Nuestros investigadores

Paula Aranaz Oroz

Publicaciones científicas más recientes (desde 2010)

Autores: Aranaz Oroz, Paula; Navarro Herrera, D.; Zabala Navó, María; et al.
ISSN 1424-8247  Vol. 13  Nº 11  2020  págs. 355
Supplementation with bioactive compounds capable of regulating energy homeostasis is a promising strategy to manage obesity. Here, we have screened the ability of different phenolic compounds (myricetin, kaempferol, naringin, hesperidin, apigenin, luteolin, resveratrol, curcumin and epicatechin), and phenolic acids (p-coumaric, ellagic, ferulic, gallic and vanillic acids) regulating C. elegans fat accumulation. Resveratrol exhibited the strongest lipid-reducing activity, which was accompanied by the improvement of lifespan, oxidative stress and ageing, without affecting worm development. Whole-genome expression microarrays demonstrated that resveratrol affected fat mobilization, fatty acid metabolism, and unfolded protein response of the endoplasmic reticulum (UPRER), mimicking the response to calorie restriction. Apigenin induced the oxidative stress response and lipid mobilization, while vanillic acid affected the unfolded-protein response in ER. In summary, our data demonstrates that phenolic compounds exert a lipid-reducing activity in C. elegans through different biological processes and signaling pathways, including those related with lipid mobilization and fatty acid metabolism, oxidative stress, ageing and UPR-ER response. These findings open the door to the possibility of combining them in order to achieve complementary activity against obesity-related disorders.
Autores: Aranaz Oroz, Paula; Zabala Navó, María; Romo Hualde, Ana; et al.
ISSN 2042-6496  Vol. 11  Nº 5  2020  págs. 4512 - 4524
The metabolic properties of omega-6 fatty acid consumption are being increasingly accepted. We had previously observed that supplementation with a borage seed oil (BSO), as a source of linoleic (18:2n-6; LA) and gamma-linolenic (18:3n-6; GLA) acids, reduces body weight and visceral adiposity and improves insulin sensitivity in a diet-induced obesity model of Wistar rats. Here, it was investigated whether the anti-obesogenic properties of BSO could be maintained in a pre-obese model of rats, and if these effects are enhanced by a combination with low doses of quercetin, together with its potential role in the regulation of the adipocyte biology. The combination of BSO and quercetin during 8 weeks was able to ameliorate glucose intolerance and insulin resistance, and to improve liver steatosis. Although no effects were observed on body weight, animals supplemented with this combination exhibited a lower proportion of visceral adiposity. In addition, in vitro differentiation of epididymal adipose-precursor cells of the BSO-treated animals exhibited a down-regulation of Fasn, Glut4, Pparg and Srebp1 genes, in comparison with the control group. Finally, in vitro evaluation of the components of BSO demonstrated that the anti-adipogenic activity of quercetin was significantly potentiated by the combination with both LA and GLA through the down-regulation of different adipogenesis-key genes in 3T3-L1 cells. All these data suggest that omega-6 fatty acids LA and GLA, and their natural sources such as BSO, could be combined with quercetin to potentiate their effects in the prevention of the excess of adiposity and the insulin resistance.
Autores: Aranaz Oroz, Paula; Navarro-Herrera, D.; Romo Hualde, Ana; et al.
ISSN 1756-4646  Vol. 59  2019  págs. 319 - 328
Brassicaceae contain bioactive compounds with potential positive effects on metabolic syndrome. Here, we evaluated the eventual anti-obesity properties of an ethanolic broccoli extract (BE), selected by a tested ability to reduce Caenorhabditis elegans fat content. Two doses (14 and 140 mg/kg animal) of BE were evaluated in a diet-induced obesity (DIO) Wistar rat model. After 10 weeks of BE supplementation, animals exhibited reduced body weight gain and food efficiency, decreased atherogenic index of plasma and improved glucose tolerance in comparison with non-supplemented rats. BE also reduced the retroperitoneal fat mass and adipocyte size, all associated to down-regulation of Cebpa, Srebp1, Fasn and Adipoq expression in adipocytes. Finally, BE significantly decreased liver steatosis, accompanied by the up-regulation of Acot8 and Acox1, and the down-regulation of Fasn, Fatp4 and Srebf1 expression in hepatocytes. Our data provides new knowledge about the potential role of broccoli components in the prevention of metabolic syndrome.
Autores: Aranaz Oroz, Paula; Navarro Herrera, D.; Zabala Navó, María; et al.
ISSN 1420-3049  Vol. 24  Nº 6  2019  págs. 1 - 21
Phenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin. The activity of phenolic acids was limited to the early stages of the differentiation process, except p-coumaric and ellagic acids. This anti-adipogenic effect was accompanied by down-regulation of Scd1 and Lpl. Molecular docking analysis revealed that the inhibitory activity of these phenolic compounds over the early stages of adipogenesis exhibits a significant correlation (r = 0.7034; p = 0.005) with their binding affinity to the ligand-binding domain of PPAR¿. Results show that polyphenols and phenolic acids would interact with specific residues of the receptor, which could determine their potential anti-adipogenic activity during the early stages of the differentiation. Residues Phe264, His266, Ile281, Cys285 and Met348 are the most frequently involved in these interactions, which might suggest a crucial role for these amino acids modulating the activity of the receptor. These data contribute to elucidate the possible mechanisms of phenolic compounds in the control of adipogenesis.
Autores: Aranaz Oroz, Paula; Romo Hualde, Ana; Navarro-Herrera, D.; et al.
ISSN 2042-6496  Vol. 10  Nº 8  2019  págs. 4811 - 4822
Cocoa polyphenols exhibit high antioxidant activity and have been proposed as a potential adjuvant for the treatment of metabolic disturbances. Here, we demonstrate that supplementation with low doses (14 and 140 mg per kg per rat) of a complete cocoa extract induces metabolic benefits in a diet-induced obesity (DIO) model of Wistar rats. After 10 weeks, cocoa extract-supplemented animals exhibited significantly lower body weight gain and food efficiency, with no differences in energy intake. Cocoa significantly reduced visceral (epididymal and retroperitoneal) and subcutaneous fat accumulation accompanied by a significant reduction in the adipocyte size, which was mediated by downregulation of the adipocyte-specific genes Cebpa, Fasn and Adipoq. Additionally, cocoa extract supplementation reduced the triacylglycerol/high density lipoprotein (TAG/HDL) ratio, decreased hepatic triglyceride accumulation, improved insulin sensitivity by reducing HOMA-IR, and significantly ameliorated glucose tolerance after an intraperitoneal glucose tolerance test. Finally, no adverse effect was observed in an in vivo toxicity evaluation of our cocoa extract at doses up to 500 mg kg -1 day -1. Our data demonstrate that low doses of cocoa extract supplementation (14 and 140 mg kg -1 day -1) are safe and sufficient to counteract obesity and type-2 diabetes in rats and provide new insights into the potential application of cocoa supplements in the management of the metabolic syndrome.
Autores: Aranaz Oroz, Paula; Navarro-Herrera, D.; Romo Hualde, Ana; et al.
ISSN 0250-6807  Vol. 75  2019  págs. 49 - 49
Autores: Navarro Herrera, D.; Aranaz Oroz, Paula; Eder-Azanza, L.; et al.
ISSN 2042-6496  Vol. 9  Nº 3  2018  págs. 1621 - 1637
Bioactive compounds, including some fatty acids (FAs), can induce beneficial effects on body fat-content and metabolism. In this work, we have used C. elegans as a model to examine the effects of several FAs on body fat accumulation. Both omega-3 and omega-6 fatty acids induced a reduction of fat content in C. elegans, with linoleic, gamma-linolenic and dihomo-gamma-linolenic acids being the most effective ones. These three FAs are sequential metabolites especially in omega-6 PUFA synthesis pathway and the effects seem to be primarily due to dihomo-gamma-linolenic acid, and independent of its transformation into omega-3 or arachidonic acid. Gene expression analyses suggest that peroxisomal beta oxidation is the main mechanism involved in the observed effect. These results point out the importance of further analysis of the activity of these omega-6 FAs, due to their potential application in obesity and related diseases.
Autores: Navarro-Herrera, D.; Aranaz Oroz, Paula; Eder-Azanza, L.; et al.
ISSN 2042-6496  Vol. 9  Nº 8  2018  págs. 4340 - 4351
Obesity is a medical condition with increasing prevalence, characterized by an accumulation of excess fat that could be improved using some bioactive compounds. However, many of these compounds with in vitro activity fail to respond in vivo, probably due to the sophistication of the physiological energy regulatory networks. In this context, C. elegans has emerged as a plausible model for the identification and characterization of the effect of such compounds on fat storage in a complete organism. However, the results obtained in such a simple model are not easily extrapolated to more complex organisms such as mammals, which hinders its application in the short term. Therefore, it is necessary to obtain new experimental data about the evolutionary conservation of the mechanisms of fat loss between worms and mammals. Previously, we found that some omega-6 fatty acids promote fat loss in C. elegans by up-regulation of peroxisomal fatty acid ß-oxidation in an omega-3 independent manner. In this work, we prove that the omega-6 fatty acids¿ effects on worms are also seen when they are supplemented with a natural omega-6 source (borage seed oil, BSO). Additionally, we explore the anti-obesity effects of two doses of BSO in a diet-induced obesity rat model, validating the up-regulation of peroxisomal fatty acid ß-oxidation. The supplementation with BSO significantly reduces body weight gain and energy efficiency and prevents white adipose tissue accumulation without affecting food
Autores: Lucio Ollauri, David (Autor de correspondencia); Martínez Oharriz, María Cristina; Gu, Z. W.; et al.
ISSN 0378-5173  Vol. 547  Nº 1 - 2  2018  págs. 97 - 105
The aim of this work was to prepare and evaluate cyclodextrins-modified poly(anhydride) nanoparticles to enhance the oral administration of glibenclamide. A conjugate polymer was synthesized by incorporating hydroxypropyl-beta-cyclodextrin to the backbone of poly(methylvinyl ether-co-maleic anhydride) via Steglich reaction. The degree of substitution of anhydride rings by cyclodextrins molecules was calculated to be 4.9% using H-NMR spectroscopy. A central composite design of experiments was used to optimize the preparative process. Under the optimal conditions, nanoparticles displayed a size of about 170 nm, a surface charge of - 47 mV and a drug loading of 69 mu g GB/mg. X-ray diffraction studies confirmed the loss of the crystalline structure of GB due to its dispersion into the nanoparticles, either included into cyclodextrin cavities or entrapped in the polymer chains. Glibenclamide was mainly release by Fickian-diffusion in simulated intestinal fluid. GB-loaded nanoparticles produced a hypolipidemic effect over C. elegans N2 wild-type and daf-2 mutant. The action mechanism included daf-2 and daf-28 genes, both implicated in the insulin signaling pathway of C. elegans. In summary, the covalent linkage of cyclodextrin to the poly(anhydride) backbone could be an interesting strategy to prepare nanoparticles for the oral administration of glibenclamide.
Autores: Aranaz Oroz, Paula; Romo Hualde, Ana; Zabala Navó, María; et al.
ISSN 2042-6496  2017 
Obesity and type 2-diabetes are becoming a worldwide health problem, remarking the importance of alternative therapies to tackle their progression. Here, we hypothesized that supplementation of diet with 6 % w/w of a freeze-dried strawberry-blueberry (5:1) powder (FDSB) could exert beneficial metabolic effects in Wistar rats. FDSB-supplemented animals experienced significantly reduced body weight gain, food efficiency and visceral adiposity accumulation in two independent experiments. FDSB supplementation also contributed to lower area under the curve after an intraperitoneal GTT and reduced serum insulin levels and insulin resistance index (IR-HOMA) in HFS diet-fed animals, together with reduced plasma MCP-1 inflammation marker concentrations. Gene expression analysis in retroperitoneal adipocytes from experiment 1 and 3T3-L1 cells showed that FDSB inhibited adipogenesis and lipogenesis through down-regulation of Pparg, Cebpa, Lep, Fasn, Scd-1 and Lpl gene expression. Untargeted metabolomics identified the cis isomer ofresveratrol-3-glucoside-sulphate as a metabolite differentially increased in FDSB-treated serum samples, which corresponds to a strawberry metabolite that could be considered a serum biomarker of FDSB-intake. Our results suggest that FDSB powder might be useful for treatment/prevention of obesity-related diseases.
Autores: Eder-Azanza, L.; Hurtado Rudi, Cristina; Navarro-Herrera, D.; et al.
ISSN 0390-6078  Vol. 102  Nº 8  2017  págs. e328 - e331
Autores: Lucio Ollauri, David; Martínez Oharriz, María Cristina; Jaras, G.; et al.
ISSN 0939-6411  Vol. 121  2017  págs. 104 - 112
The aim of this work was to evaluate the capability of zein nanoparticles as oral carriers for glibenclamide (GB). Nanoparticles were prepared by a desolvation procedure in the presence of lysine as stabilizer. A central composite design was used to optimize this preparative process. Under the selected conditions, nanoparticles displayed a size of about 190 nm, a surface charge of -37 mV and a payload of 45 mu g GB/mg. Small-angle neutron scattering and X-ray diffraction techniques suggested an internal fractal-like structure, based on the repetition of spherical blocks of zein units (about 20 nm) grouped to form the nanoparticles. This structure, stabilized by lysine molecules located at the surface, would determine the release of GB (molecularly trapped into the nanoparticles) by a pure diffusion mechanism. Moreover, GB-loaded nanoparticles induced a significant hypolipidemic effect with a reduction of about 15% in the fat content of C. elegans worms. In addition, did not induce any significant modification in the lifespan of worms. In summary, the employment of zein nanoparticles as delivery systems of glibenclamide may be an interesting approach to develop new oral formulations of this antidiabetic drug.
Autores: Erquiaga Martínez, Ignacio; Hurtado Rudi, Cristina; Aranaz Oroz, Paula; et al.
ISSN 0736-6205  Vol. 56  Nº 6  2014  págs. 327 - 329
When studying mutations in DNA samples, determining whether novel sequence changes are somatic mutations or germline polymorphisms can be difficult. Here we describe a novel and very simple approach for identification of somatic mutations and loss of heterozygosity (LoH) events in DNA samples where no matched tissue sample is available. Our method makes use of heterozygous polymorphisms that are located near the putative mutation to trace both germinal alleles.
Autores: Eder Azanza, L.; Navarro Herrera, D.; Aranaz Oroz, Paula; et al.
ISSN 0887-6924  Vol. 28  Nº 10  2014  págs. 2106 - 2109
Autores: Fernández Mercado, Marta; Pellagatti, A.; Di Genua, C.; et al.
ISSN 0007-1048  Vol. 163  Nº 2  2013  págs. 235 - 239
Whole exome sequencing was performed in a patient with myelodysplastic syndrome before and after progression to acute myeloid leukaemia. Mutations in several genes, including SETBP1, were identified following leukaemic transformation. Screening of 328 patients with myeloid disorders revealed SETBP1 mutations in 14 patients (4 center dot 3%), 7 of whom had -7/del(7q) and 3 had i(17)(q10), cytogenetic markers associated with shortened overall survival and increased risk of leukaemic evolution. SETBP1 mutations were frequently acquired at the time of leukaemic evolution, coinciding with increase of leukaemic blasts. These data suggest that SETBP1 mutations may play a role in MDS and chronic myelomonocytic leukaemia disease progression.
Autores: Aranaz Oroz, Paula; Miguéliz Basterra, Itziar; Hurtado Rudi, Cristina; et al.
ISSN 1042-8194  Vol. 54  Nº 2  2013  págs. 428 - 431
Autores: Aranaz Oroz, Paula; Hurtado Rudi, Cristina; Erquiaga Martínez, Ignacio; et al.
Revista: Haematologica-journal of Hematology
ISSN 1138-0381  Vol. 97  Nº 8  2012  págs. 1234 -1241
Autores: Hurtado Rudi, Cristina; Erquiaga Martínez, Ignacio; Aranaz Oroz, Paula; et al.
Revista: Leukemia Research
ISSN 0145-2126  Vol. 35  Nº 11  2011  págs. 1537 - 1539
Autores: Euba Rementeria, Begoña; Vizmanos Pérez, José Luis; García-Granero Marquez, Marta; et al.
Revista: Leukemia & Lymphoma
ISSN 1042-8194  Vol. 53  Nº 6  2011  págs. 1230-1233
Autores: Erquiaga Martínez, Ignacio; Ormazabal Goicoechea, Cristina; Hurtado Rudi, Cristina; et al.
ISSN 1042-8194  Vol. 51  Nº 9  2010  págs. 1720 - 1726
Hematological malignancies with eosinophilia are often associated with fusions in PDGFRA, PDGFRB, or FGFR1 genes. RT-PCR has proved to be useful for finding new PDGFRA gene fusions, but some studies have shown overexpression of the TK domain which cannot be explained by the existence of such aberrations. This fact could be related to the expression of alternative PDGFRA transcripts. We show that quantification of the expression of three different PDGFRA fragments discriminates between PDGFRA alternative transcripts and fusion genes, and we have tested this novel methodological approach in a group of eosinophilia cases. Our data show that alternative PDGFRA transcripts should be taken into account when screening for PDGFRA aberrations, such as gene fusions, by RT-PCR. Expression from an internal PDGFRA promoter seems to be a frequent event, in both normal and leukemic samples, and is probably related to physiological conditions, but it could have a role in other tumors. Even so, we show that our RQ-PCR methodology can discriminate expression of alternative transcripts from the presence of X-PDGFRA fusion genes.
Autores: Aranaz Oroz, Paula; Ormazabal Goicoechea, Cristina; Hurtado Rudi, Cristina; et al.
ISSN 0165-4608  Vol. 199  Nº 1  2010  págs. 1 - 8
BCR/ABL1-negative chronic myeloproliferative neoplasms (CMPNs) are a heterogeneous group of clonal hematological malignancies. Over recent years, some genetic events in tyrosine lcinase (TK) genes have been described as causal events of these diseases. To identify new genetic aberrations underlying these diseases, we used denaturing high performance liquid chromatography and fluorescence in situ hybridization (FISH) to analyze 17 genes from two receptor-TK families (III and IV) and from three cytoplasmic-TK families (Syk, Abl, and Jak) on samples from 44 BCR/ABL1-negative and JAK2(V617F)-negative CMPN patients with different clinical phenotypes. Although screening by FISH did not reveal novel chromosomal aberrations, several sequence changes were detected. None of them were frequent events, but we identified a new potential activating mutation in the FERM domain of JAK2(R340Q). None of the germline JAK2(V617F) singlenucleotide polymorphisms detected differed in distribution between patients and control subjects. In summary, data presented here show that these genes are not frequently mutated or rearranged in CMPNs, suggesting that molecular events causing these disorders must be located in other genes.