Revistas
Revista:
MICROBIAL PATHOGENESIS
ISSN:
0882-4010
Año:
2023
Vol.:
174
Págs.:
105930
Brucellosis is a zoonotic disease caused by Gram-negative bacteria of the genus Brucella. These pathogens cause long-lasting infections, a process in which Brucella modifications in the lipopolysaccharide (LPS) and envelope lipids reduce pathogen-associated molecular pattern (PAMP) recognition, thus hampering innate immunity activation. In vivo models are essential to investigate bacterial virulence, mice being the most used model. However, ethical and practical considerations impede their use in high-throughput screening studies. Although lacking the complexity of the mammalian immune system, insects share key-aspects of innate immunity with mammals, and Galleria mellonella has been used increasingly as a model. G. mellonella larvae have been shown useful in virulence analyses, including Gram-negative pathogens like Klebsiella pneumoniae and Legionella pneumophila. To assess its potential to study Brucella virulence, we first evaluated larva survival upon infection with representative Brucella species (i.e.B. abortus 2308W, B. microti CCM4915 and B. suis biovar 2) and mutants in the VirB type-IV secretion system (T4SS) or in the LPS-O-polysaccharide (O-PS). As compared to K.pneumoniae, the Brucella spp. tested induced a delayed and less severe mortality profile consistent with an escape of innate immunity detection. Brucella replication within larvae was affected by the lack of O-PS, which is reminiscent of their attenuation in natural hosts. On the contrary, replication was not affected by T4SS dysfunction and the mutant induced only slightly less mortality (not statistically significant) than its parental strain. We also evaluated G. mellonella to efficiently recognise Brucella and their LPS by quantification of the pro-phenoloxidase system and melanisation activation, using Pseudomonas LPS as a positive control. Among the brucellae, only B. microti LPS triggered an early-melanisation response consistent with the slightly increased endotoxicity of this species in mice. Therefore, G. mellonella represents a tool to screen for potential Brucella factors modulating innate immunity, but its usefulness to investigate other mechanisms relevant in Brucella intracellular life is limited.
Revista:
VETERINARY RESEARCH
ISSN:
1297-9716
Año:
2022
Vol.:
53
N°:
1
Págs.:
16
Brucella melitensis and Brucella ovis are gram-negative pathogens of sheep that cause severe economic losses and, although B. ovis is non-zoonotic, B. melitensis is the main cause of human brucellosis. B. melitensis carries a smooth (S) lipopolysaccharide (LPS) with an N-formyl-perosamine O-polysaccharide (O-PS) that is absent in the rough LPS of B. ovis. Their control and eradication require vaccination, but B. melitensis Rev 1, the only vaccine available, triggers anti-O-PS antibodies that interfere in the S-brucellae serodiagnosis. Since eradication and serological surveillance of the zoonotic species are priorities, Rev 1 is banned once B. melitensis is eradicated or where it never existed, hampering B. ovis control and eradication. To develop a B. ovis specific vaccine, we investigated three Brucella live vaccine candidates lacking N-formyl-perosamine O-PS: Bov::CA¿wadB (CO2-independent B. ovis with truncated LPS core oligosaccharide); Rev1::wbdR¿wbkC (carrying N-acetylated O-PS); and H38¿wbkF (B. melitensis rough mutant with intact LPS core). After confirming their attenuation and protection against B. ovis in mice, were tested in rams for efficacy. H38¿wbkF yielded similar protection to Rev 1 against B. ovis but Bov::CA¿wadB and Rev1::wbdR¿wbkC conferred no or poor protection, respectively. All H38¿wbkF vaccinated rams developed a protracted antibody response in ELISA and immunoprecipitation B. ovis diagnostic tests. In contrast, all remained negative in Rose Bengal and complement fixation tests used routinely for B. melitensis diagnosis, though some became positive in S-LPS ELISA owing to LPS core epitope reactivity. Thus, H38¿wbkF is an interesting candidate for the immunoprophylaxis of B. ovis in B. melitensis-free areas.
Revista:
PHARMACEUTICS
ISSN:
1999-4923
Año:
2022
Vol.:
14
N°:
2
Págs.:
239
Enterotoxigenic Escherichia coli (ETEC) infections have been identified as a major cause of acute diarrhoea in children in developing countries, associated with substantial morbidity and mortality rates. Additionally, ETEC remains the most common cause of acute diarrhea of international travellers to endemic areas. The heat-labile toxin (LT) is a major virulence factor of ETEC, with a significant correlation between the presence of antibodies against LT and protection in infected patients. In the present work, we constructed a recombinant LTB unit (rLTB) and studied the capacity of this toxoid incorporated in microneedles (rLTB-MN) to induce a specific immune response in mice. MN were prepared from aqueous blends of the polymer Gantrez AN® [poly (methyl vinyl ether-co-maleic anhydride)], which is not cytotoxic and has been shown to possess immunoadjuvant properties. The mechanical and dissolution properties of rLTB-MNs were evaluated in an in vitro Parafilm M® model and in mice and pig skin ex vivo models. The needle insertion ranged between 378 µm and 504 µm in Parafilm layers, and MNs fully dissolved within 15 min of application inside porcine skin. Moreover, female and male BALB/c mice were immunized through ear skin with one single dose of 5 ¿g·rLTB in MNs, eliciting significant fecal anti-LT IgA antibodies, higher in female than in male mice. Moreover, we observed an enhanced production of IL-17A by spleen cells in the immunized female mice, indicating a mucosal non-inflammatory and neutralizing mediated response. Further experiments will now be required to validate the protective capacity of this new rLTB-MN formulation against this deadly non-vaccine-preventable disease.
Revista:
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY
ISSN:
1466-5026
Año:
2022
Vol.:
72
N°:
2
Págs.:
005223
Three Gram-negative, rod-shaped, oxidase-positive, non-spore-forming, non-motile strains (C130915_07T, C150915_16 and C150915_17) were isolated from lymph nodes of Algerian cows. On the basis of 16S rRNA gene and whole genome similarities, the isolates were almost identical and clearly grouped in the genus Pseudochrobactrum. This allocation was confirmed by the analysis of fatty acids (C19:cyclo, C18 : 1, C18 : 0, C16 : 1 and C16 : 0) and of polar lipids (major components: phosphatidylethanolamine, ornithine-lipids, phosphatidylglycerol, cardiolipin and phosphatidylcholine, plus moderate amounts of phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine and other aminolipids). Genomic, physiological and biochemical data differentiated these isolates from previously described Pseudochrobactrum species in DNA relatedness, carbon assimilation pattern and growth temperature range. Thus, these organisms represent a novel species of the genus Pseudochrobactrum, for which the name Pseudochrobactrum algeriensis sp. nov. is proposed (type strain C130915_07T=CECT30232T=LMG 32378T).
Revista:
FRONTIERS IN MICROBIOLOGY
ISSN:
1664-302X
Año:
2021
Vol.:
11
Págs.:
620049
Brucella species cause brucellosis, a worldwide extended zoonosis. The brucellae are related to free-living and plant-associated alpha 2-Proteobacteria and, since they multiply within host cells, their metabolism probably reflects this adaptation. To investigate this, we used the rodent-associated Brucella suis biovar 5, which in contrast to the ruminant-associated Brucella abortus and Brucella melitensis and other B. suis biovars, is fast-growing and conserves the ancestral Entner-Doudoroff pathway (EDP) present in the plant-associated relatives. We constructed mutants in Edd (glucose-6-phosphate dehydratase; first EDP step), PpdK (pyruvate phosphate dikinase; phosphoenolpyruvate pyruvate), and Pyk (pyruvate kinase; phosphoenolpyruvate -> pyruvate). In a chemically defined medium with glucose as the only C source, the Edd mutant showed reduced growth rates and the triple Edd-PpdK-Pyk mutant did not grow. Moreover, the triple mutant was also unable to grow on ribose or xylose. Therefore, B. suis biovar 5 sugar catabolism proceeds through both the Pentose Phosphate shunt and EDP, and EDP absence and exclusive use of the shunt could explain at least in part the comparatively reduced growth rates of B. melitensis and B. abortus. The triple Edd-PpdK-Pyk mutant was not attenuated in mice. Thus, although an anabolic use is likely, this suggests that hexose/pentose catabolism to pyruvate is not essential for B. suis biovar 5 multiplication within host cells, a hypothesis consistent with the lack of classical glycolysis in all Brucella species and of EDP in B. melitensis and B. abortus. These results and those of previous works suggest that within cells, the brucellae use mostly 3 and 4 C substrates fed into anaplerotic pathways and only a limited supply of 5 and 6 C sugars, thus favoring the EDP loss observed in some species.
Revista:
FRONTIERS IN MICROBIOLOGY
ISSN:
1664-302X
Año:
2021
Vol.:
12
Págs.:
614243
The brucellae are facultative intracellular bacteria with a cell envelope rich in phosphatidylcholine (PC). PC is abundant in eukaryotes but rare in prokaryotes, and it has been proposed that Brucella uses PC to mimic eukaryotic-like features and avoid innate immune responses in the host. Two PC synthesis pathways are known in prokaryotes: the PmtA-catalyzed trimethylation of phosphatidylethanolamine and the direct linkage of choline to CDP-diacylglycerol catalyzed by the PC synthase Pcs. Previous studies have reported that B. abortus and B. melitensis possess non-functional PmtAs and that PC is synthesized exclusively via Pcs in these strains. A putative choline transporter ChoXWV has also been linked to PC synthesis in B. abortus. Here, we report that Pcs and Pmt pathways are active in B. suis biovar 2 and that a bioinformatics analysis of Brucella genomes suggests that PmtA is only inactivated in B. abortus and B. melitensis strains. We also show that ChoXWV is active in B. suis biovar 2 and conserved in all brucellae except B. canis and B. inopinata. Unexpectedly, the experimentally verified ChoXWV dysfunction in B. canis did not abrogate PC synthesis in a PmtA-deficient mutant, which suggests the presence of an unknown mechanism for obtaining choline for the Pcs pathway in Brucella. We also found that ChoXWV dysfunction did not cause attenuation in B. suis biovar 2. The results of these studies are discussed with respect to the proposed role of PC in Brucella virulence and how differential use of the Pmt and Pcs pathways may influence the interactions of these bacteria with their mammalian hosts.
Revista:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN:
0027-8424
Año:
2020
Vol.:
117
N°:
42
Págs.:
26374 - 26381
Mechanistic understanding of the factors that govern host tropism remains incompletely understood for most pathogens. Brucella species, which are capable of infecting a wide range of hosts, offer a useful avenue to address this question. We hypothesized that metabolic fine-tuning to intrahost niches is likely an underappreciated axis underlying pathogens' ability to infect new hosts and tropism. In this work, we compared the central metabolism of seven Brucella species by stable isotopic labeling and genetics. We identified two functionally distinct groups, one overlapping with the classical zoonotic species of domestic livestock that exclusively use the pentose phosphate pathway (PPP) for hexose catabolism, whereas species from the second group use mostly the Entner-Doudoroff pathway (EDP). We demonstrated that the metabolic dichotomy among Brucellae emerged after the acquisition of two independent EDP-inactivating mutations in all classical zoonotic species. We then examined the pathogenicity of key metabolic mutants in mice and confirmed that this trait is tied to virulence. Altogether, our data are consistent with the hypothesis that the PPP has been incrementally selected over the EDP in parallel to Brucella adaptation to domestic livestock.
Revista:
VETERINARY RESEARCH
ISSN:
0928-4249
Año:
2020
Vol.:
51
N°:
1
Págs.:
13
Revista:
VETERINARY RESEARCH
ISSN:
1297-9716
Año:
2020
Vol.:
51
N°:
1
Págs.:
92
Brucella is a genus of gram-negative bacteria that cause brucellosis. B. abortus and B. melitensis infect domestic ruminants while B. suis (biovars 1-3) infect swine, and all these bacteria but B. suis biovar 2 are zoonotic. Live attenuated B. abortus S19 and B. melitensis Rev1 are effective vaccines in domestic ruminants, though both can infect humans. However, there is no swine brucellosis vaccine. Here, we investigated the potential use as vaccines of B. suis biovar 2 rough (R) lipopolysaccharide (LPS) mutants totally lacking O-chain (Bs2¿wbkF) or only producing internal O-chain precursors (Bs2¿wzm) and mutants with a smooth (S) LPS defective in the core lateral branch (Bs2¿wadB and Bs2¿wadD). We also investigated mutants in the pyruvate phosphate dikinase (Bs2¿ppdK) and phosphoenolpyruvate carboxykinase (Bs2¿pckA) genes encoding enzymes bridging phosphoenolpyruvate and the tricarboxylic acid cycle. When tested in the OIE mouse model at the recommended R or S vaccine doses (108 and 105 CFU, respectively), CFU/spleen of all LPS mutants were reduced with respect to the wild type and decreased faster for the R than for the S mutants. At those doses, protection against B. suis was similar for Bs2¿wbkF, Bs2¿wzm, Bs2¿wadB and the Rev1 control (105 CFU). As described before for B. abortus, B. suis biovar 2 carried a disabled pckA so that a double mutant Bs2¿ppdK¿pckA had the same metabolic phenotype as Bs2¿ppdK and ppdK mutation was enough to generate attenuation. At 105 CFU, Bs2¿ppdK also conferred the same protection as Rev1. As compared to other B. suis vaccine candidates described before, the mutants described here simultaneously carry irreversible deletions easy to identify as vaccine markers, lack antibiotic-resistance markers and were obtained in a non-zoonotic background. Since R vaccines should not elicit antibodies to the S-LPS and wzm mutants carry immunogenic O-chain precursors and did not improve Bs2¿wbkF, the latter seems a better R vaccine candidate than Bs2¿wzm. However, taking into account that all R vaccines interfere in ELISA and other widely used assays, whether Bs2¿wbkF is advantageous over Bs2¿wadB or Bs2¿ppdK requires experiments in the natural host.
Revista:
VETERINARY RESEARCH
ISSN:
0928-4249
Año:
2020
Vol.:
51
N°:
1
Págs.:
101
Brucella ovisis a non-zoonotic roughBrucellathat causes genital lesions, abortions and increased perinatal mortality in sheep and is responsible for important economic losses worldwide. Research on virulence factors ofB. ovisis necessary for deciphering the mechanisms that enable this facultative intracellular pathogen to establish persistent infections and for developing a species-specific vaccine, a need in areas where the cross-protecting ovine smoothB. melitensisRev1 vaccine is banned. Although severalB. ovisvirulence factors have been identified, there is little information on its metabolic abilities and their role in virulence. Here, we report that deletion of pyruvate phosphate dikinase (PpdK, catalyzing the bidirectional conversion pyruvate -cc; phosphoenolpyruvate) inB. ovisPA (virulent and CO2-dependent) impaired growth in vitro. In cell infection experiments, although showing an initial survival higher than that of the parental strain, thisppdKmutant was unable to multiply. Moreover, when inoculated at high doses in mice, it displayed an initial spleen colonization higher than that of the parental strain followed by a marked comparative decrease, an unusual pattern of attenuation in mice. A homologous mutant was also obtained in aB. ovisPA CO2-independent construct previously proposed for developingB. ovisvaccines to solve the problem that CO2-dependence represents for large scale production. This CO2-independentppdKmutant reproduced the growth defect in vitro and the multiplication/clearance pattern in mouse spleens, and is thus an interesting vaccine candidate for the immunoprophylaxis ofB. ovisovine brucellosis.
Revista:
VETERINARY RESEARCH
ISSN:
1297-9716
Año:
2019
Vol.:
50
N°:
1
Págs.:
95
Sheep brucellosis is a worldwide extended disease caused by B. melitensis and B. ovis, two species respectively carrying smooth or rough lipopolysaccharide. Vaccine B. melitensis Rev1 is used against B. melitensis and B. ovis but induces an anti-smooth-lipopolysaccharide response interfering with B. melitensis serodiagnosis, which precludes its use against B. ovis where B. melitensis is absent. In mice, Rev1 deleted in wbkC (Brucella lipopolysaccharide formyl-transferase) and carrying wbdR (E. coli acetyl-transferase) triggered antibodies that could be differentiated from those evoked by wild-type strains, was comparatively attenuated and protected against B. ovis, suggesting its potential as a B. ovis vaccine.
Revista:
FRONTIERS IN MICROBIOLOGY
ISSN:
1664-302X
Año:
2018
Vol.:
9
Págs.:
1092
Brucellosis is a bacterial zoonosis of worldwide distribution caused by bacteria of the genus Brucella. In Brucella abortus and Brucella melitensis, the major species infecting domestic ruminants, the smooth lipopolysaccharide (S-LPS) is a virulence factor. This S-LPS carries a N-formyl-perosamine homopolymer O-polysaccharide that is the major antigen in serodiagnostic tests and is required for virulence. We report that the Brucella O-PS can be structurally and antigenically modified using wbdR, the acetyl-transferase gene involved in N-acetyl-perosamine synthesis in Escherichia coli O157:H7. Brucella constructs carrying plasmidic wbdR expressed a modified O-polysaccharide but were unstable, a problem circumvented by inserting wbdR into a neutral site of chromosome II. As compared to wild-type bacteria, both kinds of wbdR constructs expressed shorter O-polysaccharides and NMR analyses showed that they contained both N-formyl and N-acetyl-perosamine. Moreover, deletion of the Brucella formyltransferase gene wbkC in wbdR constructs generated bacteria producing only N-acetyl-perosamine homopolymers, proving that wbdR can replace for wbkC. Absorption experiments with immune sera revealed that the wbdR constructs triggered antibodies to new immunogenic epitope(s) and the use of monoclonal antibodies proved that B. abortus and B. melitensis wbdR constructs respectively lacked the A or M epitopes, and the absence of the C epitope in both backgrounds. The wbdR constructs showed resistance to polycations similar to that of the wild-type strains but displayed increased sensitivity to normal serum similar to that of a per R mutant. In mice, the wbdR constructs produced chronic infections and triggered antibody responses that can be differentiated from those evoked by the wild-type strain in S-LPS ELISAs. These results open the possibilities of developing brucellosis vaccines that are both antigenically tagged and lack the diagnostic epitopes of virulent field strains, thereby solving the diagnostic interference created by current vaccines against Brucella.
Revista:
FRONTIERS IN MICROBIOLOGY
ISSN:
1664-302X
The brucellae are facultative intracellular bacteria that cause a worldwide extended zoonosis. One of the pathogenicity mechanisms of these bacteria is their ability to avoid rapid recognition by innate immunity because of a reduction of the pathogen-associated molecular pattern (PAMP) of the lipopolysaccharide (LPS), free-lipids, and other envelope molecules. We investigated the Brucella homologs of lptA, lpxE, and lpxO, three genes that in some pathogens encode enzymes that mask the LPS PAMP by upsetting the core-lipid A charge/hydrophobic balance. Brucella lptA, which encodes a putative ethanolamine transferase, carries a frame-shift in B. abortus but not in other Brucella spp. and phylogenetic neighbors like the opportunistic pathogen Ochrobactrum anthropi. Consistent with the genomic evidence, a B. melitensis lptA mutant lacked lipid A-linked ethanolamine and displayed increased sensitivity to polymyxin B (a surrogate of innate immunity bactericidal peptides), while B. abortus carrying B. melitensis lptA displayed increased resistance. Brucella lpxE encodes a putative phosphatase acting on lipid A or on a free-lipid that is highly conserved in all brucellae and O. anthropi. Although we found no evidence of lipid A dephosphorylation, a B. abortus lpxE mutant showed increased polymyxin B sensitivity, suggesting the existence of a hitherto unidentified free-lipid involved in bactericidal peptide resistance. Gene lpxO putatively encoding an acyl hydroxylase carries a frame-shift in all brucellae except B. microti and is intact in O. anthropi. Free-lipid analysis revealed that lpxO corresponded to olsC, the gene coding for the ornithine lipid (OL) acyl hydroxylase active in O. anthropi and B. microti, while B. abortus carrying the olsC of O. anthropi and B. microti synthesized hydroxylated OLs. Interestingly, mutants in lptA, lpxE, or olsC were not attenuated in dendritic cells or mice. This lack of an obvious effect on virulence together with the presence of the intact homolog genes in O. anthropi and B. microti but not in other brucellae suggests that LptA, LpxE, or OL beta-hydroxylase do not significantly alter the PAMP properties of Brucella LPS and free-lipids and are therefore not positively selected during the adaptation to intracellular life.
Autores:
Migisha, R. (Autor de correspondencia); Nyehangane, D.; Boum, Y.; et al.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2018
Vol.:
8
Págs.:
15465
Human brucellosis, a chronic disease contracted through contact with animals and consuption of unpasteurized dairy products is underreported in limited-resource countries. This cross-sectional study aimed to determine the prevalence and risk factors of brucellosis among febrile patients attending a community hospital in South western Uganda. A questionnaire that captured socio-demographic, occupational and clinical data was administered. Blood samples were tested for Brucella antibodies using Rose Bengal Plate Test (RBPT) and blood culture with standard aerobic BACTEC bottle was done. Of 235 patients enrolled, prevalence of brucellosis (RBPT or culture confirmed) was 14.9% (95%CI 10.6-20.1) with a culture confrmation in 4.3% of the participants. The factors independently associated with brucellosis were consumption of raw milk (aOR 406.15, 95% CI 47.67-3461.69); history of brucellosis in the family (aOR 9.19, 95% CI 1.98-42.54); and selling hides and skins (aOR 162.56, 95% CI 2.86-9256.31). Hepatomegaly (p < 0.001), splenomegaly (p = 0.018) and low body mass index (p = 0.032) were more common in patients with brucellosis compared to others. Our findings reveal a high prevalence of brucellosis among febrile patients and highlight a need for implementing appropiate tests, public awareness activities and vaccination of animals to control and eliminate the disease.
Revista:
VETERINARY RESEARCH
ISSN:
1297-9716
Año:
2018
Vol.:
49
N°:
1
Págs.:
85
Brucella bacteria cause brucellosis, a major zoonosis whose control requires efficient diagnosis and vaccines. Identification of classical Brucella spp. has traditionally relied on phenotypic characterization, including surface antigens and 5-10% CO2 necessity for growth (CO2-dependence), a trait of Brucella ovis and most Brucella abortus biovars 1-4 strains. Although molecular tests are replacing phenotypic methods, CO2-dependence remains of interest as it conditions isolation and propagation and reflects Brucella metabolism, an area of active research. Here, we investigated the connection of CO2-dependence and carbonic anhydrases (CA), the enzymes catalyzing the hydration of CO2 to the bicarbonate used by anaplerotic and biosynthetic carboxylases. Based on the previous demonstration that B. suis carries two functional CAs (CAI and CAII), we analyzed the CA sequences of CO2-dependent and -independent brucellae and spontaneous mutants. The comparisons strongly suggested that CAII is not functional in CO2-dependent B. abortus and B. ovis, and that a modified CAII sequence explains the CO2-independent phenotype of spontaneous mutants. Then, by mutagenesis and heterologous plasmid complementation and chromosomal insertion we proved that CAI alone is enough to support CO2-independent growth of B. suis in rich media but not of B. abortus in rich media or B. suis in minimal media.
Revista:
FRONTIERS IN MICROBIOLOGY
ISSN:
1664-302X
Año:
2018
Vol.:
9
Págs.:
641
Bacteria of the genus Brucella infect a range of vertebrates causing a worldwide extended zoonosis. The best-characterized brucellae infect domestic livestock, behaving as stealthy facultative intracellular parasites. This stealthiness depends on envelope molecules with reduced pathogen-associated molecular patterns, as revealed by the low lethality and ability to persist in mice of these bacteria. Infected cells are often engorged with brucellae without signs of distress, suggesting that stealthiness could also reflect an adaptation of the parasite metabolism to use local nutrients without harming the cell. To investigate this, we compared key metabolic abilities of Brucella abortus 2308 Wisconsin (2308W), a cattle biovar 1 virulent strain, and B. suis 513, the reference strain of the ancestral biovar 5 found in wild rodents. B. suis 513 used a larger number of C substrates and showed faster growth rates in vitro, two features similar to those of B. microti, a species phylogenomically close to B. suis biovar 5 that infects voles. However, whereas B. microti shows enhanced lethality and reduced persistence in mice, B. suis 513 was similar to B. abortus 2308W in this regard. Mutant analyses showed that B. suis 513 and B. abortus 2308W were similar in that both depend on phosphoenolpyruvate synthesis for virulence but not on the classical gluconeogenic fructose-1,6-bisphosphatases Fbp-GlpX or on isocitrate lyase (AceA). However, B. suis 513 used pyruvate phosphate dikinase (PpdK) and phosphoenolpyruvate carboxykinase (PckA) for phosphoenolpyruvate synthesis in vitro while B. abortus 2308W used only PpdK. Moreover, whereas PpdK dysfunction causes attenuation of B. abortus 2308W in mice, in B. suis, 513 attenuation occurred only in the double PckA-PpdK mutant. Also contrary to what occurs in B. abortus 2308, a B. suis 513 malic enzyme (Mae) mutant was not attenuated, and this independence of Mae and the role of PpdK was confirmed by the lack of attenuation of a double Mae-PckA mutant. Altogether, these results decouple fast growth rates from enhanced mouse lethality in the brucellae and suggest that an Fbp-GlpX-independent gluconeogenic mechanism is ancestral in this group and show differences in central C metabolic steps that may reflect a progressive adaptation to intracellular growth.
Autores:
Azami, H. Y.; Ducrotoy, M. J.; Bouslikhane, M.; et al.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2018
Vol.:
13
N°:
9
Págs.:
e0203360
Bovine tuberculosis (BTB) and brucellosis are major endemic zoonoses in ruminants in Morocco that impact on both animal and human health. This study presents an assessment of the epidemiological and socioeconomic burden of bacterial zoonoses in Sidi Kacem Province in Northern Morocco from a cross-sectional survey of 125 cattle and/or small ruminantowning households. In total, 1082 sheep and goats were examined from 81 households. The single intradermal comparative cervical test to screen for bovine tuberculosis was undertaken on 1194 cattle from 123 households and all cattle were blood sampled. Cattle and small ruminant sera were tested for brucellosis using the standard Rose Bengal Test (sRBT) and the modified Rose Bengal Test (mRBT). Bacteriology was performed on 21 milk samples obtained from cattle that were seropositive for brucellosis for isolation and phenotyping of circulating Brucella strains. Individual and herd prevalence for BTB in cattle of 20.4% (95% CI 18%-23%) and 57.7% (95% CI 48%-66%), respectively, were observed in this study. The prevalence of brucellosis in cattle at individual and herd level was 1.9% (95% CI 1.2%-2.8%) and 9% (95% CI 4.5%-1.5%), respectively. Brucella pathogens were isolated from three cattle milk samples and were identified as B. abortus using Bruceladder (R) multiplex PCR and B. abortus biovar 1 by classical phenotyping. All small ruminants were seronegative to sRBT, two were positive to mRBT. A higher risk of BTB and brucellosis was observed in cattle in intensive livestock systems, in imported and crossed breeds and in animals from larger herds (>15). The three risk factors were usually present in the same herds, leading to higher transmission risk and persistence of both zoonoses. These results highlight the importance of implementing control strategies for both BTB and brucellosis to reduce productivity losses and the risk of transmission to humans. Prioritising control for BTB and brucellosis in intensive livestock production systems is essential for human and animal health.
Revista:
VACCINE
ISSN:
0264-410X
Año:
2018
Vol.:
36
N°:
49
Págs.:
7509 - 7519
Disruption of one or more components of the Tol-Pal system, involved in maintaining the integrity of the outer membrane of Gram-negative bacteria, has been proposed as a method to increase the yield obtained from natural production of outer membrane vesicles (OMV). We present a new OMV-based product, obtained from genetically modified Shigella flexneri 2a with a non-polar deletion in tolR and heat-inactivated (HT-Delta tolR). The S. flexneri Delta tolR strain lead to a higher release of vesicles, more than 8-times when compared to the yield obtained from chemically inactivated wild type strain. S. flexneri mutant strain appeared to be more sensitive to different chemical compounds, including antibiotics, bile salts or human complement and it was also less virulent in both in vitro and in vivo assays. The mutation produced some changes in the LPS O-chain and protein expression. S. flexneri Delta tolR was enriched in long and very long LPS O-chain and expressed a different pattern of surface proteins or lipoproteins. In vitro toxicity and activation properties were determined in Raw 267.4 macrophage cell line. HT-Delta tolR antigenic complex was non-cytotoxic and activation markers, such as MHC-II or CD40, were highly expressed during incubation with this product. Finally, preliminary studies on the antibody response elicited by HT-Delta tolR demonstrated a robust and diverse response in mice. Considering these promising results, HT-Delta toIR antigenic extract appears as a new potential vaccine candidate to face shigellosis.
Revista:
FRONTIERS IN MICROBIOLOGY
ISSN:
1664-302X
Año:
2018
Vol.:
9
N°:
2293
Brucellosis, an infectious disease caused by Brucella, is one of the most extended bacterial zoonosis in the world and an important cause of economic losses and human suffering. The lipopolysaccharide (LPS) of Brucella plays a major role in virulence as it impairs normal recognition by the innate immune system and delays the immune response. The LPS core is a branched structure involved in resistance to complement and polycationic peptides, and mutants in glycosyltransferases required for the synthesis of the lateral branch not linked to the O-polysaccharide (O-PS) are attenuated and have been proposed as vaccine candidates. For this reason, the complete understanding of the genes involved in the synthesis of this LPS section is of particular interest. The chemical structure of the Brucella LPS core suggests that, in addition to the already identified WadB and WadC glycosyltransferases, others could be implicated in the synthesis of this lateral branch. To clarify this point, we identified and constructed mutants in 11 ORFs encoding putative glycosyltransferases in B. abortus. Four of these ORFs, regulated by the virulence regulator MucR (involved in LPS synthesis) or the BvrR/BvrS system (implicated in the synthesis of surface components), were not required for the synthesis of a complete LPS neither for virulence or interaction with polycationic peptides and/or complement. Among the other seven ORFs, six seemed not to be required for the synthesis of the core LPS since the corresponding mutants kept the O-PS and reacted as the wild type with polyclonal sera. Interestingly, mutant in ORF BAB1_0953 (renamed wadD) lost reactivity against antibodies that recognize the core section while kept the O-PS. This suggests that WadD is a new glycosyltransferase adding one or more sugars to the core lateral branch. WadD mutants were more sensitive than the parental strain to components of the innate immune system and played a role in chronic stages of infection. These results corroborate and extend previous work indicating that the Brucella LPS core is a branched structure that constitutes a steric impairment preventing the elements of the innate immune system to fight against Brucella
Revista:
FRONTIERS IN MICROBIOLOGY
ISSN:
1664-302X
Año:
2017
Vol.:
8
Págs.:
506
Revista:
FRONTIERS IN MICROBIOLOGY
ISSN:
1664-302X
Año:
2017
Vol.:
8
Págs.:
1088
Erythritol is the preferential carbon source for most brucellae, a group of facultative intracellular bacteria that cause a worldwide zoonosis. Since this polyol is abundant in genital organs of ruminants and swine, it is widely accepted that erythritol accounts at least in part for the characteristic genital tropism of brucellae. Nevertheless, proof of erythritol availability and essentiality during Brucella intracellular multiplication has remained elusive. To investigate this relationship, we compared ¿eryH (erythritol-sensitive and thus predicted to be attenuated if erythritol is present), ¿eryA (erythritol-tolerant but showing reduced growth if erythritol is a crucial nutrient) and wild type B. abortus in various infection models. This reporting system indicated that erythritol was available but not required for B. abortus multiplication in bovine trophoblasts. However, mice and humans have been considered to lack erythritol, and we found that it was available but not required for B. abortus multiplication in human and murine trophoblastic and macrophage-like cells, and in mouse spleen and conceptus (fetus, placenta and envelopes). Using this animal model, we found that B. abortus infected cells and tissues contained aldose reductase, an enzyme that can account for the production of erythritol from pentose cycle precursors.
Autores:
Khames, M.; Mick, V.; de Miguel, M. J.; et al.
Revista:
VETERINARY MICROBIOLOGY
ISSN:
0378-1135
Año:
2017
Vol.:
211
Págs.:
124 - 128
Brucellosis is a zoonosis caused by bacteria of the genus Brucella that causes important economic losses and human suffering worldwide. Brucellosis control requires an understanding of the Brucella species circulating in livestock and humans and, although prevalent in African countries of the Mediterranean basin, data for this area are mostly restricted to isolates obtained from humans and small ruminants. Here, we report the characterization of twenty-four Brucella strains isolated from Algerian cattle. Bruce-ladder multiplex PCR and conventional biotyping showed that Algerian cattle are infected mostly by B. abortus biovar 3, and to less extent by B. abortus biovar 1 and B. melitensis biovar 3. Extended AMOS-ERY PCR showed that all Algerian B. abortus biovar 3 strains were of the subgroup 3b. Although by multi locus variable number of tandem repeats analysis (MLVA) most isolates were closer to the European counterparts, five strains displayed characteristics distinct from the European isolates and those of countries across the Sahara, including three repetitions of marker Bruce55. These five strains, plus an earlier isolate from an Algerian human patient, may represent a lineage close to clades previously described in Africa. These data provide the basis for additional molecular epidemiology studies in northern Africa and indicate that further bacteriological and molecular investigations are necessary for a complete understanding of the epidemiology of cattle brucellosis in countries north and south of the Sahara.
Autores:
Bertu, W.J.; Ducrotoy, M.J.; Muñoz, P.M.; et al.
Revista:
VETERINARY MICROBIOLOGY
ISSN:
0378-1135
Año:
2015
Vol.:
180
N°:
1 - 2
Págs.:
103 - 108
Brucellosis is a worldwide widespread zoonosis caused by bacteria of the genus Brucella. Control of this disease in a given area requires an understanding of the Brucella species circulating in livestock and humans. However, because of the difficulties intrinsic to Brucella isolation and typing, such data are scarce for resource-poor areas. The paucity of bacteriological data and the consequent imperfect epidemiological picture are particularly critical for Sahelian and Sub-Sahara African countries. Here, we report on the characterization of 34 isolates collected between 1976 and 2012 from cattle, sheep and horses in Nigeria. All isolates were identified as Brucella abortus by Bruce-ladder PCR and assigned to biovar 3 by conventional typing. Further analysis by enhanced AMOS-ERY PCR showed that all of them belonged to the 3a sub-biovar, and MLVA analysis grouped them in a cluster clearly distinct from that formed by European B. abortus biovar 3b strains. Nevertheless, MLVA detected heterogeneity within the Nigerian biovar 3a strains. The close genetic profiles of the isolates from cattle, sheep and horses, suggest that, at least in some parts of Nigeria, biovar 3a circulates among animal species that are not the preferential hosts of B. abortus. Consistent with previous genetic analyses of 7 strains from Ivory Cost, Gambia and Togo, the analysis of these 34 Nigerian strains supports the hypothesis that the B. abortus biovar 3a lineage is dominant in West African countries.
Revista:
JOURNAL OF BACTERIOLOGY
ISSN:
0021-9193
Año:
2014
Vol.:
196
N°:
16
Págs.:
3045 - 3057
The brucellae are the etiological agents of brucellosis, a worldwide-distributed zoonosis. These bacteria are facultative intracellular parasites and thus are able to adjust their metabolism to the extra- and intracellular environments encountered during an infectious cycle. However, this aspect of Brucella biology is imperfectly understood, and the nutrients available in the intracellular niche are unknown. Here, we investigated the central pathways of C metabolism used by Brucella abortus by deleting the putative fructose-1,6-bisphosphatase (fbp and glpX), phosphoenolpyruvate carboxykinase (pckA), pyruvate phosphate dikinase (ppdK), and malic enzyme (mae) genes. In gluconeogenic but not in rich media, growth of ¿ppdK and ¿mae mutants was severely impaired and growth of the double ¿fbp-¿glpX mutant was reduced. In macrophages, only the ¿ppdK and ¿mae mutants showed reduced multiplication, and studies with the ¿ppdK mutant confirmed that it reached the replicative niche. Similarly, only the ¿ppdK and ¿mae mutants were attenuated in mice, the former being cleared by week 10 and the latter persisting longer than 12 weeks. We also investigated the glyoxylate cycle. Although aceA (isocitrate lyase) promoter activity was enhanced in rich medium, aceA disruption had no effect in vitro or on multiplication in macrophages or mouse spleens. The results suggest that B. abortus grows intracellularly using a limited supply of 6-C (and 5-C) sugars that is compensated by glutamate and possibly other amino acids entering the Krebs cycle without a critical role of the glyoxylate shunt.
Revista:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN:
0027-8424
Año:
2014
Vol.:
111
N°:
50
Págs.:
17815 - 17820
Erythritol is an important nutrient for several ¿-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to l-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to l-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that l-3-tetrulose-4-phosphate was converted to d-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (d-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (d-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on (13)C-labeled erythritol. d-Erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via d-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of erythritol by Brucella and its role in pathogenicity.
Revista:
VETERINARY RESEARCH
ISSN:
0928-4249
Año:
2014
Vol.:
45
N°:
72
Brucella spp. are Gram-negative bacteria that behave as facultative intracellular parasites of a variety of mammals. This genus includes smooth (S) and rough (R) species that carry S and R lipopolysaccharides (LPS), respectively. S-LPS is a virulence factor, and mutants affected in the S-LPS O-polysaccharide (R mutants), core oligosaccharide or both show attenuation. However, B. ovis is naturally R and is virulent in sheep. We studied the role of B. ovis LPS in virulence by mutating the orthologues of wadA, wadB and wadC, three genes known to encode LPS core glycosyltransferases in S brucellae. When mapped with antibodies to outer membrane proteins (Omps) and R-LPS, wadB and wadC mutants displayed defects in LPS structure and outer membrane topology but inactivation of wadA had little or no effect. Consistent with these observations, the wadB and wadC but not the wadA mutants were attenuated in mice. When tested as vaccines, the wadB and wadC mutants protected mice against B. ovis challenge. The results demonstrate that the LPS core is a structure essential for survival in vivo not only of S brucellae but also of a naturally R Brucella pathogenic species, and they confirm our previous hypothesis that the Brucella LPS core is a target for vaccine development. Since vaccine B. melitensis Rev 1 is S and thus interferes in serological testing for S brucellae, wadB mutant represents a candidate vaccine to be evaluated against B. ovis infection of sheep suitable for areas free of B. melitensis.
Revista:
MICROBIAL PATHOGENESIS
ISSN:
0882-4010
Año:
2014
Vol.:
73
Págs.:
53 - 59
Brucellosis is a worldwide extended zoonosis caused by Brucella spp. These gram-negative bacteria are not readily detected by innate immunity, a virulence-related property largely linked to their surface lipopolysaccharide (LPS). The role of the LPS lipid A and O-polysaccharide in virulence is well known. Moreover, mutation of the glycosyltransferase gene wadC of Brucella abortus, although not affecting O-polysaccharide assembly onto the lipid-A core section causes a core oligosaccharide defect that increases recognition by innate immunity. Here, we report on a second gene (wadB) encoding a LPS core glycosyltransferase not involved in the assembly of the O-polysaccharide-linked core section. As compared to wild-type B. abortus, a wadB mutant was sensitive to bactericidal peptides and non-immune serum, and was attenuated in mice and dendritic cells. These observations show that as WadC, WadB is also involved in the assembly of a branch of Brucella LPS core and support the concept that this LPS section is a virulence-related structure.
Revista:
MICROBIOLOGY-SGM
ISSN:
1350-0872
Año:
2012
Vol.:
158
N°:
4
Págs.:
1037 - 1044
The brucellae are facultative intracellular pathogens of mammals that are transmitted by contact with infected animals or contaminated materials. Several major lipidic components of the brucella cell envelope are imperfectly recognized by innate immunity, thus contributing to virulence. These components carry large proportions of acyl chains of lactobacillic acid, a long chain cyclopropane fatty acid (CFA). CFAs result from addition of a methylene group to unsaturated acyl chains and contribute to resistance to acidity, dryness and high osmolarity in many bacteria and to virulence in mycobacteria. We examined the role of lactobacillic acid in Brucella abortus virulence by creating a mutant in ORF BAB1_0476, the putative CFA synthase gene. The mutant did not incorporate [(14)C]methyl groups into lipids, lacked CFAs and synthesized the unsaturated precursors, proving that BAB1_0476 actually encodes a CFA synthase. BAB1_0476 promoter-luxAB fusion studies showed that CFA synthase expression was promoted by acid pH and high osmolarity. The mutant was not attenuated in macrophages or mice, strongly suggesting that CFAs are not essential for B. abortus intracellular life. However, when the mutant was tested under high osmolarity on agar and acid pH, two conditions likely to occur on contaminated materials and fomites, they showed reduced ability to grow or survive. Since CFA synthesis entails high ATP expenses and brucellae produce large proportions of lactobacillic acyl chains, we speculate that the CFA synthase has been conserved because it is useful for survival extracellularly, thus facilitating persistence in contaminated materials and transmission to new hosts.
Revista:
PLoS One
ISSN:
1932-6203
Año:
2011
Vol.:
6
N°:
1
Págs.:
e16030
The brucellae are ¿-Proteobacteria facultative intracellular parasites that cause an important zoonosis. These bacteria escape early detection by innate immunity, an ability associated to the absence of marked pathogen-associated molecular patterns in the cell envelope lipopolysaccharide, lipoproteins and flagellin. We show here that, in contrast to the outer membrane ornithine lipids (OL) of other Gram negative bacteria, Brucella abortus OL lack a marked pathogen-associated molecular pattern activity. We identified two OL genes (olsB and olsA) and by generating the corresponding mutants found that olsB deficient B. abortus did not synthesize OL or their lyso-OL precursors. Liposomes constructed with B. abortus OL did not trigger IL-6 or TNF-¿ release by macrophages whereas those constructed with Bordetella pertussis OL and the olsB mutant lipids as carriers were highly active. The OL deficiency in the olsB mutant did not promote proinflammatory responses or generated attenuation in mice. In addition, OL deficiency did not increase sensitivity to polymyxins, normal serum or complement consumption, or alter the permeability to antibiotics and dyes. Taken together, these observations indicate that OL have become dispensable in the extant brucellae and are consistent within the trend observed in ¿-Proteobacteria animal pathogens to reduce and eventually eliminate the envelope components susceptible of recognition by innate immunity.
Nacionales y Regionales
Título:
Mejora de dos herramientas de identificación y tipificación molecular de bacterias del género Brucella (Bruladder v.3 y "Brusuis_Hbv2"): Aplicación sobre un medio de enriquecimiento.
Código de expediente:
011-1383-2019-000005 PT010
Investigador principal:
Raquel Conde Álvarez
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2019 GN Centros
Fecha de inicio:
01/12/2018
Fecha fin:
30/11/2019
Importe concedido:
44.199,25€
Otros fondos:
-
Título:
Criticalidad pasiva mediada por materia activa y viva
Código de expediente:
PID2021-129066NA-I00
Investigador principal:
Reinaldo García García
Financiador:
AGENCIA ESTATAL DE INVESTIGACION
Convocatoria:
2021 AEI Proyectos de Generación del Conocimiento
Fecha de inicio:
01/09/2022
Fecha fin:
31/08/2025
Importe concedido:
78.650,00€
Otros fondos:
Fondos FEDER
Título:
Brucellosis ovina: vacunas seguras y estrategias DIVA frente a B. melitensis y B. ovis
Código de expediente:
PID2019-107601RA-C32
Financiador:
MINISTERIO DE CIENCIA E INNOVACIÓN
Convocatoria:
2019 AEI PROYECTOS I+D+i (incluye Generación del conocimiento y Retos investigación)
Fecha de inicio:
01/06/2020
Fecha fin:
31/05/2024
Importe concedido:
106.843,00€
Otros fondos:
Fondos FEDER
Título:
Dos nuevas herramientas de identificación y tipificación molecular de bacterias del género Brucella
Código de expediente:
0011-1383-2018-000005 PT010
Investigador principal:
Raquel Conde Álvarez
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2018 GN Centros
Fecha de inicio:
01/02/2018
Fecha fin:
30/11/2018
Importe concedido:
51.106,34€
Otros fondos:
-
Título:
Brucelosis:Tests diagnósticos y vacunas DIVA frente a Brucella ovis y Brucella suis
Código de expediente:
AGL2014-58795-C4-1-R
Investigador principal:
Ignacio Moriyón Uría
Financiador:
MINISTERIO DE CIENCIA E INNOVACIÓN
Convocatoria:
2014-MINECO Retos Investigación
Fecha de inicio:
01/01/2015
Fecha fin:
31/12/2018
Importe concedido:
121.000,00€
Otros fondos:
Fondos FEDER