Revistas
Revista:
SCIENCE TRANSLATIONAL MEDICINE
ISSN 1946-6234
Vol. 12
N° 565
Año 2020
Intratumoral therapies, especially Toll-like receptor agonists, can trigger both the innate and adaptive immune systems. BO-112 is a nanoplexed form of polyinosinic:polycytidylic acid (poly I:C) that induces local and systemic immunotherapeutic effects in mouse models. In a multicenter phase 1 clinical trial, repeated intratumoral administrations of BO-112 induced an increase in tumor cell necrosis and apoptosis, as well as augmented immune reactivity according to gene expression profiling. The first three cohorts receiving BO-112 as a monotherapy resulted in a recommended dose of 1 mg that could be safely repeated. Two grade 3 to 4 adverse reactions in the form of reversible thrombocytopenia were reported. In a fourth cohort of 28 patients with tumors that had primary resistance to anti-programmed cell death protein-1 (PD-1), the combination of intratumoral BO-112 with nivolumab or pembrolizumab was also well tolerated, and 3 patients (2 with melanoma and 1 with renal cell carcinoma) achieved partial responses, with 10 more patients having stable disease at 8 to 12 weeks. Thus, local BO-112 combined with a systemic anti-PD-1 agent might be a strategy to revert anti-PD-1 resistance.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN 2051-1426
Vol. 8
N° 1
Año 2020
Págs.e000443
Intratumoral delivery of viruses and virus-associated molecular patterns can achieve antitumor effects that are largely mediated by the elicitation or potentiation of immune responses against the malignancy. Attenuated vaccines are approved and marketed as good manufactiring practice (GMP)-manufactured agents whose administration might be able to induce such effects. Recent reports in mouse transplantable tumor models indicate that the rotavirus, influenza and yellow fever vaccines can be especially suitable to elicit powerful antitumor immunity against cancer following intratumoral administration. These results highlight that intratumoral anti-infectious vaccines can turn cold tumors into hot, and underscore the key role played by virus-induced type I interferon pathways to overcome resistance to immune checkpoint-targeted antibodies.
Revista:
EMBO MOLECULAR MEDICINE
ISSN 1757-4676
Vol. 12
N° 1
Año 2020
Págs.e10375
Live 17D is widely used as a prophylactic vaccine strain for yellow fever virus that induces potent neutralizing humoral and cellular immunity against the wild-type pathogen. 17D replicates and kills mouse and human tumor cell lines but not non-transformed human cells. Intratumoral injections with viable 17D markedly delay transplanted tumor progression in a CD8 T-cell-dependent manner. In mice bearing bilateral tumors in which only one is intratumorally injected, contralateral therapeutic effects are observed consistent with more prominent CD8 T-cell infiltrates and a treatment-related reduction of Tregs. Additive efficacy effects were observed upon co-treatment with intratumoral 17D and systemic anti-CD137 and anti-PD-1 immunostimulatory monoclonal antibodies. Importantly, when mice were preimmunized with 17D, intratumoral 17D treatment achieved better local and distant antitumor immunity. Such beneficial effects of prevaccination are in part explained by the potentiation of CD4 and CD8 T-cell infiltration in the treated tumor. The repurposed use of a GMP-grade vaccine to be given via the intratumoral route in prevaccinated patients constitutes a clinically feasible and safe immunotherapy approach.
Revista:
BRITISH JOURNAL OF CANCER
ISSN 0007-0920
Vol. 120
N° 1
Año 2019
Págs.6 - 15
Cytokines are soluble proteins that mediate cell-to-cell communication. Based on the discovery of the potent anti-tumour activities of several pro-inflammatory cytokines in animal models, clinical research led to the approval of recombinant interferon-alpha and interleukin-2 for the treatment of several malignancies, even if efficacy was only modest. These early milestones in immunotherapy have been followed by the recent addition to clinical practice of antibodies that inhibit immune checkpoints, as well as chimeric antigen receptor T cells. A renewed interest in the anti-tumour properties of cytokines has led to an exponential increase in the number of clinical trials that explore the safety and efficacy of cytokine-based drugs, not only as single agents, but also in combination with other immunomodulatory drugs. These second-generation drugs under clinical development include known molecules with novel mechanisms of action, new targets, and fusion proteins that increase half-life and target cytokine activity to the tumour microenvironment or to the desired effector immune cells. In addition, the detrimental activity of immunosuppressive cytokines can be blocked by antagonistic antibodies, small molecules, cytokine traps or siRNAs. In this review, we provide an overview of the novel trends in the cytokine immunotherapy field that are yielding therapeutic agents for clinical trials.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 25
N° 4
Año 2019
Págs.1127 - 1129
Intratumoral immunotherapy can potentially modulate the tumor microenvironment (TME) and potentiate the effects of concomitant or sequential systemic immunotherapies. Intratumoral administration of different Toll-like receptor agonists, including TLR4, can potentiate these effects through innate and adaptive immunity connection.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN 2051-1426
Vol. 7
N° 1
Año 2019
Págs.116
Poly I:C is a powerful immune adjuvant as a result of its agonist activities on TLR-3, MDA5 and RIG-I. BO-112 is a nanoplexed formulation of Poly I:C complexed with polyethylenimine that causes tumor cell apoptosis showing immunogenic cell death features and which upon intratumoral release results in more prominent tumor infiltration by T lymphocytes. Intratumoral treatment with BO-112 of subcutaneous tumors derived from MC38, 4T1 and B16-F10 leads to remarkable local disease control dependent on type-1 interferon and gamma-interferon. Some degree of control of non-injected tumor lesions following BO-112 intratumoral treatment was found in mice bearing bilateral B16-OVA melanomas, an activity which was enhanced with co-treatment with systemic anti-CD137 and anti-PD-L1 mAbs. More abundant CD8(+) T lymphocytes were found in B16-OVA tumor-draining lymph nodes and in the tumor microenvironment following intratumoral BO-112 treatment, with enhanced numbers of tumor antigen-specific cytotoxic T lymphocytes. Genome-wide transcriptome analyses of injected tumor lesions were consistent with a marked upregulation of the type-I interferon pathway. Inspired by these data, intratumorally delivered BO-112 is being tested in cancer patients (NCT02828098).
Autores:
Compte, M.; Harwood, S. L.; Munoz, I. G.; et al.
Revista:
NATURE COMMUNICATIONS
ISSN 2041-1723
Vol. 9
N° 1
Año 2018
Págs.4809
The costimulation of immune cells using first-generation anti-4-1BB monoclonal antibodies (mAbs) has demonstrated anti-tumor activity in human trials. Further clinical development, however, is restricted by significant off-tumor toxicities associated with Fc gamma R interactions. Here, we have designed an Fc-free tumor-targeted 4-1BB-agonistic trimerbody, 1D8(N)/(C)EGa1, consisting of three anti-4-1BB single-chain variable fragments and three anti-EGFR single-domain antibodies positioned in an extended hexagonal conformation around the collagen XVIII homotrimerization domain. The1D8(N)/(C)EGa1 trimerbody demonstrated high-avidity binding to 4-1BB and EGFR and a potent in vitro costimulatory capacity in the presence of EGFR. The trimerbody rapidly accumulates in EGFR-positive tumors and exhibits anti-tumor activity similar to IgG-based 4-1BB-agonistic mAbs. Importantly, treatment with 1D8(N)/(C)EGa1 does not induce systemic inflammatory cytokine production or hepatotoxicity associated with IgG-based 4-1BB agonists. These results implicate Fc gamma R interactions in the 4-1BB-agonist-associated immune abnormalities, and promote the use of the non-canonical antibody presented in this work for safe and effective costimulatory strategies in cancer immunotherapy.
Revista:
CANCER IMMUNOLOGY RESEARCH
ISSN 2326-6066
Vol. 6
N° 1
Año 2018
Págs.69 - 78
CD137 (4-1BB) costimulation imprints long-term changes that instruct the ultimate behavior of T cells that have previously experienced CD137 ligation. Epigenetic changes could provide a suitable mechanism for these long-term consequences. Genome-wide DNA methylation arrays were carried out on human peripheral blood CD8(+) T lymphocytes stimulated with agonist monoclonal antibody to CD137, including urelumab, which is in phase I/II clinical trials for cancer immunotherapy. Several genes showed consistent methylation patterns in response to CD137 costimulation, which were confirmed by pyrosequencing in a series of healthy donors. CD96, HHLA2, CCR5, CXCR5, and CCL5 were among the immune-related genes regulated by differential DNA methylation, leading to changes in mRNA and protein expression. These genes are also differentially methylated in naive versus antigen-experienced CD8(+) T cells. The transcription factor TCF1 and the microRNA miR-21 were regulated by DNA methylation upon CD137 costimulation. Such gene-expression regulatory factors can, in turn, broaden the effects of DNA methylation by controlling expression of their target genes. Overall, chromatin remodeling is postulated to leave CD137-costimulated T lymphocytes poised to differentially respond upon subsequent antigen recognition. Accordingly, CD137 connects costimulation during priming to genome-wide DNA methylation and chromatin reprogramming. (C) 2017 AACR.
Revista:
ONCOIMMUNOLOGY
ISSN 2162-402X
Vol. 7
N° 1
Año 2018
Págs.e1368605
TRAF2 dependent K63-polyubiquitinations have been recently shown to connect CD137 (4-1BB) stimulation to NF kappa B activation. In a search of deubiquitinase enzymes (DUBs) that could regulate such a signaling route, A20 and CYLD were found to coimmunoprecipitate with CD137 and TRAF2 complexes. Indeed, overexpression of A20 or CYLD downregulated CD137-elicited ubiquitination of TRAF2 and TAK1 upon stimulation with agonist monoclonal antibodies. Moreover, overexpression of A20 or CYLD downregulated CD137-induced NF kappa B activation in cultured cells and in gene-transferred hepatocytes in vivo, while silencing these deubiquitinases enhanced CD137 costimulation of primary human CD8 T cells. Therefore A20 and CYLD directly downregulate the signaling from a T and NK-cell costimulatory receptor under exploitation for cancer immunotherapy in clinical trials.
Revista:
CANCER IMMUNOLOGY IMMUNOTHERAPY
ISSN 0340-7004
Vol. 67
N° 11
Año 2018
Págs.1809 - 1813
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 29
N° Supl. 8
Año 2018
Págs.732 - 732
Revista:
CANCER IMMUNOLOGY RESEARCH
ISSN 2326-6066
Vol. 6
N° 7
Año 2018
Págs.798 - 811
T and NK lymphocytes express CD137 (4-1BB), a costimulatory receptor of the TNFR family whose function is exploitable for cancer immunotherapy. Mitochondria regulate the function and survival of F lymphocytes. herein, we show that CD137 costimulation provided by agonist mAb and CD137L (4-1BBL) induced mitochondria enlargement that resulted in enhanced mitochondrial mass and transmembrane potential in human and mouse CD8(+) T cells. Such mitochondrial changes increased 'T-cell respiratory capacities and were critically dependent on mitochondrial fusion protein OPA-1 expression. Mass and function of mitochondria in rumor-reactive CD8(+) T cells from cancer-hearing mice were invigorated by agonist mAb to CD137, whereas mitochondria) baseline mass and function were depressed in CD137-deficient tumor reactive T cells. Tumor rejection induced by the synergistic combination of adoptive T-cell therapy and agonistic anti-CD 137 WAS critically dependent on OPA-1 expression in transferred CD8(+) T cells. Moreover, stimulation of CD137 with CD137 mAb in shortterm cultures of human tumor-infiltrating lymphocytes led to mitochondria enlargement and increased transmembrane potential. Collectively, these data point to a critical link between mitochondrial morphology and function and enhanced antitumor effector activity upon CD 117 costimulation of T cells. (C)2018 AACR.
Revista:
ONCOIMMUNOLOGY
ISSN 2162-402X
Vol. 6
N° 4
Año 2017
Págs.e1283468
CD69 is an early activation marker on the surface of T lymphocytes undergoing activation by cognate antigen. We observed intense expression of CD69 on tumor-infiltrating T-lymphocytes that reside in the hypoxic tumor microenvironment and hypothesized that CD69 could be, at least partially, under the control of the transcriptional hypoxia response. In line with this, human and mouse CD3-stimulated lymphocytes cultured under hypoxia (1% O-2) showed increased expression of CD69 at the protein and mRNA level. Consistent with these findings, mouse T lymphocytes that had recently undergone hypoxia in vivo, as denoted by pimonidazole staining, were more frequently CD69(+) in the tumor and bone marrow hypoxic tissue compartments. We found evidence for HIF-1 involvement both when using T-lymphocytes from inducible HIF-1(-/-) mice and when observing tumor-infiltrating T-lymphocytes in mice whose T cells are HIF-1(-/-). Direct pro-transcriptional activity of HIF-1 on a newly identified hypoxia response element (HRE) found in the human CD69 locus was demonstrated by ChIP experiments. These results uncover a connection between the HIF-1 oxygen-sensing pathway and CD69 immunobiology.
Revista:
JOURNAL OF IMMUNOLOGY
ISSN 0022-1767
Vol. 198
N° 1
Año 2017
Págs.31 - 39
Immune mechanisms have evolved to cope with local entry of microbes acting in a confined fashion but eventually inducing systemic immune memory. Indeed, in situ delivery of a number of agents into tumors can mimic in the malignant tissue the phenomena that control intracellular infection leading to the killing of infected cells. Vascular endothelium activation and lymphocyte attraction, together with dendritic cell-mediated cross-priming, are the key elements. Intratumoral therapy with pathogen-associated molecular patterns or recombinant viruses is being tested in the clinic. Cell therapies can be also delivered intratumorally, including infusion of autologous dendritic cells and even tumor-reactive T lymphocytes. Intralesional virotherapy with an HSV vector expressing GM-CSF has been recently approved by the Food and Drug Administration for the treatment of unresectable melanoma. Immunomodulatory monoclonal Abs have also been successfully applied intratumorally in animal models. Local delivery means less systemic toxicity while focusing the immune response on the malignancy and the affected draining lymph nodes.
Revista:
THE JOURNAL OF IMMUNOLOGY
ISSN 0022-1767
Vol. 198
N° 1
Año 2017
Págs.31 - 39
Immune mechanisms have evolved to cope with local entry of microbes acting in a confined fashion but eventually inducing systemic immune memory. Indeed, in situ delivery of a number of agents into tumors can mimic in the malignant tissue the phenomena that control intracellular infection leading to the killing of infected cells. Vascular endothelium activation and lymphocyte attraction, together with dendritic cell-mediated cross-priming, are the key elements. Intratumoral therapy with pathogen-associated molecular patterns or recombinant viruses is being tested in the clinic. Cell therapies can be also delivered intratumorally, including infusion of autologous dendritic cells and even tumor-reactive T lymphocytes. Intralesional virotherapy with an HSV vector expressing GM-CSF has been recently approved by the Food and Drug Administration for the treatment of unresectable melanoma. Immunomodulatory monoclonal Abs have also been successfully applied intratumorally in animal models. Local delivery means less systemic toxicity while focusing the immune response on the malignancy and the affected draining lymph nodes.
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 28
N° Suppl. 5
Año 2017
Págs. LBA20
Revista:
CANCER RESEARCH
ISSN 0008-5472
Vol. 76
N° 20
Año 2016
Págs.5994 - 6005
Preclinical and clinical evidence indicate that the proimmune effects of radiotherapy can be synergistically augmented with immunostimulatory mAbs to act both on irradiated tumor lesions and on distant, nonirradiated tumor sites. The combination of radiotherapy with immunostimulatory anti-PD1 and anti-CD137 mAbs was conducive to favorable effects on distant nonirradiated tumor lesions as observed in transplanted MC38 (colorectal cancer), B16OVA (melanoma), and 4T1 (breast cancer) models. The therapeutic activity was crucially performed by CD8 T cells, as found in selective depletion experiments. Moreover, the integrities of BATF-3-dependent dendritic cells specialized in crosspresentation/crosspriming of antigens to CD8+ T cells and of the type I IFN system were absolute requirements for the antitumor effects to occur. The irradiation regimen induced immune infiltrate changes in the irradiated and nonirradiated lesions featured by reductions in the total content of effector T cells, Tregs, and myeloid-derived suppressor cells, while effector T cells expressed more intracellular IFN¿ in both the irradiated and contralateral tumors. Importantly, 48 hours after irradiation, CD8+ TILs showed brighter expression of CD137 and PD1, thereby displaying more target molecules for the corresponding mAbs. Likewise, PD1 and CD137 were induced on tumor-infiltrating lymphocytes from surgically excised human carcinomas that were irradiated ex vivo These mechanisms involving crosspriming and CD8 T cells advocate clinical development of immunotherapy combinations with anti-PD1 plus anti-CD137 mAbs that can be synergistically accompanied by radiotherapy strategies, even if the disease is left outside the field of irradiation.
Revista:
JOURNAL OF THORACIC ONCOLOGY
ISSN 1556-0864
Vol. 11
N° 4
Año 2016
Págs.524 - 536
INTRODUCTION:
Anti-programmed cell death 1 (anti-PD-1) and anti-programmed cell death ligand 1 (PD-L1) antagonist monoclonal antibodies (mAbs) against metastatic non-small cell lung cancer with special efficacy in patients with squamous cell lung cancer are being developed in the clinic. However, robust and reliable experimental models to test immunotherapeutic combinations in squamous lung tumors are still lacking.
METHODS:
We generated a transplantable squamous cell carcinoma cell line (UN-SCC680AJ) from a lung tumor induced by chronic N-nitroso-tris-chloroethylurea mutagenesis in A/J mice. Tumor cells expressed cytokeratins, overexpressed p40, and lacked thyroid transcription factor 1, confirming the squamous lineage reported by histological analysis. More than 200 mutations found in its exome suggested potential for antigenicity. Immunocompetent mice subcutaneously implanted with this syngeneic cell line were treated with anti-CD137 and/or anti-PD-1 mAbs and monitored for tumor growth/progression or assessed for intratumoral leukocyte infiltration using immunohistochemical analysis and flow cytometry.
RESULTS:
In syngeneic mice, large 12-day-established tumors derived from the transplantable cell line variant UN-SCC680AJ were amenable to curative treatment with anti-PD-1, anti-PD-L1, or anti-CD137 immunostimulatory mAbs. Single-agent therapies lost curative efficacy when treatment was started beyond day +17, whereas a combination of anti-PD-1 plus anti-CD137 achieved complete rejections. Tumor cells expressed weak baseline PD-L1 on the plasma membrane, but this could be readily induced by interferon-¿. Combined treatment efficacy required CD8 T cells and induced a leukocyte infiltrate in which T lymphocytes co-expressing CD137 and PD-1 were prominent.
CONCLUSIONS:
These promising results advocate the use of combined anti-PD-1/PD-L1 plus anti-CD137 mAb immunotherapy for the treatment of squamous non-small cell lung cancer in the clinical setting.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 22
N° 15
Año 2016
Págs.3924 - 3936
PURPOSE:
Myeloid-derived suppressor cells (MDSC) are considered an important T-cell immunosuppressive component in cancer-bearing hosts. The factors that attract these cells to the tumor microenvironment are poorly understood. IL8 (CXCL8) is a potent chemotactic factor for neutrophils and monocytes.
EXPERIMENTAL DESIGN:
MDSC were characterized and sorted by multicolor flow cytometry on ficoll-gradient isolated blood leucokytes from healthy volunteers (n = 10) and advanced cancer patients (n = 28). In chemotaxis assays, sorted granulocytic and monocytic MDSC were tested in response to recombinant IL8, IL8 derived from cancer cell lines, and patient sera. Neutrophil extracellular traps (NETs) formation was assessed by confocal microscopy, fluorimetry, and time-lapse fluorescence confocal microscopy on short-term MDSC cultures.
RESULTS:
IL8 chemoattracts both granulocytic (GrMDSC) and monocytic (MoMDSC) human MDSC. Monocytic but not granulocytic MDSC exerted a suppressor activity on the proliferation of autologous T cells isolated from the circulation of cancer patients. IL8 did not modify the T-cell suppressor activity of human MDSC. However, IL8 induced the formation of NETs in the GrMDSC subset.
CONCLUSIONS:
IL8 derived from tumors contributes to the chemotactic recruitment of MDSC and to their functional control.
Revista:
ONCOIMMUNOLOGY
ISSN 2162-4011
Vol. 4
N° 12
Año 2015
Págs.e1054597
CD137 (4-1BB) is a surface marker discovered on activated T lymphocytes. However, its expression pattern is broader and has also been described on activated NK cells, B-cells and myeloid cells including mature dendritic cells. In this study, we have immunostained for CD137 on paraffin-embedded lymphoid tissues including tonsils, lymph nodes, ectopic tertiary lymphoid tissue in Hashimoto thyroiditis and cancer. Surprisingly, immunostaining mainly decorates intrafollicular lymphocytes in the tissues analyzed, with only scattered staining in interfollicular areas. Moreover, pathologic lymphoid follicles in follicular lymphoma and tertiary lymphoid tissue associated to non-small cell lung cancer showed a similar pattern of immunostaining. Multicolor flow cytometry demonstrated that CD137 expression was restricted to CD4+ CXCR5+ follicular T helper lymphocytes in tonsils and lymph nodes. Short term culture of lymph node cell suspensions in the presence of an agonist anti-CD137 mAb or CD137-ligand results in the functional upregulation of TFH cells, including CD40L surface expression and cytokine production, in three out of six cases. As a consequence, immunostimulatory monoclonal antibodies, anti-CD137 mAb such as urelumab and PF-05082566 should be expected to primarily act on this lymphocyte subset, thus modifying ongoing humoral immune responses.
Revista:
ONCOIMMUNOLOGY
ISSN 2162-4011
Vol. 5
N° 1
Año 2015
Págs.e1062967
Hypoxia is a common feature in solid tumors that has been implicated in immune evasion. Previous studies from our group have shown that hypoxia upregulates the co-stimulatory receptor CD137 on activated T lymphocytes and on vascular endothelial cells. In this study, we show that exposure of mouse and human tumor cell lines to hypoxic conditions (1% O-2) promotes CD137 transcription. However, the resulting mRNA is predominantly an alternatively spliced form that encodes for a soluble variant, lacking the transmembrane domain. Accordingly, soluble CD137 (sCD137) is detectable by ELISA in the supernatant of hypoxia-exposed cell lines and in the serum of tumor-bearing mice. sCD137, as secreted by tumor cells, is able to bind to CD137-Ligand (CD137L). Our studies on primed T lymphocytes in co-culture with stable transfectants for CD137L demonstrate that tumor-secreted sCD137 prevents co-stimulation of T lymphocytes. Such an effect results from preventing the interaction of CD137L with the transmembrane forms of CD137 expressed on T lymphocytes undergoing activation. Indeed, silencing CD137 with shRNA renders more immunogenic tumor-cell variants upon inoculation to immunocompetent mice but which readily grafted on immunodeficient or CD8(+) T-cell-depleted mice. These mechanisms are interpreted as a molecular strategy deployed by tumors to repress lymphocyte co-stimulation via CD137/CD137L.
Revista:
MOLECULAR PHARMACEUTICS
ISSN 1543-8384
Vol. 11
N° 8
Año 2014
Págs.2650 - 2658
The antitumor ether lipid edelfosine is the prototype of a novel generation of promising anticancer drugs that has been shown to be an effective antitumor agent in numerous malignancies. However, several cancer types display resistance to different antitumoral compounds due to multidrug resistance (MDR). Thus, MDR is a major drawback in anticancer therapy. In that sense, the leukemic cell line K-562 shows resistance to edelfosine. This resistance is overcome by the use of nanotechnology. The present work describes the rate and mechanism of internalization of free and nanoencapsulated edelfosine. The molecular mechanisms underlying cell death are described in the present paper by characterization of several molecules implied in the apoptosic and autophagic pathways (PARP, LC3IIB, caspases-3, -9 and -7), and their pattern of expression is compared with the cell induction in a sensitive cell line HL-60. Results showed different internalization patterns in both cells. Clathrin and lipid raft mediated endocytosis were observable in edelfosine uptake, whereas these mechanism were not visible in the uptake of lipid nanoparticles, which might suffer phagocytosis and macropinocytosis. Both treatments induced caspase-mediated apoptosis in HL-60 cells, whereas this cell death mechanism was unnoticeable in K-562 cells. Moreover, an important increase in autophagic vesicles was visible in K-562 cells. Thus, this mechanism might be implicated in overcoming K-562 resistance with the treatment by lipid nanoparticles.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN 0378-5173
Vol. 474
N° 1 - 2
Año 2014
Págs.1 - 5
Edelfosine, an alkyl-lysophospholipid antitumor drug with severe side-effects, has previously been encapsulated into lipid nanoparticles (LN) with the purpose of improving their toxicity profile. LN are made of lipids recognized as safe by the Food and Drug Administration (FDA) and, therefore, these systems are generally considered as nontoxic vehicles. However, toxicity studies regarding the use of LN as vehicles for drug administration are limited. In the present study, we investigated the in vivo toxicity of free edelfosine, and the protection conferred by LN. The free drug, non-loaded LN and edelfosine-loaded LN were orally administered to mice. Our results show that the oral administration of the free drug at 4 times higher than the therapeutic dose caused the death of the animals within 72 h. Moreover, histopathology revealed gastrointestinal toxicity and an immunosuppressive effect. In contrast, LN showed a protective effect against edelfosine toxicity even at the higher dose and were completely safe. LN are, therefore, a safe vehicle for the administration of edelfosine by the oral route. The nanosystems developed could be further used for the administration of other drugs.
Revista:
JOURNAL OF TRANSLATIONAL MEDICINE
ISSN 1479-5876
Vol. 12
Año 2014
Págs.202
New approaches to generate effective anticancer responses by either inducing immune responses or inhibiting immunosuppression are under development to improve efficacy in patients. On March 4-5th, 2014, a symposium was held in Pamplona, Spain, to report the new strategies showing preclinical and clinical results regarding translational research efforts on the topic. Participants interacted through oral presentations of 15 speakers and further discussions on topics that included novel therapeutic agents for cancer immunotherapy, viral vectors and interferon-based approaches, experimental tumor imaging and immunostimulatory monoclonal antibodies. Promising agents to target cancer cells and therapeutic approaches that are under translation from bench to patients were presented.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN 0378-5173
Vol. 454
N° 2
Año 2013
Págs.720 - 726
Breast cancer is a heterogeneous group of neoplasms predominantly originating in the terminal duct lobular units. It represents the leading cause of cancer death in women and the survival frequencies for patients at advanced stages of the disease remain low. New treatment options need to be researched to improve these rates. The anti-tumor ether lipid edelfosine (ET) is the prototype of a novel generation of promising anticancer drugs. However, it presents several drawbacks for its use in cancer therapy, including gastrointestinal and hemolytic toxicity and low oral bioavailability. To overcome these obstacles, ET was encapsulated in Precirol ATO 5 lipid nanoparticles (ET-LN), and its anti-tumor potential was in vitro tested in breast cancer. The formulated ET-LN were more effective in inhibiting cell proliferation and notably decreased cell viability, showing that the cytotoxic effect of ET was considerably enhanced when ET was encapsulated. In addition, ET and ET-LN were able to promote cell cycle arrest at G1 phase. Moreover, although both treatments provoked an apoptotic effect in a time-dependent manner, such anti-tumor effects were noticeably improved with ET-LN treatment. Therefore, our results indicate that encapsulating ET in LN played an essential role in improving the efficacy of the drug.
Revista:
HAEMATOLOGICA-THE HEMATOLOGY JOURNAL
ISSN 0390-6078
Vol. 96
N° 7
Año 2011
Págs.980 - 986
LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored.
Design and Methods
We measured LMO2 expression by real time RT-PCR in 247 acute lymphoblastic leukemia patient samples with cytogenetic data (144 of them also with survival and immunophenotypical data) and in normal hematopoietic and lymphoid cells.
Results
B-cell acute lymphoblastic leukemia cases expressed variable levels of LMO2 depending on immunophenotypical and cytogenetic features. Thus, the most immature subtype, pro-B cells, displayed three-fold higher LMO2 expression than pre-B cells, common-CD10+ or mature sub-types. Additionally, cases with TEL-AML1 or MLL rearrangements exhibited two-fold higher LMO2 expression compared to cases with BCR-ABL rearrangements or hyperdyploid karyotype. Clinically, high LMO2 expression correlated with better overall survival in adult patients (5-year survival rate 64.8% (42.5%-87.1%) vs. 25.8% (10.9%-40.7%), P = 0.001) and constituted a favorable independent prognostic factor in B-ALL with normal karyotype: 5-year survival rate 80.3% (66.4%-94.2%) vs. 63.0% (46.1%-79.9%) (P = 0.043).
Conclusions
Our data indicate that LMO2 expression depends on the molecular features and the differentiation stage of B-cell acute lymphoblastic leukemia cells. Furthermore, assessment of LMO2 expression in adult patients with a normal karyotype, a group which lacks molecular prognostic factors, could be of clinical relevance.