Revistas
Revista:
CANCERS
ISSN:
2072-6694
Año:
2023
Vol.:
15
N°:
8
Págs.:
2233
Internal tandem duplication mutations in the FLT3 tyrosine kinase receptor (FLT3-ITD) are associated with poor prognosis in patients with acute myeloid leukemia. These mutations cause constitutive activation of FLT3, altering the underlying signaling pathways and retaining FLT3 in the endoplasmic reticulum (ER). However, the mechanism that determines this peculiar localization is not fully understood. Here, we show that SET acts as a scaffold protein for nascent wild-type FLT3, facilitating its transport to the membrane. By contrast, the FLT3-ITD mutation impairs SET/FLT3 binding, leading to its retention in the ER. Of note, the tyrosine kinase inhibitor midostaurin promotes SET/FLT3 binding, increasing FLT3 in the membrane.The in-frame internal tandem duplication (ITD) of the FLT3 gene is an important negative prognostic factor in acute myeloid leukemia (AML). FLT3-ITD is constitutive active and partially retained in the endoplasmic reticulum (ER). Recent reports show that 3'UTRs function as scaffolds that can regulate the localization of plasma membrane proteins by recruiting the HuR-interacting protein SET to the site of translation. Therefore, we hypothesized that SET could mediate the FLT3 membrane location and that the FLT3-ITD mutation could somehow disrupt the model, impairing its membrane translocation. Immunofluorescence and immunoprecipitation assays demonstrated that SET and FLT3 co-localize and interact in FLT3-WT cells but hardly in FLT3-ITD. SET/FLT3 interaction occurs before FLT3 glycosylation. Furthermore, RNA immunoprecipitation in FLT3-WT cells confirmed that this interaction occurs through the binding of HuR to the 3'UTR of FLT3. HuR inhibition and SET nuclear retention reduced FLT3 in the membrane of FLT3-WT cells, indicating that both proteins are involved in FLT3 membrane trafficking. Interestingly, the FLT3 inhibitor midostaurin increases FLT3 in the membrane and SET/FLT3 binding. Therefore, our results show that SET is involved in the transport of FLT3-WT to the membrane; however, SET barely binds FLT3 in FLT3-ITD cells, contributing to its retention in the ER.
Revista:
BLOOD
ISSN:
0006-4971
Año:
2021
Vol.:
138
N°:
17
Págs.:
1583 - 1589
Although light-chain amyloidosis (AL) and multiple myeloma (MM) are characterized by tumor plasma cell (PC) expansion in bone marrow (BM), their clinical presentation differs. Previous attempts to identify unique pathogenic mechanisms behind such differences were unsuccessful, but there are no studies investigating the differentiation stage of tumor PCs in patients with AL and MM. We sought to define a transcriptional atlas of normal PC development (n=11) in secondary lymphoid organs (SLO), peripheral blood (PB) and BM for comparison with the transcriptional programs (TPs) of tumor PCs in AL (n=37), MM (n=46) and MGUS (n=6). Based on bulk and single-cell RNAseq, we observed thirteen TPs during transition of normal PCs throughout SLO, PB and BM; that CD39 outperforms CD19 to discriminate new-born from long-lived BM-PCs; that tumor PCs expressed the most advantageous TPs of normal PC differentiation; that AL shares greater similarity to SLO-PCs whereas MM is transcriptionally closer to PB-PCs and new-born BM-PCs; that AL and MM patients enriched in immature TPs had inferior survival; and that TPs related with protein N-linked glycosylation are upregulated in AL. Collectively, we provide a novel resource to understand normal PC development and the transcriptional reorganization of AL and other monoclonal gammopathies.
Revista:
BLOOD CANCER JOURNAL
ISSN:
2044-5385
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy. Although novel emerging drugs are available, the overall prognosis remains poor and new therapeutic approaches are required. PP2A phosphatase is a key regulator of cell homeostasis and is recurrently inactivated in AML. The anticancer activity of several PP2A-activating drugs (e.g., FTY720) depends on their interaction with the SET oncoprotein, an endogenous PP2A inhibitor that is overexpressed in 30% of AML cases. Elucidation of SET regulatory mechanisms may therefore provide novel targeted therapies for SET-overexpressing AMLs. Here, we show that upregulation of protein kinase p38 beta is a common event in AML. We provide evidence that p38 beta potentiates SET-mediated PP2A inactivation by two mechanisms: facilitating SET cytoplasmic translocation through CK2 phosphorylation, and directly binding to and stabilizing the SET protein. We demonstrate the importance of this new regulatory mechanism in primary AML cells from patients and in zebrafish xenograft models. Accordingly, combination of the CK2 inhibitor CX-4945, which retains SET in the nucleus, and FTY720, which disrupts the SET-PP2A binding in the cytoplasm, significantly reduces the viability and migration of AML cells. In conclusion, we show that the p38 beta/CK2/SET axis represents a new potential therapeutic pathway in AML patients with SET-dependent PP2A inactivation.
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2020
Vol.:
468
Págs.:
1 - 13
Acute myeloid leukemia (AML) is an aggressive disease associated with very poor prognosis. Most patients are older than 60 years, and in this group only 5-15% of cases survive over 5 years. Therefore, it is urgent to develop more effective targeted therapies. Inactivation of protein phosphatase 2 A (PP2A) is a recurrent event in AML, and overexpression of its endogenous inhibitor SET is detected in similar to 30% of patients. The PP2A activating drug FTY720 has potent anti-leukemic effects; nevertheless, FTY720 induces cardiotoxicity at the anti-neoplastic dose. Here, we have developed a series of non-phosphorylable FTY720 analogues as a new therapeutic strategy for AML. Our results show that the lead compound CM-1231 re-activates PP2A by targeting SET-PP2A interaction, inhibiting cell proliferation and promoting apoptosis in AML cell lines and primary patient samples. Notably, CM-1231 did not induce cardiac toxicity, unlike FTY720, in zebrafish models, and reduced the invasion and aggressiveness of AML cells more than FTY720 in zebrafish xenograft models. In conclusion, CM-1231 is safer and more effective than FTY720; therefore, this compound could represent a novel and promising approach for treating AML patients with SET overexpression.
Revista:
ONCOTARGET
ISSN:
1949-2553
Año:
2017
Vol.:
8
N°:
33
Págs.:
53989 - 54003
The SET (I2PP2A) oncoprotein is a potent inhibitor of protein phosphatase 2A (PP2A) that regulates many cell processes and important signaling pathways. Despite the importance of SET overexpression and its prognostic impact in both hematologic and solid tumors, little is known about the mechanisms involved in its transcriptional regulation. In this report, we define the minimal promoter region of the SET gene, and identify a novel multi-protein transcription complex, composed of MYC, SP1, RUNX1 and GATA2, which activates SET expression in AML. The role of MYC is crucial, since it increases the expression of the other three transcription factors of the complex, and supports their recruitment to the promoter of SET. These data shed light on a new regulatory mechanism in cancer, in addition to the already known PP2A-MYC and SET-PP2A. Besides, we show that there is a significant positive correlation between the expression of SET and MYC, RUNX1, and GATA2 in AML patients, which further endorses our results. Altogether, this study opens new directions for understanding the mechanisms that lead to SET overexpression, and demonstrates that MYC, SP1, RUNX1 and GATA2 are key transcriptional regulators of SET expression in AML.
Revista:
LABORATORY INVESTIGATION
ISSN:
0023-6837
Año:
2013
Vol.:
93
N°:
3
Págs.:
303-310
General control nonderepresible 2 (GCN2) is a highly conserved cytosolic kinase that modulates a complex response for coping with the stress owing to lack of amino acids. GCN2 has been recently shown to be involved in the regulation of metabolic balance and lipid degradation rate in the liver. We hypothesized that GCN2 could have a role in in hepatic fibrogenesis and in the response to acute or chronic liver injury. Activation of GCN2 in primary or immortalized human hepatic stellate cells by incubation with medium lacking the essential amino acid histidine correlated with decreased levels of collagen type I protein and mRNA, suggesting an antifibrogenic effect of GCN2. In vivo studies with Gcn2 knockout mice (Gcn2(-/-)) showed increased susceptibility to both acute or chronic liver damage induced by CCl4, as shown by higher alanine aminotransferase and aspartate aminotransferase activities, increased necrosis and higher inflammatory infiltrates compared with wild-type mice (WT). Chronic CCl4 treatment increased deposition of interstitial collagen type I more in Gcn2(-/-) mice than in WT mice. Col1a1 and col1a2 mRNA levels also increased in CCl4-treated Gcn2(-/-) mice compared with WT mice. These results suggest that GCN2 is a key regulator of the fibrogenic response to liver injury. Laboratory Investigation (2013) 93, 303-310; doi:10.1038/labinvest.2012.173; published online 14 January 2013
Revista:
CELL PHYSIOL BIOCHEM
ISSN:
1015-8987
Año:
2010
Vol.:
26
N°:
3
Págs.:
281 - 290
Nacionales y Regionales
Título:
Estudio de la oncoproteína SET como diana terapéutica en leucemia mieloide aguda. Hacia un tratamiento personalizado mediante la combinación de activadores de la PP2A e inhibidores tirosinasa quinasas en pacientes con sobreexpresión de SET
Código de expediente:
29/2015
Investigador principal:
María Dolores Odero de Dios
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2015 GN SALUD
Fecha de inicio:
06/12/2015
Fecha fin:
05/12/2018
Importe concedido:
47.510,00€
Otros fondos:
-
Título:
Mecanismos y eficacia de terapias combinadas basadas en la activación funcional de PP2A en leucemia mieloide aguda. Papel de las subunidades reguladoras PP2A como dianas terapéuticas.
Código de expediente:
PI20/01558
Investigador principal:
María Dolores Odero de Dios
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2020 AES Proyectos de investigación
Fecha de inicio:
01/01/2021
Fecha fin:
31/12/2023
Importe concedido:
268.620,00€
Otros fondos:
Fondos FEDER