a strong shut-off of host-cell protein synthesis in mammalian cells. As a result, hGDNF is the only protein present in the supernatant and can be efficiently purified by a single chromatographic step. Using this system it was possible to eliminate other secreted proteins from the culture medium, like insulin-like growth factor-5, which are hard to remove using other hGDNF production methods. Purified hGDNF presents a complex glycosylation pattern typical of mammalian expression systems and is biologically active. This protocol could be extended to other secreted proteins and could be easily scaled up for industrial purposes. (C) 2012 Elsevier B.V. All rights reserved.
Revista:
JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS
ISSN:
1387-2273
Año:
2013
Vol.:
935
Págs.:
47 - 53
A simple liquid-liquid extraction procedure and quantification by high-performance liquid chromatography (HPLC) method coupled to a diode-array detector (DAD) of genistein (GEN) was developed in various mouse biological matrices. 7-ethoxycoumarin was used as internal standard (IS) and peaks were optimally separated using a Kinetex C18 column (2.6 mu m. 150 mm x 2.10 mm I.D.) at 40 degrees C with an isocratic elution of mobile phase with sodium dihydrogen phosphate 0.01 M in water at pH 2.5 and methanol (55:45, v/v), at a flow rate of 0.25 mL/min. The injection volume was 10 mu L. In all cases, the range of GEN recovery was higher than 61%. The low limit of quantification (LLOQ) was 25 ng/mL. The linearity of the calibration curves was satisfactory in all cases as shown by correlation coefficients >0.996. The within-day and between-day precisions were <15% and the accuracy ranged in all cases between 90.14% and 106.05%. This method was successfully applied to quantify GEN in liver, spleen, kidney and plasma after intravenous administration of a single dose (30 mg/kg) in female BALB/C mice
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2013
Vol.:
85
N°:
1
Págs.:
143 - 150
Myocardial infarction (MI) is the leading cause of death worldwide, and extensive research has therefore been performed to find a cure. Neuregulin-1 (NRG) is a growth factor involved in cardiac repair after MI. We previously described how biocompatible and biodegradable microparticles, which are able to release NRG in a sustained manner, represent a valuable approach to avoid problems related to the short half-life after systemic administration of proteins. The effectiveness of this strategy could be improved by combining NRG with several cytokines involved in cardiac regeneration. The present study investigates the potential feasibility of using NRG-releasing particle scaffold combined with adipose-derived stem cells (ADSC) as a multiple growth factor delivery-based tissue engineering strategy for implantation in the infarcted myocardium. NRG-releasing particle scaffolds with a suitable size for intramyocardial implantation were prepared by TROMS. Next, ADSC were adhered to particle scaffolds and their potential for heart administration was assessed in a MI rat model. NRG was successfully encapsulated reaching encapsulation efficiencies of 92.58±3.84%. NRG maintained its biological activity after the microencapsulation process. ADSCs adhered efficiently to particle scaffolds within a few hours. The ADSC-cytokine delivery system developed proved to be compatible with intramyocardial administration in terms of injectability through a 23-gauge needle and tissue response. Interestingly, ADSC-scaffolds were present in the peri-infarted tissue 2weeks after implantation. This proof of concept study provides important evidence required for future effectiveness studies and for the translation of this approach.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2013
Vol.:
85
N°:
3
Págs.:
665 - 672
Poly-lactide-co-glycolide (PLGA) microparticles emerged as one of the most promising strategies to achieve site-specific drug delivery. Although these microparticles have been demonstrated to be effective in several wound healing models, their potential in cardiac regeneration has not yet been fully assessed. The present work sought to explore PLGA microparticles as cardiac drug delivery systems. PLGA microparticles were prepared by Total Recirculation One-Machine System (TROMS) after the formation of a multiple emulsion. Microparticles of different size were prepared and characterized to select the most suitable size for intramyocardial administration. Next, the potential of PLGA microparticles for administration in the heart was assessed in a MI rat model. Particle biodegradation over time and myocardial tissue reaction were studied by routine staining and confocal microscopy. Results showed that microparticles with a diameter of 5¿m were the most compatible with intramyocardial administration in terms of injectability through a 29-gauge needle and tissue response. Particles were present in the heart tissue for up to 3months post-implantation and no particle migration toward other solid organs was observed, demonstrating good myocardial retention. CD68 immunolabeling revealed 31%, 47% and below 4% microparticle uptake by macrophages 1week, 1month, and 3months after injection, respectively (P<0.001). Taken together, these findings support the feasibility of the developed PLGA microparticles as vehicles for delivering growth factors in the infarcted myocardium.
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2013
Vol.:
334
N°:
2
Págs.:
153 - 154
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2013
Vol.:
334
N°:
2
Págs.:
302 - 310
Although current therapies have improved leukemia survival rates, adverse drug effects and relapse are frequent. Encapsulation of edelfosine (ET) in lipid nanoparticles (LNs) improves its oral bioavailability and decreases its toxicity. Here we evaluated the efficacy of ET-LN in myeloid leukemia cell lines. Drug-loaded LN were as effective as free ET in sensitive leukemia cell lines. Moreover, the encapsulated drug overcame the resistance of the K562 cell line to the drug. LN containing ET might be used as a promising drug delivery system in leukemia due to their capacity to overcome the in vivo pitfalls of the free drug and their efficacy in vitro in leukemia cell lines.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2013
Vol.:
440
N°:
1
Págs.:
1 - 2
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2013
Vol.:
454
N°:
2
Págs.:
720 - 726
Breast cancer is a heterogeneous group of neoplasms predominantly originating in the terminal duct lobular units. It represents the leading cause of cancer death in women and the survival frequencies for patients at advanced stages of the disease remain low. New treatment options need to be researched to improve these rates. The anti-tumor ether lipid edelfosine (ET) is the prototype of a novel generation of promising anticancer drugs. However, it presents several drawbacks for its use in cancer therapy, including gastrointestinal and hemolytic toxicity and low oral bioavailability. To overcome these obstacles, ET was encapsulated in Precirol ATO 5 lipid nanoparticles (ET-LN), and its anti-tumor potential was in vitro tested in breast cancer. The formulated ET-LN were more effective in inhibiting cell proliferation and notably decreased cell viability, showing that the cytotoxic effect of ET was considerably enhanced when ET was encapsulated. In addition, ET and ET-LN were able to promote cell cycle arrest at G1 phase. Moreover, although both treatments provoked an apoptotic effect in a time-dependent manner, such anti-tumor effects were noticeably improved with ET-LN treatment. Therefore, our results indicate that encapsulating ET in LN played an essential role in improving the efficacy of the drug.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2013
Vol.:
454
N°:
2
Págs.:
784 -790
Revista:
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
ISSN:
0066-4804
Año:
2013
Vol.:
57
N°:
7
Págs.:
3326 - 3333
The clinical management of human brucellosis is still challenging and demands in vitro active antibiotics capable of targeting the pathogen-harboring intracellular compartments. A sustained release of the antibiotic at the site of infection would make it possible to reduce the number of required doses and thus the treatment-associated toxicity. In this study, a hydrophobically modified gentamicin, gentamicin-AOT [AOT is bis(2-ethylhexyl) sulfosuccinate sodium salt], was either microstructured or encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The efficacy of the formulations developed was studied both in vitro and in vivo. Gentamicin formulations reduced Brucella infection in experimentally infected THP-1 monocytes (>2-log10 unit reduction) when using clinically relevant concentrations (18 mg/liter). Moreover, in vivo studies demonstrated that gentamicin-AOT-loaded nanoparticles efficiently targeted the drug both to the liver and the spleen and maintained an antibiotic therapeutic concentration for up to 4 days in both organs. This resulted in an improved efficacy of the antibiotic in experimentally infected mice. Thus, while 14 doses of free gentamicin did not alter the course of the infection, only 4 doses of gentamicin-AOT-loaded nanoparticles reduced the splenic infection by 3.23 logs and eliminated it from 50% of the infected mice with no evidence of adverse toxic effects. These results strongly suggest that PLGA nanoparticles containing chemically modified hydrophobic gentamicin may be a promising alternative for the treatment of human brucellosis.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2013
Vol.:
455
N°:
1-2
Págs.:
148 - 158
We hypothesized that local delivery of GDNF in spinal cord lesion via an injectable alginate hydrogel gelifying in situ would support spinal cord plasticity and functional recovery. The GDNF release from the hydrogel was slowed by GDNF encapsulation in microspheres compared to non-formulated GDNF (free GDNF). When injected in a rat spinal cord hemisection model, more neurofilaments were observed in the lesion when the rats were treated with free GDNF-loaded hydrogels. More growing neurites were detected in the tissues surrounding the lesion when the animals were treated with GDNF microsphere-loaded hydrogels. Intense GFAP (astrocytes), low betaIII tubulin (neural cells) and RECA-1 (endothelial cells) stainings were observed for non-treated lesions while GDNF-treated spinal cords presented less GFAP staining and more endothelial and nerve fiber infiltration in the lesion site. The animals treated with free GDNF-loaded hydrogel presented superior functional recovery compared with the animals treated with the GDNF microsphere-loaded hydrogels and non-treated animals.
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2013
Vol.:
334
N°:
2
Págs.:
155 - 156
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2013
Vol.:
440
N°:
1
Págs.:
13 - 18
The potential of poly(lactic-co-glycolic) acid (PLGA) microparticles as carriers for vascular endothelial growth factor (VEGF) has been demonstrated in a previous study by our group, where we found improved angiogenesis and heart remodeling in a rat myocardial infarction model (Formiga et al., 2010). However, the observed accumulation of macrophages around the injection site suggested that the efficacy of treatment could be reduced due to particle phagocytosis. The aim of the present study was to decrease particle phagocytosis and consequently improve protein delivery using stealth technology. PEGylated microparticles were prepared by the double emulsion solvent evaporation method using TROMS (Total Recirculation One Machine System). Before the uptake studies in monocyte-macrophage cells lines (J774 and Raw 264.7), the characterization of the microparticles developed was carried out in terms of particle size, encapsulation efficiency, protein stability, residual poly(vinyl alcohol) (PVA) and in vitro release. Microparticles of suitable size for intramyocardial injection (5 mu m) were obtained by TROMS by varying the composition of the formulation and TROMS conditions with high encapsulation efficiency (70-90%) and minimal residual PVA content (0.5%). Importantly, the bioactivity of the protein was fully preserved. Moreover, PEGylated microparticles released in phosphate buffer 50% of the entrapped protein within 4 h, reaching a plateau within the first day of the in vitro study. Finally, the use of PLGA microparticles coated with PEG resulted in significantly decreased uptake of the carriers by macrophages, compared with non PEGylated microparticles, as shown by flow cytometry and fluorescence microscopy. On the basis of these results, we concluded that PEGylated microparticles loaded with VEGF could be used for delivering growth factors in the myocardium. (C) 2012 Elsevier B.V. All rights reserved.
Revista:
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES
ISSN:
1570-0232
Año:
2013
Vol.:
927
Págs.:
164 - 172
Cyclosporine A (CyA) is an immunosuppressant cyclic undecapeptide used for the prevention of organ transplant rejection and in the treatment of several autoimmune disorders. An ultra high performance liquid chromatography tandem mass spectrometry method (UHPLC-MS/MS) to quantify CyA in lipid nanosystems and mouse biological matrices (whole blood, kidneys, lungs, spleen, liver, heart, brain, stomach and intestine) was developed and fully validated. Chromatographic separation was performed on an Acquity UPLC (R) BEH C18 column with a gradient elution consisting of methanol and 2 mM ammonium acetate aqueous solution containing 0.1% formic acid at a flow rate of 0.6 mL/min. Amiodarone was used as internal standard (IS). Retention times of IS and CyA were 0.69 min and 1.09 min, respectively. Mass spectrometer operated in electrospray ionization positive mode (ESI+) and multiple reaction monitoring (MRM) transitions were detected, m/z 1220.69 -> 1203.7 for CyA and m/z 646 -> 58 for IS. The extraction method from biological samples consisted of a simple protein precipitation with 10% trichloroacetic acid aqueous solution and acetonitrile and 5 mu L of supernatant were directly injected into the UHPLC-MS/MS system. Linearity was observed between 0.001 mu g/mL-2.5 mu g/mL (r >= 0.99) in all matrices. The precision expressed in coefficient of variation (CV) was below 11.44% and accuracy in bias ranged from -12.78% to 7.99% including methanol and biological matrices. Recovery in all cases was above 70.54% and some matrix effect was observed. CyA was found to be stable in post-extraction whole blood and liver homogenate samples exposed for 6h at room temperature and 72 h at 4 degrees C. The present method was successfully applied for quality control of lipid nanocarriers as well as in vivo studies in BALB/c mice.
Revista:
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY
ISSN:
0305-7453
Año:
2012
Vol.:
67
N°:
9
Págs.:
2158-2164
The aim of this study was to investigate different hydrophobic gentamicin formulations [gentamicin-bis(2-ethylhexyl) sulfosuccinate (GEN-AOT), microstructured GEN-AOT (PCA GEN-AOT) and GEN-AOT-loaded poly(lactide-co-glycolide) acid (PLGA) nanoparticles (NPs)] in view of improving its therapeutic index against intracellular bacteria. The intracellular accumulation, subcellular distribution and intracellular activity of GEN-AOT and NPs in different monocyticmacrophagic cell lines were studied. Human THP-1 and murine J774 phagocytic cells were incubated with GEN-AOT formulations at relevant extracellular concentrations [from 1 MIC to 18 mg/L (human C-max)], and their intracellular accumulation, subcellular distribution and toxicity were evaluated and compared with those of conventional unmodified gentamicin. Intracellular activity of the formulations was determined against bacteria showing different subcellular localizations, namely Staphylococcus aureus (phagolysosomes) and Listeria monocytogenes (cytosol). GEN-AOT formulations accumulated 2-fold (GEN-AOT) to 8-fold (GEN-AOT NPs) more than gentamicin in phagocytic cells, with a predominant subcellular localization in the soluble fraction (cytosol) and with no significant cellular toxicity. NP formulations allowed gentamicin to exert its intracellular activity after shorter incubation times and/or at lower concentrations. With an extracellular concentration of 10 MIC, a 1 log(10) decrease in S. aureus intracellular inoculum was obtained after 12 h instead of 24 h for NPs versus free gentamicin, and a static effect was observed against L. monocytogenes at 24 h with NPs, while free gentamicin was ineffective. GEN-AOT formulations yielded a high cellular accumulation, especially in the cytosol, which resulted in improved efficacy against both intracellular S. aureus and L. monocytogenes.
Revista:
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY
ISSN:
1550-7033
Año:
2012
Vol.:
8
N°:
4
Págs.:
703-708
PM02734 is a chemically synthesized depsipeptide derived from the marine kahalalides family with a broad spectrum of activity against solid tumors in vitro and in vivo, but presenting low bioavailability. In this work, solid lipid nanoparticles made of Precirol(R) ATO 5 have been developed using a hot homogenization method followed by high shear homogenization and ultrasonication. These solid lipid nanoparticles show suitable size (around 150 nm) and encapsulation efficiency (nearly 70%) for the oral administration of the compound PM02734. A physical-chemical stability study was performed after 6 months of storage at different thermical conditions, concluding that solid lipid nanoparticles stored at 4 00 were more stable than solid lipid nanoparticles stored at 25 degrees C. The pharmacokinetic profile of drug-loaded solid lipid nanoparticles was also evaluated in Beagle dogs and compared with that of a cyclodextrin-based delivery system by means of AUC, C-max, and T-max parameter estimation. Solid lipid nanoparticle based formulation provided a sustained release of the drug for a longer period of time than the cyclodextrins.
Revista:
NANOMEDICINE
ISSN:
1743-5889
Año:
2012
Vol.:
7
N°:
5
Págs.:
679 - 690
Background: Lipid nanoparticles (LNs) made of synthetic lipids Compritol (R) 888 ATO and Precirol (R) ATO 5 were developed with an average size of 110.4 +/- 2.1 and 103.1 +/- 2.9 nm, and an encapsulation efficiency above 85% for both type of lipids. These LNs decrease the hemolytic toxicity of the drug by 90%. Materials & methods: Pharmacokinetic and biodistribution profiles of the drug were studied after intravenous and oral administration of edelfosine-containing LNs. Results: This provided an increase in relative oral bioavailability of 1500% after a single oral administration of drug-loaded LNs, maintaining edelfosine plasma levels over 7 days in contrast to a single oral administration of edelfosine solution, which presented a relative oral bioavailability of 10%. Moreover, edelfosine-loaded LNs showed a high accumulation of the drug in lymph nodes and resulted in slower tumor growth than the free drug in a murine lymphoma xenograft model, as well as potent extranodal dissemination inhibition.
Revista:
LEUKEMIA
ISSN:
0887-6924
Año:
2012
Vol.:
26
N°:
7
Págs.:
1517 - 1526
Histone deacetylases (HDACs) have been identified as therapeutic targets due to their regulatory function in chromatin structure and organization. Here, we analyzed the therapeutic effect of LBH589, a class I - II HDAC inhibitor, in acute lymphoblastic leukemia ( ALL). In vitro, LBH589 induced dose-dependent antiproliferative and apoptotic effects, which were associated with increased H3 and H4 histone acetylation. Intravenous administration of LBH589 in immunodeficient BALB/c-RAG2(-/-)gamma c(-/-) mice in which human-derived T and B-ALL cell lines were injected induced a significant reduction in tumor growth. Using primary ALL cells, a xenograft model of human leukemia in BALB/c-RAG2(-/-)gamma c(-/-) mice was established, allowing continuous passages of transplanted cells to several mouse generations. Treatment of mice engrafted with T or B-ALL cells with LBH589 induced an in vivo increase in the acetylation of H3 and H4, which was accompanied with prolonged survival of LBH589-treated mice in comparison with those receiving vincristine and dexamethasone. Notably, the therapeutic efficacy of LBH589 was significantly enhanced in combination with vincristine and dexamethasone. Our results show the therapeutic activity of LBH589 in combination with standard chemotherapy in pre-clinical models of ALL and suggest that this combination may be of clinical value in the treatment of patients with ALL.
Revista:
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES
ISSN:
1570-0232
Año:
2011
Vol.:
879
N°:
30
Págs.:
3490-6
An ultra high performance liquid chromatography tandem mass spectrometry method (UHPLC-MS/MS) was developed and validated for the quantitation of LBH589, a novel histone deacetylase inhibitor (HDACi), in mouse plasma and tissues (liver, spleen, kidney and lung). Tobramycin was employed as the internal standard. Separation was performed on an Acquity UPLC¿ BEH column, with a mobile phase consisting of 10% water (with 0.1% of trifluoroacetic acid) and 90% methanol (with 0.1% trifluoroacetic acid). LBH589 and tobramycin were determined using an electrospray ionization (ESI) interface. Detection was performed on electrospray positive ionization mass spectrometry by multiple reaction monitoring of the transitions of LBH589 at m/z 349.42¿157.95 and of tobramycin at 468.2¿163. Calibration curves for the UHPLC method (0.0025-1 ¿g/mL for plasma and tissue homogenates, equivalent to 0.0357-14.2857 ¿g/g for tissue samples) showed a linear range of detector responses (r>0.998). Intra-batch and inter-batch precision expressed as coefficient of variation (CV) ranged from 0.92 to 8.40%. Accuracy expressed as bias, ranged from -2.41 to 2.62%. The lower limit of quantitation (LLOQ) was 0.0025 ¿g/mL for both plasma and tissue homogenate samples, equivalent to 0.0357 ¿g/g tissue. This method was successfully applied to quantify LBH589 in plasma and tissue samples obtained after the intraperitoneal administration of a single dose of 20 mg/kg of LBH589 in BALB/c mice.
Revista:
PHARMACEUTICAL RESEARCH
ISSN:
0724-8741
Año:
2011
Vol.:
28
N°:
2
Págs.:
309 - 321
PURPOSE:
To investigate, for the first time, the viability of compressed antisolvent methodologies for the preparation of drug-loaded particles of the biodegradable and bioadhesive polymer poly (methyl vinyl ether-co-maleic anhydride) (PVM/MA), utilizing gentamicin (Gm) as a model drug.
METHODS:
Precipitation with a Compressed Antisolvent (PCA) method was used for the preparation of PVM/MA particles loaded with gentamicin. Before encapsulation, gentamicin was modified into a hydrophobic complex, GmAOT, by exchanging its sulphate ions with an anionic surfactant. GmAOT:PVM/MA composites were fully characterized in terms of size, morphology, composition, drug distribution, phase composition, in vitro activity and drug release.
RESULTS:
Homogeneous nanostructured microparticles of PVM/MA loaded with high and uniformly distributed quantities of GmAOT were obtained by PCA. The drug loading factors could be tuned at will, improving up to ten times the loadings obtained by other precipitation techniques. Gentamicin retained its bioactivity after being processed, and, according to its release profiles, after an initial burst it experienced a sustained release over 30 days.
CONCLUSIONS:
Compressed antisolvent methods are suitable technologies for the one-step preparation of highly loaded nanostructured PVM/MA matrices with promising application in the delivery of low bioavailable drugs.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2011
Vol.:
156
N°:
3
Págs.:
421 - 426
Edelfosine is the prototype molecule of a family of anticancer drugs collectively known as synthetic alkyl-lysophospholipids. This drug holds promise as a selective antitumor agent, and a number of preclinical assays are in progress. In this study, we observe the accumulation of edelfosine in brain tissue after its oral administration in Compritol (R) and Precirol (R) lipid nanoparticles (LN). The high accumulation of edelfosine in brain was due to the inhibition of P-glycoprotein by Tween (R) 80, as verified using a P-glycoprotein drug interaction assay. Moreover, these LN were tested in vitro against the C6 glioma cell line, which was later employed to establish an in vivo xenograft mouse model of glioma. In vitro studies revealed that edelfosine-loaded LN induced an antiproliferative effect in C6 glioma cell line. In addition, in vivo oral administration of drug-loaded LN in NMRI nude mice bearing a C6 glioma xenograft tumor induced a highly significant reduction in tumor growth (p<0.01) 14 days after the beginning of the treatment. Our results showed that Tween (R) 80 coated Compritol (R) and Precirol (R) LN can effectively inhibit the growth of C6 glioma cells in vitro and suggest that edelfosine-loaded LN represent an attractive option for the enhancement of antitumor activity on brain tumors in vivo.
Revista:
MOVEMENT DISORDERS
ISSN:
0885-3185
Año:
2011
Vol.:
26
N°:
10
Págs.:
1943 - 1947
Background: Glial cell-derived neurotrophic factor is a survival factor for dopaminergic neurons and a promising candidate for the treatment of Parkinson's disease. However, the delivery issue of the protein to the brain still remains unsolved. Our aim was to investigate the effect of long-term delivery of encapsulated glial cell-derived neurotrophic factor within microspheres.
Methods: A single dose of microspheres containing 2.5 mu g of glial cell-derived neurotrophic factor was implanted intrastriatally in animals 2 weeks after a 6-hydroxydopamine lesion.
Results: The amphetamine test showed a complete behavioral recovery after 16 weeks of treatment, which was maintained until the end of the study (week 30). This effect was accompanied by an increase in dopaminergic striatal terminals and neuroprotection of dopaminergic neurons.
Conclusions: The main achievement was the long-term neurorestoration in parkinsonian animals induced by encapsulated glial cell-derived neurotrophic factor, suggesting that microspheres may be considered as a means to deliver glial cell-derived neurotrophic factor for Parkinson's disease treatment.
Revista:
ACTA BIOMATERIALIA
ISSN:
1742-7061
Año:
2011
Vol.:
7
N°:
4
Págs.:
1599 - 1608
Revista:
FRONTIERS IN BIOSCIENCE-LANDMARK
ISSN:
1093-9946
Año:
2010
Vol.:
15
Págs.:
397 - 417
Autores:
Mollinedo, F; De la Iglesia-Vicente, J; Gajate, C; et al.
Revista:
CLINICAL CANCER RESEARCH
ISSN:
1078-0432
Año:
2010
Vol.:
16
N°:
7
Págs.:
2046 - 2054
Our data indicate that edelfosine accumulates and kills MCL and CLL cells in a rather selective way, and set coclustering of Fas/CD95 and lipid rafts as a new framework in MCL and CLL therapy. Our data support a selective antitumor action of edelfosine.
Autores:
Mollinedo, F.; De la Iglesia-Vicente, J.; Gajate, C.; et al.
Revista:
ONCOGENE
ISSN:
0950-9232
Año:
2010
Vol.:
29
N°:
26
Págs.:
3748 - 3757
Despite recent advances in treatment, multiple myeloma (MM) remains an incurable malignancy. By using in vitro, ex vivo and in vivo approaches, we have identified here that lipid rafts constitute a new target in MM. We have found that the phospholipid ether edelfosine targets and accumulates in MM cell membrane rafts, inducing apoptosis through co-clustering of rafts and death receptors. Raft disruption by cholesterol depletion inhibited drug uptake by tumor cells as well as cell killing. Cholesterol replenishment restored MM cell ability to take up edelfosine and to undergo drug-induced apoptosis. Ceramide addition displaced cholesterol from rafts, and inhibited edelfosine-induced apoptosis. In an MM animal model, edelfosine oral administration showed a potent in vivo antimyeloma activity, and the drug accumulated preferentially and dramatically in the tumor. A decrease in tumor cell cholesterol, a major raft component, inhibited the in vivo antimyeloma action of edelfosine and reduced drug uptake by the tumor. The results reported here provide the proof-of-principle and rationale for further clinical evaluation of edelfosine and for this raft-targeted therapy to improve patient outcome in MM. Our data reveal cholesterol-containing lipid rafts as a novel and efficient therapeutic target in MM, opening a new avenue in cancer treatment.
Lipid raft-targeted therapy in multiple myeloma. - ResearchGate. Available from: http://www.researchgate.net/publication/43343258_Lipid_raft-targeted_therapy_in_multiple_myeloma [accessed Mar 25, 2015].
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2010
Vol.:
385
N°:
1-2
Págs.:
6 - 11
The administration of glial cell line-derived neurotrophic factor (GDNF) has emerged as a promising strategy for the treatment of several diseases of the nervous system as Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury and nerve regeneration as well as ocular diseases and drug addictions. A procedure for the purification of human recombinant glycosylated GDNF using a mammalian expression system as the source of the protein is discussed in the present paper. The neurotrophic factor was purified using cation exchange chromatography and gel filtration. A human cell line was chosen as the source of therapeutic protein, since a recombinant protein with a structure and glycosylation pattern equivalent to the native form is desirable for its prospective therapeutic utilization. The activity of the highly pure protein obtained was confirmed with a cell-based bioassay. The purified protein is suitable for its in vivo evaluation in animals and for possible subsequent clinical application.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2010
Vol.:
147
N°:
1
Págs.:
30 - 37
The use of pro-angiogenic growth factors in ischemia models has been associated with limited success in the clinical setting, in part owing to the short lived effect of the injected cytokine. The use of a microparticle system could allow localized and sustained cytokine release and consequently a prolonged biological effect with induction of tissue revascularization. To assess the potential of VEGF(165) administered as continuous release in ischemic disease, we compared the effect of delivery of poly(lactic-co-glycolic acid) (PLGA) microparticles (MP) loaded with VEGF(165) with free-VEGF or control empty microparticles in a rat model of ischemia-reperfusion. VEGF165 loaded microparticles could be detected in the myocardium of the infarcted animals for more than a month after transplant and provided sustained delivery of active protein in vitro and in vivo. One month after treatment, an increase in angiogenesis (small caliber caveolin-1 positive vessels) and arteriogenesis (alpha-SMA-positive vessels) was observed in animals treated with VEGF microparticles (p < 0.05), but not in the empty microparticles or free-VEGF groups. Correlating with this data, a positive remodeling of the heart was also detected in the VEGF-microparticle group with a significantly greater LV wall thickness (p < 0.01). In conclusion, PICA microparticle is a feasible and promising cytokine delivery system for treatment of myocardial ischemia. This strategy could be scaled up and explored in pre-clinical and clinical studies. (C) 2010 Elsevier B.V. All rights reserved.
Nacionales y Regionales
Título:
Regeneración cerebral mediante células madre y factore neurotróficos incluidos en biomaterailes tridimensionales: apliacación en la enfermedad de parkinson.
Código de expediente:
66-2019
Investigador principal:
María José Blanco Prieto
Financiador:
GOBIERNO DE NAVARRA. DEPARTAMENTO DE SALUD
Convocatoria:
2019 GN Proyectos de Investigación en salud
Fecha de inicio:
19/11/2019
Fecha fin:
18/11/2023
Importe concedido:
80.000,00€
Otros fondos:
Fondos FEDER
Título:
Nueva generación de plataformas teragnósticas contra el cáncer asistidas por partículas superparamagnéticas
Código de expediente:
0011-1383-2019-000005 PC072
Investigador principal:
María José Blanco Prieto
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2019 GN Centros
Fecha de inicio:
01/12/2018
Fecha fin:
30/11/2019
Importe concedido:
113.465,43€
Otros fondos:
-
Título:
Combinación de biomateriales 3D y miRNAs para la reparacion cardiaca tras infarto de miocardio
Código de expediente:
PID2021-125124OB-I00
Investigador principal:
Elisa Garbayo Atienza, María José Blanco Prieto
Financiador:
AGENCIA ESTATAL DE INVESTIGACION
Convocatoria:
2021 AEI Proyectos de Generación del Conocimiento
Fecha de inicio:
01/09/2022
Fecha fin:
31/08/2025
Importe concedido:
290.400,00€
Otros fondos:
Fondos FEDER
Título:
Desarrollo de Medicamentos Innovadores basados en CAR-T: Datos, Inteligencia Artificial, secuenciación MAsiva y Nano-Tecnología (DIAMANTE). Proyecto financiado en el marco de la convocatoria 2023 de proyectos Estratégicos de Gobierno de Navarra
Código de expediente:
0011-1411-2023-000105
Investigador principal:
Felipe Luis Prósper Cardoso
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2023 GN PROYECTOS ESTRATEGICOS DE I+D 2023-2026
Fecha de inicio:
01/07/2023
Fecha fin:
31/12/2025
Importe concedido:
362.076,16€
Otros fondos:
-
Título:
INNOLFACT 2.0: Combinación de Inteligencia Artificial y Reposicionamiento de Fármacos en Medicina de Precisión Olfatoria
Código de expediente:
0011-1411-2023-000100
Investigador principal:
María Cruz Rodríguez Oroz
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2023 GN PROYECTOS ESTRATEGICOS DE I+D 2023-2026
Fecha de inicio:
01/07/2023
Fecha fin:
31/12/2025
Importe concedido:
331.400,55€
Otros fondos:
-
Título:
Terapia basada en nanotransportadores de Rna para el tratamiento del cáncer (NanoRC)
Código de expediente:
0011-1411-2022-000068
Investigador principal:
María José Blanco Prieto
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2022 GN PROYECTOS ESTRATEGICOS DE I+D 2022-2025
Fecha de inicio:
01/07/2022
Fecha fin:
31/12/2024
Importe concedido:
501.903,59€
Otros fondos:
-
Título:
Nanopartículas de esqualeno-adenosina para el tratamiento de la isquemia-reperfusión cardiaca
Código de expediente:
PCIN-2016-046
Financiador:
MINISTERIO DE CIENCIA E INNOVACIÓN
Convocatoria:
2016 MINECO ACCIONES DE PROGRAMACIÓN CONJUNTA INTERNACIONAL
Fecha de inicio:
01/05/2016
Fecha fin:
31/12/2020
Importe concedido:
98.000,00€
Otros fondos:
-
Título:
Nanovectores para administración directa, loco-regional e intravenosa controlada de fármacos antitumorales. Estrategias para minimizar los efectos adversos y
maximizar la respuesta terapéutica. ONCOLIBERYX
Código de expediente:
CPP2021-008362
Investigador principal:
María José Blanco Prieto
Financiador:
AGENCIA ESTATAL DE INVESTIGACION
Convocatoria:
2021 AEI Proyectos en Colaboración Público Privada
Fecha de inicio:
01/03/2022
Fecha fin:
28/02/2025
Importe concedido:
423.957,00€
Otros fondos:
Fondos MRR
Título:
Nanovectores para administración directa, loco-regional e intravenosa controlada de fármacos antitumorales. Estrategias para minimizar los efectos adversos y
maximizar la respuesta terapéutica. ONCOLIBERYX
Código de expediente:
CPP2021-008362
Investigador principal:
María José Blanco Prieto
Financiador:
AGENCIA ESTATAL DE INVESTIGACION
Convocatoria:
2021 AEI Proyectos en Colaboración Público Privada
Fecha de inicio:
01/03/2022
Fecha fin:
28/02/2025
Importe concedido:
423.957,00€
Otros fondos:
Fondos MRR
Título:
Nueva generación de plataformas teragnósticas contra el cáncer asistidas por partículas superparamagnéticas
Código de expediente:
0011-1383-2018-000005 PC060
Investigador principal:
María José Blanco Prieto
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2018 GN Centros
Fecha de inicio:
01/02/2018
Fecha fin:
30/11/2018
Importe concedido:
84.225,94€
Otros fondos:
-
Título:
Reparación cardiaca utilizando ingeniería tisular y/o exosomas: mecanismos implicados y eficacia terapéútica en un modelo animal de infarto de miocardio.
Código de expediente:
SAF2017-83734-R
Financiador:
MINISTERIO DE CIENCIA E INNOVACIÓN
Convocatoria:
2017 MINECO RETOS INVESTIGACION. PROYECTOS DE I+D+i
Fecha de inicio:
01/01/2018
Fecha fin:
30/09/2022
Importe concedido:
127.050,00€
Otros fondos:
Fondos FEDER
Título:
Nuevas estrategias en regeneración cardíaca combinando células madre y factores de crecimiento incluidos en scaffolds poliméricos
biodegradables
Código de expediente:
SAF2013-42528-R
Investigador principal:
María José Blanco Prieto
Financiador:
MINISTERIO DE CIENCIA E INNOVACIÓN
Convocatoria:
2013 MINECO Retos Investigación
Fecha de inicio:
01/01/2014
Fecha fin:
31/12/2018
Importe concedido:
242.000,00€
Otros fondos:
-