Revistas
Revista:
MATHEMATICS
ISSN:
2227-7390
Año:
2022
Vol.:
10
N°:
23
Págs.:
4593
The blood-brain barrier is a unique physiological structure acting as a filter for every molecule reaching the brain through the blood. For this reason, an effective pharmacologic treatment supplied to a patient by systemic circulation should first be capable of crossing the barrier. Standard cell cultures (or those based on microfluidic devices) and animal models have been used to study the human blood-brain barrier. Unfortunately, these tools have not yet reached a state of maturity because of the complexity of this physiological process aggravated by a high heterogeneity that is not easily recapitulated experimentally. In fact, the extensive research that has been performed and the preclinical trials carried out provided sometimes contradictory results, and the functionality of the barrier function is still not fully understood. In this study, we have combined tissue clarification, advanced microscopy and image analysis to develop a one-dimensional computational model of the microvasculature hemodynamics inside the mouse brain. This model can provide information about the flow regime, the pressure field and the wall shear stress among other fluid dynamics variables inside the barrier. Although it is a simplified model of the cerebral microvasculature, it allows a first insight on into the blood-brain barrier hemodynamics and offers several additional possibilities to systematically study the barrier microcirculatory processes.
Revista:
PLOS ONE
ISSN:
1932-6203
The migration of cancer cells is highly regulated by the biomechanical properties of their local microenvironment. Using 3D scaffolds of simple composition, several aspects of cancer cell mechanosensing (signal transduction, EMC remodeling, traction forces) have been separately analyzed in the context of cell migration. However, a combined study of these factors in 3D scaffolds that more closely resemble the complex microenvironment of the cancer ECM is still missing. Here, we present a comprehensive, quantitative analysis of the role of cell-ECM interactions in cancer cell migration within a highly physiological environment consisting of mixed Matrigel-collagen hydrogel scaffolds of increasing complexity that mimic the tumor microenvironment at the leading edge of cancer invasion. We quantitatively show that the presence of Matrigel increases hydrogel stiffness, which promotes beta 1 integrin expression and metalloproteinase activity in H1299 lung cancer cells. Then, we show that ECM remodeling activity causes matrix alignment and compaction that favors higher tractions exerted by the cells. However, these traction forces do not linearly translate into increased motility due to a biphasic role of cell adhesions in cell migration: at low concentration Matrigel promotes migration-effective tractions exerted through a high number of small sized focal adhesions. However, at high Matrigel concentration, traction forces are exerted through fewer, but larger focal adhesions that favor attachment yielding lower cell motility.
Autores:
Maška, M. ; Ulman, V. ; Svoboda, D. ; et al.
Revista:
BIOINFORMATICS
ISSN:
1367-4803
Año:
2014
Vol.:
30
N°:
11
Págs.:
1609-1617
MOTIVATION:
Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge. In this article, we present the logistics, datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark.
RESULTS:
The main contributions of the challenge include the creation of a comprehensive video dataset repository and the definition of objective measures for comparison and ranking of the algorithms. With this benchmark, six algorithms covering a variety of segmentation and tracking paradigms have been compared and ranked based on their performance on both synthetic and real datasets. Given the diversity of the datasets, we do not declare a single winner of the challenge. Instead, we present and discuss the results for each individual dataset separately.
AVAILABILITY AND IMPLEMENTATION:
The challenge Web site (http://www.codesolorzano.com/celltrackingchallenge) provides access to the training and competition datasets, along with the ground truth of the training videos. It also provides access to Windows and Linux executable files of the evaluation software and most of the algorithms that competed in the challenge.