Revistas
Revista:
JOURNAL OF NANOBIOTECHNOLOGY
ISSN:
1477-3155
Año:
2021
Vol.:
19
N°:
1
Págs.:
102
Background: The immunomodulation of the antitumor response driven by immunocheckpoint inhibitors (ICIs) such as PD-L1 (Programmed Death Ligand-1) monoclonal antibody (alpha-PD-L1) have shown relevant clinical outcomes in a subset of patients. This fact has led to the search for rational combinations with other therapeutic agents such as Doxorubicin (Dox), which cytotoxicity involves an immune activation that may enhance ICI response. Therefore, this study aims to evaluate the combination of chemotherapy and ICI by developing Dox Immunoliposomes functionalized with monovalent-variable fragments (Fab') of alpha-PD-L1.
Results: Immunoliposomes were assayed in vitro and in vivo in a B16 OVA melanoma murine cell line over-expressing PD-L1. Here, immune system activation in tumor, spleen and lymph nodes, together with the antitumor efficacy were evaluated. Results showed that immunoliposomes bound specifically to PD-L1(+) cells, yielding higher cell interaction and Dox internalization, and decreasing up to 30-fold the IC50, compared to conventional liposomes. This mechanism supported a higher in vivo response. Indeed, immunoliposomes promoted full tumor regression in 20% of mice and increased in 1 month the survival rate. This formulation was the only treatment able to induce significant (p < 0.01) increase of activated tumor specific cytotoxic T lymphocytes at the tumor site.
Conclusion: PD-L1 targeted liposomes encapsulating Dox have proved to be a rational combination able to enhance the modulation of the immune system by blocking PD-L1 and selectively internalizing Dox, thus successfully providing a dual activity offered by both, chemo and immune therapeutic strategies.
Revista:
FRONTIERS IN PHARMACOLOGY
ISSN:
1663-9812
Año:
2021
Vol.:
12
Págs.:
705443
V937 is an investigational novel oncolytic non-genetically modified Kuykendall strain of Coxsackievirus A21 which is in clinical development for the treatment of advanced solid tumor malignancies. V937 infects and lyses tumor cells expressing the intercellular adhesion molecule I (ICAM-I) receptor. We integrated in vitro and in vivo data from six different preclinical studies to build a mechanistic model that allowed a quantitative analysis of the biological processes of V937 viral kinetics and dynamics, viral distribution to tumor, and anti-tumor response elicited by V937 in human xenograft models in immunodeficient mice following intratumoral and intravenous administration. Estimates of viral infection and replication which were calculated from in vitro experiments were successfully used to describe the tumor response in vivo under various experimental conditions. Despite the predicted high clearance rate of V937 in systemic circulation (t(1/2) = 4.3 min), high viral replication was observed in immunodeficient mice which resulted in tumor shrinkage with both intratumoral and intravenous administration. The described framework represents a step towards the quantitative characterization of viral distribution, replication, and oncolytic effect of a novel oncolytic virus following intratumoral and intravenous administrations in the absence of an immune response. This model may further be expanded to integrate the role of the immune system on viral and tumor dynamics to support the clinical development of oncolytic viruses.
Revista:
BRITISH JOURNAL OF CANCER
ISSN:
0007-0920
Año:
2021
Vol.:
124
N°:
7
Págs.:
1275 - 1285
Background Anti-programmed cell death 1 (PD-1)/programmed death-ligand 1 (PD-L1) monoclonal antibodies (mAbs) show remarkable clinical anti-tumour efficacy. However, rational combinations are needed to extend the clinical benefit to primary resistant tumours. The design of such combinations requires the identification of the kinetics of critical immune cell populations in the tumour microenvironment. Methods In this study, we compared the kinetics of immune cells in the tumour microenvironment upon treatment with immunotherapy combinations with different anti-tumour efficacies in the non-inflamed tumour model TC-1/A9. Tumour-bearing C57BL/6J mice were treated with all possible combinations of a human papillomavirus (HPV) E7 long peptide, polyinosinic-polycytidylic acid (PIC) and anti-PD-1 mAb. Tumour growth and kinetics of the relevant immune cell populations were assessed over time. The involvement of key immune cells was confirmed by depletion with mAbs and immunophenotyping with multiparametric flow cytometry. Results The maximum anti-tumour efficacy was achieved after intratumoural administration of HPV E7 long peptide and PIC combined with the systemic administration of anti-PD-1 mAb. The intratumoural immune cell kinetics of this combination was characterised by a biphasic immune response. An initial upsurge of proinflammatory myeloid cells led to a further rise in effector CD8(+) T lymphocytes at day 8. Depletion of either myeloid cells or CD8(+) T lymphocytes diminished the anti-tumour efficacy of the combination. Conclusions The anti-tumour efficacy of a successful immunotherapy combination in a non-inflamed tumour model relies on an early inflammatory process that remodels the myeloid cell compartment.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2021
Vol.:
13
N°:
20
Págs.:
5049
Simple Summary: The clinical efficacy of immunotherapies when treating cold tumors is still low, and different treatment combinations are needed when dealing with this challenging scenario. In this work, a middle-out strategy was followed to develop a model describing the antitumor efficacy of different immune-modulator combinations, including an antigen, a toll-like receptor-3 agonist, and an immune checkpoint inhibitor in mice treated with non-inflamed tumor cells. Our results support that clinical response requires antigen-presenting cell activation and also relies on the amount of CD8 T cells and tumor resistance mechanisms present. This mathematical model is a very useful platform to evaluate different immuno-oncology combinations in both preclinical and clinical settings.
Immune checkpoint inhibitors, administered as single agents, have demonstrated clinical efficacy. However, when treating cold tumors, different combination strategies are needed. This work aims to develop a semi-mechanistic model describing the antitumor efficacy of immunotherapy combinations in cold tumors. Tumor size of mice treated with TC-1/A9 non-inflamed tumors and the drug effects of an antigen, a toll-like receptor-3 agonist (PIC), and an immune checkpoint inhibitor (anti-programmed cell death 1 antibody) were modeled using Monolix and following a middle-out strategy. Tumor growth was best characterized by an exponential model with an estimated initial tumor size of 19.5 mm(3) and a doubling time of 3.6 days. In the treatment groups, contrary to the lack of response observed in monotherapy, combinations including the antigen were able to induce an antitumor response. The final model successfully captured the 23% increase in the probability of cure from bi-therapy to triple-therapy. Moreover, our work supports that CD8(+) T lymphocytes and resistance mechanisms are strongly related to the clinical outcome. The activation of antigen-presenting cells might be needed to achieve an antitumor response in reduced immunogenic tumors when combined with other immunotherapies. These models can be used as a platform to evaluate different immuno-oncology combinations in preclinical and clinical scenarios.
Revista:
PHARMACEUTICS
ISSN:
1999-4923
Año:
2020
Vol.:
12
N°:
6
Págs.:
595
Immunotherapy has changed the paradigm of cancer treatments. In this way, several combinatorial strategies based on monoclonal antibodies (mAb) such as anti (a)-PD-1 or anti (a)-PD-L1 are often reported to yield promising clinical benefits. However, the pharmacokinetic (PK) behavior of these mAbs is a critical issue that requires selective analytical techniques. Indeed, few publications report data on a-PD1/a-PD-L1 exposure and its relationship with therapeutic or toxic effects. In this regard, preclinical assays allow the time profiles of antibody plasma concentrations to be characterized rapidly and easily, which may help to increase PK knowledge. In this study, we have developed and validated two in-house ELISAs to quantify a-PD-1 and a-PD-L1 in plasma collected from tumor-bearing mice. The linear range for the a-PD-1 assay was 2.5-125 ng/mL and 0.11-3.125 ng/mL for the a-PD-L1 assay, whereas the intra-and inter-day precision was lower than 20% for both analytes. The PK characterization revealed a significant decrease in drug exposure after administration of multiple doses. Plasma half-life for a-PD-1 was slightly shorter (22.3 h) than for a-PD-L1 (46.7 h). To our knowledge, this is the first reported preclinical ELISA for these immune checkpoint inhibitors, which is sufficiently robust to be used in different preclinical models. These methods can help to understand the PK behavior of these antibodies under different scenarios and the relationship with response, thus guiding the choice of optimal doses in clinical settings.
Revista:
NANOSCALE
ISSN:
2040-3364
Año:
2020
Vol.:
12
N°:
32
Págs.:
16967 - 16979
Nanoparticles such as liposomes are able to overcome cancer treatment challenges such as multidrug resistance by increasing the bioavailability of the encapsulated drug, bypassing drug pumps or through targeting resistant cells. Here, we merge enhanced drug delivery by nanotechnology with tumor cell membrane modulation combined in a single formulation. This is achieved through the incorporation of Short chain sphingolipids (SCSs) in the liposomal composition, which permeabilizes cell membranes to amphiphilic drugs such as Doxorubicin (Dxr). To study the mechanism and capability of SCS-containing nanodevices to overcome Dxr resistance, a sensitive uterine sarcoma cell line, MES-SA, and a resistant derived cell line, MES-SA/MX2, were used. The mechanism of resistance was explored by lipidomics and flow cytometry, revealing significant differences in lipid composition and in P glycoprotein (Pgp) expression.In vitroassays show that SCS liposomes were able to reverse cell resistance, and importantly, display a higher net effect on resistant than sensitive cells. SCS lipids modulated the cell membrane of MES-SA/MX2 drug resistant cells, while Pgp expression was not affected. Furthermore, SCS-modified liposomes were evaluated in a sarcoma xenograft model on drug accumulation, pharmacokinetics and efficacy. SCS liposomes improved Dxr levels in tumor nuclei of MES-SA/MX2 tumor cells, which was accompanied by a delay in tumor growth of the resistant model. Here we show that Dxr accumulation in tumor cells by SCS-modified liposomes was especially improved in Dxr resistant cells, rendering Dxr as effective as in sensitive cells. Moreover, this phenomenon translated to improved efficacy when Dxr liposomes where modified with SCSs in the drug resistant tumor model, while no benefit was seen in the sensitive tumors.
Revista:
NANOMEDICINE
ISSN:
1743-5889
Año:
2019
Vol.:
17
Págs.:
13 - 25
Revista:
NANOMEDICINE
ISSN:
1743-5889
Año:
2016
Vol.:
11
N°:
5
Págs.:
465 - 477
Aim: Development of EGF-liposomes (LP-EGF) for selective molecules delivery in tumors expressing EGFR. Material & methods: In vitro cellular interaction of EGF-LP and nontargeted liposomes (LP-N) was assayed at 37 and 4°C in cells expressing different EGFR levels. Receptor-mediated uptake was investigated by competition with a monoclonal antibody anti-EGFR. Selective intracellular drug delivery and efficacy was tested by oxaliplatin encapsulation. In vivo biodistribution of LP-N and LP-EGF was done in xenograft model. Results: LP-EGF was internalized by an active and selective mechanism through EGFR without receptor activation. Oxaliplatin LP-EGF decreased IC50 between 48 and 13% in cell EGFR+. LP-EGF was accumulated in tumor over 72 h postdosing, while LP-N in spleen. Conclusion: LP-EGF represents an attractive nanosystem for cancer therapy or diagnosis.
Autores:
Haeri, A (Autor de correspondencia); Zalba, Sara; ten Hagen, TLM (Autor de correspondencia); et al.
Revista:
COLLOIDS AND SURFACES B-BIOINTERFACES
ISSN:
0927-7765
Año:
2016
Vol.:
146
Págs.:
657-669
Revista:
INTERNATIONAL JOURNAL OF NANOMEDICINE
ISSN:
1178-2013
Año:
2016
Vol.:
11
Págs.:
955-975
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2015
Vol.:
210
Págs.:
26 - 36
Oxaliplatin (L-OH), a platinum derivative with good tolerability is currently combined with Cetuximab (CTX), a monoclonal antibody (mAb), for the treatment of certain (wild-type KRAS) metastatic colorectal cancer (CRC) expressing epidermal growth factor receptor (EGFR).
Improvement of L-OH pharmacokinetics (PK) can be provided by its encapsulation into liposomes, allowing a more selective accumulation and delivery to the tumor. Here, we aim to associate both agents in a novel liposomal targeted therapy by linking CTX to the drug-loaded liposomes. These EGFR-targeted liposomes potentially combine the therapeutic activity and selectivity of CTX with tumor-cell delivery of L-OH in a single therapeutic approach.
L-OH liposomes carrying whole CTX or CTX-Fab¿ fragments on their surface were designed and characterized. Their functionality was tested in vitro using four human CRC cell lines, expressing different levels of EGFR to investigate the role of CTX-EGFR interactions in the cellular binding and uptake of the nanocarriers and encapsulated drug. Next, those formulations were evaluated in vivo in a colorectal cancer xenograft model with regard to tumor drug accumulation, toxicity and therapeutic activity.
In EGFR-overexpressing cell lines, intracellular drug delivery by targeted liposomes increased with receptor density reaching up to 3-fold higher levels than with non-targeted liposomes. Receptor specific uptake was demonstrated by competition with free CTX, which reduced...
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2013
Vol.:
83
N°:
3
Págs.:
358 - 363
In this work, we have developed and evaluated a new targeted lipopolyplex (LPP), by combining polyethylenimine (PEI), 1,2-dioleoy1-3-(trimethylammonium) propane (DOTAP)/Chol liposomes, the plasmids pCMVLuc/pCMVIL-12, and the ligand folic acid (FA), able to transfect HeLa and B16-F10 cells in the presence of very high concentration of serum (60% FBS). These complexes (Fol-LPP) have a net positive surface charge. The combination of folic acid with lipopolyplexes also enhanced significantly the transfection activity of the therapeutic gene interleukin-12 (IL-12), without any significant cytotoxicity. The specificity of the folate receptor (FR)-mediated gene transfer was corroborated by employing a folate receptor deficient cell line (HepG2). This formulation improved gene delivery showed by conventional lipoplexes or polyplexes resulting an efficient, simple, and nontoxic method for gene delivery of therapeutic genes in vitro and very probably in vivo.
Revista:
EXPERT OPINION ON DRUG DELIVERY
ISSN:
1742-5247
Año:
2013
Vol.:
10
N°:
6
Págs.:
829 - 844
INTRODUCTION:
Liposomes represent a versatile system for drug delivery in various pathologies. Platinum derivatives have been demonstrated to have therapeutic efficacy against several solid tumors. But their use is limited due to their side effects. Since liposomal formulations are known to reduce the toxicity of some conventional chemotherapeutic drugs, the encapsulation of platinum derivatives in these systems may be useful in reducing toxicity and maintaining an adequate therapeutic response.
AREAS COVERED:
This review describes the strategies applied to platinum derivatives in order to improve their therapeutic activity, while reducing the incidence of side effects. It also reviews the results found in the literature for the different platinum-drugs liposomal formulations and their current status.
EXPERT OPINION:
The design of liposomes to achieve effectiveness in antitumor treatment is a goal for platinum derivatives. Liposomes can change the pharmacokinetic parameters of these encapsulated drugs, reducing their side effects. However, few liposomal formulations have demonstrated a significant advantage in therapeutic terms. Lipoplatin, a cisplatin formulation in Phase III, combines a reduction in the toxicity associated with an antitumor activity similar to the free drug. Thermosensitive or targeted liposomes for tumor therapy are also included in this review. Few articles about this strategy applied to platinum drugs can be found in the literature.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2012
Vol.:
81
N°:
2
Págs.:
273 - 280
In this work, the Film Method (FM), Reverse-Phase Evaporation (REV), and the Heating Method (HM) were applied to prepare PEG-coated liposomes of oxaliplatin with natural neutral and cationic lipids, respectively. The formulations developed with the three methods, showed similar physicochemical characteristics, except in the loading of oxaliplatin, which was statistically lower (P < 0.05) using the HM. The incorporation of a semi-synthetic lipid in the formulation developed by FM, provided liposomes with a particle size of 115 nm associated with the lowest polydispersity index and the highest drug loading, 35%, compared with the other two lipids, suggesting aft increase in the membrane stability. That stability was also evaluated according to the presence of cholesterol, the impact of the temperature, and the application of different cryoprotectants during the lyophilization. The results indicated long-term stability of the developed formulation, because after its intravenous in vivo administration to HT-29 tumor bearing mice was able to induce an inhibition of tumor growth statistically higher (P < 0.05) than the inhibition caused by the free drug. In conclusion, the FM was the simplest method in comparison with REV and HM to develop in vivo stable and efficient PEG-coated liposomes of oxaliplatin with a loading higher than those reported for REV. (C) 2012 Elsevier B.V. All rights reserved.
Revista:
NANOMEDICINE
ISSN:
1743-5889
Año:
2011
Vol.:
6
N°:
1
Págs.:
89 - 98
Aims: In this work, we have evaluated the ability of targeted lipoplexes to enhance transgene expression in EGF receptor (EGFR) overexpressing tumor cells by using lipoplexes. Materials & methods: We prepared DOTAP/cholesterol liposomes modified with EGF at 0.5/1, 1/1, 2/1 and 5/1 lipid/DNA (+/-) charge ratio by sequentially mixing the liposomes with the ligand and addling the reporter or the therapeutic plasmid gene, pCMVLuc (pVR1216) or pCMVIL12, respectively. HepG2, DHDK12proB and SW620 cells were used for in vitro experiments, which were performed in the presence of 60% serum. Results: The characterization of EGF-lipoplexes indicated a size close to 300 nm and a variable net surface charge as a function of the amount of EGF associated to the cationic liposomes. EGF-lipoplexes, which showed an increased transfection activity, were positively charged, noncytotoxic and highly effective in protecting DNA from DNase I attack. Transfection activity in vitro resulted in an enhancement in the luciferase and IL-12 expression by EGF-lipoplexes compared with those without ligand (plain-lipoplexes) and to naked DNA. The results observed in SW620 cells, which are deficient in EGFR, confirmed that DNA uptake was predominantly via EGFR-mediated endocytosis. In vivo transfection activity was confirmed by luciferase imaging in living mice. Bioluminiscence could be detected mainly in the lung with a maximum signal 24 h after application. The resulting EGF-lipoplexes significantly ...
Revista:
Microchemical Journal
ISSN:
0026-265X
Año:
2010
Vol.:
96
N°:
2
Págs.:
415 - 421
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2010
Vol.:
74
N°:
2
Págs.:
265 - 274
Biodegradable poly (lactic-co-glycolic) acid (PLGA) nanoparticles incorporating cisplatin have been developed to evaluate its in vivo efficacy in tumor-bearing mice.
In vitro Study proved two mechanisms of action for cisplatin depending on the dose and the rate at which this dose is delivered. In vivo study, 5 mg/kg of cisplatin nanoparticles administered to mice, exhibited a tumour inhibition similar to free cisplatin, although the area under cisplatin concentration-time Curve between 0 and 21 days (AUC(0-21)) had lower Value for the formulation than for drug solution (P < 0.05). This result was associated with a higher activation of apoptosis in tumor, mediated by caspase-3, after nanoparticles administration. Toxicity measured as the change in body weight, and blood urea nitrogen (BUN) plasma levels showed that cisplatin nanoparticles treatment did not induce significant changes in both parameters compared to control, while for free drug, a statistical (P < 0.01) increase was observed. In addition, a good correlation was found between time profiles of tumor volume and vascular endothelial growth factor (VEGF) plasma levels, suggesting that its expression could help to follow the efficacy of the treatment. Therefore, the PLGA nanoparticles seem to provide a promising carrier for cisplatin administration avoiding its side effects without a reduction of the efficacy, which was consistent with a higher activation of apoptosis than free drug.
Nacionales y Regionales
Título:
Identificación y desarrollo de candidato inhibidor de HDAC6 como tratamiento frente al cáncer de colon (COLON-HDAC6)
Código de expediente:
0011-1411-2021-000097
Investigador principal:
Ana Gloria Gil Royo
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2021 GN PROYECTOS ESTRATEGICOS DE I+D 2021-2024
Fecha de inicio:
01/07/2021
Fecha fin:
31/12/2023
Importe concedido:
412.467,21€
Otros fondos:
-
Título:
Nueva Plataforma para el tratamiento personalizado del cáncer de colon ONCO-CEBRA-GEN
Código de expediente:
0011-1365-2020-000282
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2020 GN I+D Transferencia del conocimiento (empresas)
Fecha de inicio:
01/04/2020
Fecha fin:
30/07/2022
Importe concedido:
145.126,12€
Otros fondos:
Fondos FEDER