Revistas
Revista:
OPTICS AND LASER TECHNOLOGY
ISSN:
0030-3992
Año:
2023
Vol.:
157
Págs.:
108669
The generation of surface plasmon resonances (SPR) in laser-induced periodic surface structures (LIPSS) allows their application in the field of optical sensing, such as the detection of refractive index variations in gases and liquids. We have fabricated gold-coated LIPSS nanostructures on stainless steel substrates by using femtosecond laser nano-ablation. This technique is a low-cost and high-throughput fabrication method applicable to fast and large-scale manufacturing. The depth profile of the fabricated LIPSS shows a central dip at the top of each ripple that split the geometry. The actual topography is modeled and included in a computational electromagnetism package to obtain the expected optical response under the experimental conditions. The measured and simulated spectral reflectances are compared, and the differences are explained by the departure of the fabricated LIPSS from the ideal topography. The experiments and simulations showed excellent agreement for the main spectral characteristics, like the Fano-like lineshapes of the spectral reflectance. This fitting provides the values used to determine the refractometric performance of the fabricated device, that shows a sensitivity of 518 nm/RIU and a figure of merit of 32 RIU-1 for an aqueous analyte. Our experimental results show that the fabricated devices are competitive in terms of cost and simplicity when compared to existing devices with similar performance.
Revista:
OPTICS AND LASER TECHNOLOGY
ISSN:
0030-3992
Año:
2023
Vol.:
161
Págs.:
109232 - *
The use of ultrashort-pulsed (USP) lasers in Additive Manufacturing (AM) enables the processing of different materials and has the potential to reduce the sizes and shapes manufactured with this technology. This work confirms that USP lasers are a viable alternative for Laser Powder Bed Fusion (LPBF) when higher precision is required to manufacture certain critical parts. Promising results were obtained using tailored and own-produced stainless steel powder particles, manufacturing consistent square layers with a series of optimized processing parameters. The critical role of processing parameters is confirmed when using this type of lasers, as a slight deviation of any of them results in an absence of melting. For the first time, melting has been achieved at low pulse repetition (500 kHz) and using low average laser power values (0.5-1 W), by generating heat accumulation at reduced scanning speeds. This opens up the possibility of further reducing the minimum size of parts when using USP lasers for AM.
Autores:
San-Blas, A. (Autor de correspondencia); Martínez, Miguel; Granados, E.; et al.
Revista:
SURFACES AND INTERFACES
ISSN:
2468-0230
Año:
2021
Vol.:
25
Págs.:
101205
Laser-Induced Periodic Surface Structures (LIPSS) manufacturing is a convenient laser direct-writing technique for the fabrication of nanostructures with adaptable characteristics on the surface of virtually any material. In this paper, we study the influence of 1D laser wavefront curvature on nanoripples spatial regularity, by irradiating stainless steel with a line-focused ultrafast laser beam emitting 120 fs pulses at a wavelength of 800 nm and with 1 kHz repetition rate. We find high correlation between the spatial regularity of the fabricated nanostructures and the wavefront characteristics of the laser beam, with higher regularity being found with quasiplane-wave illumination. Our results provide insight regarding the control of LIPSS regularity, which is essential for industrial applications involving the LIPSS generation technique.
Revista:
PHYSICAL REVIEW MATERIALS
ISSN:
2475-9953
The control of the interaction between materials and biological tissues is a key factor to optimize the overall performance of implants and prostheses integrated into the body. With this objective in mind, biomimetic hierarchical one- and two-dimensional surface patterns textured at the micro and nano scales were fabricated on titanium alloys using femtosecond laser processing. The experimental results show that laser irradiation promotes surface oxidation together with a polarization-dependent nano-ripple formation. Human mesenchymal stem cells were subsequently cultured on different surface patterns aiming at determining their response to the underlying micro and nano structures. The ripple topography was demonstrated to induce a nonfouling behavior, which could be exploited in the fabrication of biomimetic hierarchical surface patterns to develop cell-trapping modules.
Autores:
San-Blas, A. (Autor de correspondencia); Martínez, Miguel; Buencuerpo, J.; et al.
Revista:
APPLIED SURFACE SCIENCE
ISSN:
0169-4332
Revista:
OPTICS EXPRESS
ISSN:
1094-4087
Año:
2020
Vol.:
28
N°:
20
Págs.:
29054 - 29063
A diffractive optical element was fabricated by monolithically integrating two volume phase-gratings (VPGs) in the bulk of a single-piece transparent material. A computer model of the diffraction generated by the double volume phase-grating (DVPG) was made with a rigorous coupled wave analysis simulator. Simulations and experiments show that the diffractive behavior of a DVPG can be controlled by arranging the relative displacement and the distance between the VPGs according to Talbot self-imaging planes. In order to diffract the total incident light, the phase accumulation in the VPGs has to be pi/2, which was achieved by single-scan femtosecond laser processing of a nanocrystal doped glass as the substrate material. Ex situ microscope images of the cross-sections are presented for laser processed lines in the form of VPGs and DVPGs. The far-field diffraction of DVPGs formed by selectively located VPGs was characterized with a monochromatic 633 nm and a supercontinuum white light. Functional designs of high diffraction efficiency with potential applications in photonics were successfully fabricated in a one-step and free of chemicals process.
Revista:
APPLIED OPTICS
ISSN:
1559-128X
Año:
2019
Vol.:
58
N°:
16
Págs.:
4220 - 4226
Volume-phase gratings (VPGs) were fabricated in CdSxSe1-x quantum-dot-doped borosilicate glass at a low repetition rate (800 nm, 140 fs, 1 kHz). The VPGs were designed based on rigorous coupled wave analysis simulations. Results indicate that the inscribed thickness (L) is the key parameter to maximize the diffraction efficiency at order 1. Microscope images of the cross sections and diffraction efficiency measurements were taken in order to characterize the modification of the material at different laser-inscription parameters. A maximum VPG diffraction efficiency of 67% (at order 1) was achieved. Also, a refractive index change of Delta n = 2.25.10(-3) is estimated from these VPG diffraction efficiency measurements. The measurements regarding polarization-insensitive diffraction efficiency showed that the birefringence produced in the substrate is negligible. (C) 2019 Optical Society of America
Autores:
Gil-Gonzalez, N.; Chen, C. Q.; Akyazi, T. ; et al.
Revista:
ADVANCED FUNCTIONAL MATERIALS
ISSN:
1616-301X
Año:
2018
Vol.:
28
N°:
48
A combination of atomic layer deposition and photolithography is applied to fabricate interdigitated electrodes of aluminum-doped zinc oxide embedded in polyethylene terephthalate substrates. Various designs with different gap to widths ratios are realized and important characteristics of the electrodes, including thickness, surface roughness, and electrical properties with different ZnO:Al2O3 ratios are studied. Oxygen plasma is applied to etch the polyethylene terephthalate surface and to embed the electrodes, a methodology which is a breakthrough toward ultimately thin devices fabrication. Moreover, the influence of oxygen plasma on the electrical properties of aluminum-doped zinc oxide is analyzed in more detail. Electrochemical impedance spectroscopy studies of two different stimuli responsive ionogels are performed using the fabricated electrodes. The results show the suitability of the use of the fabricated electrodes to monitor changes in ion motion and morphology of stimuli responsive materials. These electrodes and the process of characterization of the ionogels presented could be implemented to monitor electrochemical changes in real applications such as protective coatings.
Revista:
APPLIED SURFACE SCIENCE
ISSN:
0169-4332
Año:
2018
Vol.:
441
N°:
31
Págs.:
331 - 340
ZnO thin film sputtered on alumina substrate is processed by Direct Laser Interference Patterning (DLIP). The heat transfer equation has been simulated for interference patterns with a period of 730 nm and two different fluences (85 mJ/cm2 and 165 mJ/cm2). A thermal threshold of 900 K, where crystal modification occurs has been calculated, indicating a lateral and depth processing around 173 nm and 140 nm, respectively. The experimentally reproduced samples have been analyzed from the structural and composition point of view and compared to conventional thermal treatments at three different temperatures (600 ºC, 700 ºC and 800 ºC). Promising properties have been observed for the laser treated samples, such as low influence on the thin film/substrate interface, an improvement of the crystallographic structure, as well as a decrease of the oxygen content from O/Zn = 2.10 to 1.38 for the highest fluence, getting closer to the stoichiometry. The DLIP characteristics could be suitable for the replacement of annealing process in the case of substrates that cannot achieve high temperatures as most of flexible substrates.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2018
Vol.:
8
N°:
14262
We demonstrate a rapid, accurate, and convenient method for tailoring the optical properties of diamond surfaces by employing laser induced periodic surface structuring (LIPSSs). The characteristics of the fabricated photonic surfaces were adjusted by tuning the laser wavelength, number of impinging pulses, angle of incidence and polarization state. Using Finite Difference Time Domain (FDTD) modeling, the optical transmissivity and bandwidth was calculated for each fabricated LIPSSs morphology. The highest transmission of similar to 99.5% was obtained in the near-IR for LIPSSs structures with aspect ratios of the order of similar to 0.65. The present technique enabled us to identify the main laser parameters involved in the machining process, and to control it with a high degree of accuracy in terms of structure periodicity, morphology and aspect ratio. We also demonstrate and study the conditions for fabricating spatially coherent nanostructures over large areas maintaining a high degree of nanostructure repeatability and optical performance. While our experimental demonstrations have been mainly focused on diamond anti-reflection coatings and gratings, the technique can be easily extended to other materials and applications, such as integrated photonic devices, high power diamond optics, or the construction of photonic surfaces with tailored characteristics in general.
Revista:
OPTICAL MATERIALS EXPRESS
ISSN:
2159-3930
Año:
2017
Vol.:
7
N°:
9
Págs.:
3389 - 3396
We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% larger than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics. (C) 2017 Optical Society of America
Revista:
OPTICS EXPRESS
ISSN:
1094-4087
Año:
2017
Vol.:
25
N°:
13
Págs.:
15330 - 15335
We study the fabrication of photonic surface structures in single crystal diamond by means of highly controllable direct femtosecond UV laser induced periodic surface structuring. By appropriately selecting the excitation wavelength, intensity, number of impinging pulses and their polarization state, we demonstrate emerging high quality and fidelity diamond grating structures with surface roughness below 1.4 nm. We characterize their optical properties and study their potential for the fabrication of photonic structure antireflection coatings for diamond Raman lasers in the near-IR. (C) 2017 Optical Society of America
Revista:
APPLIED SURFACE SCIENCE
ISSN:
0169-4332
Año:
2016
Vol.:
374
Págs.:
81 - 89
In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 mu m and line widths of 20 mu m. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm(2) were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150 degrees on a stainless steel alloy. (C) 2015 Elsevier B.V. All rights reserved.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2016
Vol.:
6
N°:
36296
Págs.:
81 - 89
The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials.
Autores:
Martinez, J.; Mendizabal, L.; Morant, C.; et al.
Revista:
THIN SOLID FILMS
ISSN:
0040-6090
Año:
2015
Vol.:
595
Págs.:
171 - 175
The electrical properties of dielectric thin layers deposited on conducting substrates still need to be thoroughly characterized for a wide variety of applications such as solar modules, flexible displays and sensor integration. In this work, thin dielectric films composed of layers and alternated multilayers of SiO2 and Al2O3 up to a total thickness of 3 mu m have been deposited on flexible rough stainless steel substrates by means of reactive magnetron sputtering. Their electrical properties have been studied focusing on important parameters such as leakage current density and disruptive field strengths. Moreover, temperature annealing and bending effects have been quantified. It is concluded that the best electrical properties with this type of materials are achieved with multilayered structures. (C) 2015 Elsevier B.V. All rights reserved.
Revista:
APPLIED SURFACE SCIENCE
ISSN:
0169-4332
Año:
2015
Vol.:
351
Págs.:
135 - 139
In this work, submicro and nanostructures self-formed on the surface of Platinum thin films under femtosecond laser-pulse irradiation are investigated. A Ti:Sapphire laser system was used to linearly scan 15 mm lines with 100 fs pulses at a central wavelength of 800 nm with a 1 kHz repetition rate. The resulting structures were characterized by scanning electron microscopy (SEM) and 2D-Fast Fourier Transform (2D-FFT) analysis. This analysis of images revealed different types of structures depending on the laser irradiation parameters: random nanostructures, low spatial frequency LIPSS (LSFL) with a periodicity from about 450 to 600 nm, and high spatial frequency LIPSS (HSFL) with a periodicity from about 80 to 200 nm. Two different modifications regimes have been established for the formation of nanostructures: (a) a high-fluence regime in which random nanostructures and LSFL are obtained and (b) a low-fluence regime in which HSFL and LSFL are obtained. (C) 2015 Elsevier B.V. All rights reserved.
Revista:
OPTICS EXPRESS
ISSN:
1094-4087
Año:
2015
Vol.:
23
N°:
20
Págs.:
26683 - 26688
Ultrafast laser inscription of volume phase gratings with low index contrast and self-images with visibility of 0.96 is demonstrated. It is also demonstrated that phase differences of p/2 for visible light are achievable with only one layer of structures induced in bulk borosilicate glass by direct laser writing. The fabrication method avoids the stitching of several layers of structures and significantly reduces the time of process. The increment of visibility with the induced phase difference is proved and results are compared with the expected for planar phase gratings. (C) 2015 Optical Society of America
Revista:
JOURNAL OF APPLIED PHYSICS
ISSN:
0021-8979
Año:
2014
Vol.:
115
N°:
17
The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced. (C) 2014 AIP Publishing LLC.
Revista:
APPLIED SURFACE SCIENCE
ISSN:
0169-4332
Año:
2013
Vol.:
276
Págs.:
229 - 235
A study of the influence of annealing temperature on the structural, morphological and optical properties of WO3 thin films is presented. The coatings are deposited by RF reactive magnetron sputtering and characterized by XRD analysis and FESEM. The XRD diagrams of the samples show a phase transition from tetragonal to monoclinic when the annealing temperature is raised from 800 to 900 degrees C. Moreover, the increase of the annealing temperature to 800 degrees C favors the presence of a granular structure on the surface of the film. A decrease in the optical energy band gap (3.65-3.5 eV and 3.5-3.05 eV for direct and indirect transitions respectively) with annealing temperature has been measured employing Tauc's relation. Furthermore, WO3 thin films are processed by laser interference lithography (LIL) and periodic nanostructures are obtained. The processed films are characterized by a hexagonal symmetry with a period of 340 nm and the diameter of the nanostructured holes of 150 nm. These films show improved morphological properties of interest in several applications (gas sensors, photonic crystals, etc.) independent of the annealing temperature. .
Revista:
MICROELECTRONIC ENGINEERING
ISSN:
0167-9317
Año:
2012
Vol.:
98
Págs.:
672 - 675
Femtosecond laser micromachining has progressed considerably in the last decade due to the increasing interest in glass microsystems. In this work, we present a systematic study of the femtosecond laser ablation rate of soda-lime glass as a function of the deposited energy and pulse overlapping parameters. Experimental results demonstrate that the incubation effect reported by other authors can be neglected for particular process conditions and a constant ablation rate can be obtained, thus enhancing the depth control of the fabricated features. (C) 2012 Elsevier B.V. All rights reserved.
Revista:
OPTICAL MATERIALS EXPRESS
ISSN:
2159-3930
Año:
2012
Vol.:
2
N°:
11
Págs.:
1571 - 1579
Metallic gratings were fabricated using high energy laser interference lithography with a frequency tripled Nd:YAG nanosecond laser. The grating structures were first recorded in a photosensitive layer and afterwards transferred to an Au film. High quality Au gratings with a period of 770 nm and peak-to-valley heights of 20-60 nm exhibiting plasmonic resonance response were successfully designed, fabricated and characterized. (C) 2012 Optical Society of America
Autores:
Pérez, N; Tavera, T.; Ellman, M.; et al.
Revista:
APPLIED SURFACE SCIENCE
ISSN:
0169-4332
Año:
2012
Vol.:
258
N°:
23
Págs.:
9370 - 9373
This work presents the fabrication of hollow-core metallic structures with a complete laser interference lithography (LIL) process. A negative photoresist is used as sacrificial layer. It is exposed to the pattern resulting from the interference of two laser beams, which produces a structure of photoresist lines with a period of 600 nm. After development of the resist, platinum is deposited on the samples by DC sputtering and the resist is removed with acetone. The resulting metallic structures consist in a continuous platinum film that replicates the photoresist relief with a hollow core. The cross section of the channels is up to 0.1 mu m(2). The fabricated samples are characterized by FESEM and FIB. This last tool helps to provide a clear picture of the shape and size of the channels. Conveniently dimensioned, this array of metallic submicrometric channels can be used in microfluidic or IC cooling applications. (c) 2012 Elsevier B.V. All rights reserved.
Revista:
CRYSTAL RESEARCH AND TECHNOLOGY
ISSN:
0232-1300
Año:
2011
Vol.:
46
N°:
10
Págs.:
1044 - 1050
We have fabricated polystyrene opals by vertical deposition with colloidal spheres of 419 nm in diameter. Different parameters such as the concentration, temperature and relative humidity have been systematically varied in order to study the dependence of the crystalline quality of the opals on these parameters. The opals have been optically and structurally characterized, paying particular attention to the size and distribution of the domains for each fabrication condition. We have noticed a dependence of the size of the domains on the thickness which corroborates a previous study. From these results we can conclude that the characterization of the homogeneity of the thickness of the opals can be done just by using microscopy. We also report a dependence of the order of the opals on relative humidity and a selective adhesion of the opals to the substrate depending on concentration and surface chemistry. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Revista:
APPLIED SURFACE SCIENCE
ISSN:
0169-4332
Año:
2011
Vol.:
258
N°:
3
Págs.:
1175 - 1180
The production of periodic structures in silicon wafers by four-beam is presented. Because laser interference ablation is a single-step and cost-effective process, there is a great technological interest in the fabrication of these structures for their use as antireflection surfaces. Three different laser fluences are used to modify the silicon surface (0.8 J cm(-2), 1.3 J cm(-2), 2.0 J cm(-2)) creating bumps in the rim of the irradiated area. Laser induced periodic surface structures (LIPSS), in particular micro and nano-ripples, are also observed. Measurements of the reflectivity show a decrease in the reflectance for the samples processed with a laser fluence of 2.0 J cm(-2), probably caused by the appearance of the nano-ripples in the structured area, while bumps start to deteriorate. (C) 2011 Elsevier B.V. All rights reserved.