Nuestros investigadores

Francisco Javier Planes Pedreño

Publicaciones científicas más recientes (desde 2010)

Autores: Fuertes, Alvaro; Perez-Burillo, Sergio; Apaolaza, Iñigo; et al.
Revista: FRONTIERS IN MICROBIOLOGY
ISSN 1664-302X  Vol. 10  2019 
Predicting the metabolic behavior of the human gut microbiota in different contexts is one of the most promising areas of constraint-based modeling. Recently, we presented a supra-organismal approach to build context-specific metabolic networks of bacterial communities using functional and taxonomic assignments of meta-omics data. In this work, this algorithm is applied to elucidate the metabolic changes induced over the first year after birth in the gut microbiota of a cohort of Spanish infants. We used metagenomics data of fecal samples and nutritional data of 13 infants at five time points. The resulting networks for each time point were analyzed, finding significant alterations once solid food is introduced in the diet. Our work shows that solid food leads to a different pattern of output metabolites that can be potentially released from the gut microbiota to the host. Experimental validation is presented for ferulate, a neuroprotective metabolite involved in the gut-brain axis
Autores: Apaolaza, Iñigo; Valcarcel, L. V.; Planes, Francisco Javier, (Autor de correspondencia)
Revista: BIOINFORMATICS
ISSN 1367-4803  Vol. 35  Nº 3  2019  págs. 535 - 537
Motivation: The identification of minimal gene knockout strategies to engineer metabolic systems constitutes one of the most relevant applications of the COnstraint-Based Reconstruction and Analysis (COBRA) framework. In the last years, the minimal cut sets (MCSs) approach has emerged as a promising tool to carry out this task. However, MCSs define reaction knockout strategies, which are not necessarily transformed into feasible strategies at the gene level. Results: We present a more general, easy-to-use and efficient computational implementation of a previously published algorithm to calculate MCSs to the gene level (gMCSs). Our tool was compared with existing methods in order to calculate essential genes and synthetic lethals in metabolic networks of different complexity, showing a significant reduction in model size and computation time.
Autores: Campuzano, L.; et al.
Revista: GIGASCIENCE
ISSN 2047-217X  Vol. 8  Nº 4  2019 
BACKGROUND: Aberrant alternative splicing plays a key role in cancer development. In recent years, alternative splicing has been used as a prognosis biomarker, a therapy response biomarker, and even as a therapeutic target. Next-generation RNA sequencing has an unprecedented potential to measure the transcriptome. However, due to the complexity of dealing with isoforms, the scientific community has not sufficiently exploited this valuable resource in precision medicine. FINDINGS: We present TranscriptAchilles, the first large-scale tool to predict transcript biomarkers associated with gene essentiality in cancer. This application integrates 412 loss-of-function RNA interference screens of >17,000 genes, together with their corresponding whole-transcriptome expression profiling. Using this tool, we have studied which are the cancer subtypes for which alternative splicing plays a significant role to state gene essentiality. In addition, we include a case study of renal cell carcinoma that shows the biological soundness of the results. The databases, the source code, and a guide to build the platform within a Docker container are available at GitLab. The application is also available online. CONCLUSIONS: TranscriptAchilles provides a user-friendly web interface to identify transcript or gene biomarkers of gene essentiality, which could be used as a starting point for a drug development project. This approach opens a wide range of translational applications in cancer.
Autores: Heirendt, L.; Arreckx, S.; Pfau, T.; et al.
Revista: NATURE PROTOCOLS
ISSN 1754-2189  Vol. 14  Nº 3  2019  págs. 639 - 702
Constraint-based reconstruction and analysis (COBRA) provides a molecular mechanistic framework for integrative analysis of experimental molecular systems biology data and quantitative prediction of physicochemically and biochemically feasible phenotypic states. The COBRA Toolbox is a comprehensive desktop software suite of interoperable COBRA methods. It has found widespread application in biology, biomedicine, and biotechnology because its functions can be flexibly combined to implement tailored COBRA protocols for any biochemical network. This protocol is an update to the COBRA Toolbox v.1.0 and v.2.0. Version 3.0 includes new methods for quality-controlled reconstruction, modeling, topological analysis, strain and experimental design, and network visualization, as well as network integration of chemoinformatic, metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code integration also enables an expansion in COBRA application scope via high-precision, high-performance, and nonlinear numerical optimization solvers for multi-scale, multi-cellular, and reaction kinetic modeling, respectively. This protocol provides an overview of all these new features and can be adapted to generate and analyze constraint-based models in a wide variety of scenarios. The COBRA Toolbox v.3.0 provides an unparalleled depth of COBRA methods.
Autores: Apaolaza, Iñigo; San José, Edurne; Agirre, X; et al.
Revista: MOLECULAR AND CELLULAR ONCOLOGY
ISSN 2372-3556  Vol. 30  Nº 5  2018  págs. e1389672.
The identification of therapeutic strategies exploiting the metabolic alterations of malignant cells is a relevant area in cancer research. Here, we discuss a novel computational method, based on the COBRA (COnstraint-Based Reconstruction and Analysis) framework for metabolic networks, to perform this task. Current and future steps are presented.
Autores: Cortazar, A.R.; Torrano, V.; Martín-Martín, N.; et al.
Revista: CANCER RESEARCH
ISSN 0008-5472  Vol. 78  Nº 21  2018  págs. 6320 - 6328
With the advent of OMICs technologies, both individual research groups and consortia have spear-headed the characterization of human samples of multiple pathophysiologic origins, resulting in thousands of archived genomes and transcriptomes. Although a variety of web tools are now available to extract information from OMICs data, their utility has been limited by the capacity of nonbioinformatician researchers to exploit the information. To address this problem, we have developed CANCERTOOL, a web-based interface that aims to overcome the major limitations of public transcriptomics dataset analysis for highly prevalent types of cancer (breast, prostate, lung, and colorectal). CANCERTOOL provides rapid and comprehensive visualization of gene expression data for the gene(s) of interest in well-annotated cancer datasets. This visualization is accompanied by generation of reports customized to the interest of the researcher (e.g., editable figures, detailed statistical analyses, and access to raw data for reanalysis). It also carries out gene-to-gene correlations in multiple datasets at the same time or using preset patient groups. Finally, this new tool solves the time-consuming task of performing functional enrichment analysis with gene sets of interest using up to 11 different databases at the same time. Collectively, CANCERTOOL represents a simple and freely accessible interface to interrogate well-annotated datasets and obtain publishable representations that can contribute to refinement and guidance of cancer-related investigations at all levels of hypotheses and design.Significance: In order to facilitate access of research groups without bioinformatics support to public transcriptomics data, we have developed a free online tool with an easy-to-use interface that allows researchers to obtain quality information in a readily publishable format.
Autores: Quevedo, C.; Ipinazar, M., (Autor de correspondencia); Planes, Francisco Javier; et al.
Revista: TOXICOLOGY LETTERS
ISSN 0378-4274  Vol. 295  2018  págs. S61
Autores: Apaolaza, Iñigo; San José, Edurne; et al.
Revista: NATURE COMMUNICATIONS
ISSN 2041-1723  Vol. 8  Nº 1  2017  págs. 459
Synthetic lethality is a promising concept in cancer research, potentially opening new possibilities for the development of more effective and selective treatments. Here, we present a computational method to predict and exploit synthetic lethality in cancer metabolism. Our approach relies on the concept of genetic minimal cut sets and gene expression data, demonstrating a superior performance to previous approaches predicting metabolic vulnerabilities in cancer. Our genetic minimal cut set computational framework is applied to evaluate the lethality of ribonucleotide reductase catalytic subunit M1 (RRM1) inhibition in multiple myeloma. We present a computational and experimental study of the effect of RRM1 inhibition in four multiple myeloma cell lines. In addition, using publicly available genome-scale loss-of-function screens, a possible mechanism by which the inhibition of RRM1 is effective in cancer is established. Overall, our approach shows promising results and lays the foundation to build a novel family of algorithms to target metabolism in cancer.
Autores: San José, Edurne; Ochoa, María del Carmen; et al.
Revista: SCIENTIFIC REPORTS
ISSN 2045-2322  Vol. 7  2017 
Constraint-based modeling for genome-scale metabolic networks has emerged in the last years as a promising approach to elucidate drug targets in cancer. Beyond the canonical biosynthetic routes to produce biomass, it is of key importance to focus on metabolic routes that sustain the proliferative capacity through the regulation of other biological means in order to improve in-silico gene essentiality analyses. Polyamines are polycations with central roles in cancer cell proliferation, through the regulation of transcription and translation among other things, but are typically neglected in in silico cancer metabolic models. In this study, we analysed essential genes for the biosynthesis of polyamines. Our analysis corroborates the importance of previously known regulators of the pathway, such as Adenosylmethionine Decarboxylase 1 (AMD1) and uncovers novel enzymes predicted to be relevant for polyamine homeostasis. We focused on Adenine Phosphoribosyltransferase (APRT) and demonstrated the detrimental consequence of APRT gene silencing on different leukaemia cell lines. Our results highlight the importance of revisiting the metabolic models used for in-silico gene essentiality analyses in order to maximize the potential for drug target identification in cancer.
Autores: Quevedo, C. ; Ipinazar, M.; Planes, Francisco Javier; et al.
Revista: TOXICOLOGY LETTERS
ISSN 0378-4274  Vol. 280  2017  págs. S121 - S121
Autores: Tobalina, L.; Planes, Francisco Javier;
Revista: BIOINFORMATICS
ISSN 1367-4803  Vol. 32  Nº 13  2016  págs. 2001 - 2007
Motivation: The concept of Minimal Cut Sets (MCSs) is used in metabolic network modeling to describe minimal groups of reactions or genes whose simultaneous deletion eliminates the capability of the network to perform a specific task. Previous work showed that MCSs where closely related to Elementary Flux Modes (EFMs) in a particular dual problem, opening up the possibility to use the tools developed for computing EFMs to compute MCSs. Until recently, however, there existed no method to compute an EFM with some specific characteristic, meaning that, in the case of MCSs, the only strategy to obtain them was to enumerate them using, for example, the standard K-shortest EFMs algorithm. Results: In this work, we adapt the recently developed theory to compute EFMs satisfying several constraints to the calculation of MCSs involving a specific reaction knock-out. Importantly, we emphasize that not all the EFMs in the dual problem correspond to real MCSs, and propose a new formulation capable of correctly identifying the MCS wanted. Furthermore, this formulation brings interesting insights about the relationship between the primal and the dual problem of the MCS computation.
Autores: Tobalina, L.; Rezola, Alberto; et al.
Revista: PLOS ONE
ISSN 1932-6203  Vol. 11  Nº 5  2016 
Motivation Gene Essentiality Analysis based on Flux Balance Analysis (FBA-based GEA) is a promising tool for the identification of novel metabolic therapeutic targets in cancer. The reconstruction of cancer-specific metabolic networks, typically based on gene expression data, constitutes a sensible step in this approach. However, to our knowledge, no extensive assessment on the influence of the reconstruction process on the obtained results has been carried out to date. Results In this article, we aim to study context-specific networks and their FBA-based GEA results for the identification of cancer-specific metabolic essential genes. To that end, we used gene expression datasets from the Cancer Cell Line Encyclopedia (CCLE), evaluating the results obtained in 174 cancer cell lines. In order to more clearly observe the effect of cancer-specific expression data, we did the same analysis using randomly generated expression patterns. Our computational analysis showed some essential genes that are fairly common in the reconstructions derived from both gene expression and randomly generated data. However, though of limited size, we also found a subset of essential genes that are very rare in the randomly generated networks, while recurrent in the sample derived networks, and, thus, would presumably constitute relevant drug targets for further analysis. In addition, we compare the in-silico results to high-throughput gene silencing experiments from Project Achilles with conflicting results, which leads us to raise several questions, particularly the strong influence of the selected biomass reaction on the obtained results. Notwithstanding, using previous literature in cancer research, we evaluated the most relevant of our targets in three different cancer cell lines, two derived from Gliobastoma Multiforme and one from Non-Small Cell Lung Cancer, finding that some of the predictions are in the right track.
Autores: Rezola, Alberto; Tobalina, L.; et al.
Revista: BRIEFINGS IN BIOINFORMATICS
ISSN 1467-5463  Vol. 16  Nº 2  2015  págs. 265 - 279
With the emergence of metabolic networks, novel mathematical pathway concepts were introduced in the past decade, aiming to go beyond canonical maps. However, the use of network-based pathways to interpret 'omics' data has been limited owing to the fact that their computation has, until very recently, been infeasible in large (genome-scale) metabolic networks. In this review article, we describe the progress made in the past few years in the field of network-based metabolic pathway analysis. In particular, we review in detail novel optimization techniques to compute elementary flux modes, an important pathway concept in this field. In addition, we summarize approaches for the integration of metabolic pathways with gene expression data, discussing recent advances using network-based pathway concepts.
Autores: Villar, J.; Tobalina, L.; et al.
Revista: BIOINFORMATICS
ISSN 1367-4803  Vol. 31  Nº 6  2015  págs. 897 - 904
Motivation: Elementary flux modes (EFMs) analysis constitutes a fundamental tool in systems biology. However, the efficient calculation of EFMs in genome-scale metabolic networks (GSMNs) is still a challenge. We present a novel algorithm that uses a linear programming-based tree search and efficiently enumerates a subset of EFMs in GSMNs. Results: Our approach is compared with the EFMEvolver approach, demonstrating a significant improvement in computation time. We also validate the usefulness of our new approach by studying the acetate overflow metabolism in the Escherichia coli bacteria. To do so, we computed 1 million EFMs for each energetic amino acid and then analysed the relevance of each energetic amino acid based on gene/protein expression data and the obtained EFMs. We found good agreement between previous experiments and the conclusions reached using EFMs. Finally, we also analysed the performance of our approach when applied to large GSMNs.
Autores: Tobalina, L.; Bargiela, R.; et al.
Revista: BIOINFORMATICS
ISSN 1367-4803  Vol. 31  Nº 11  2015  págs. 1771 - 1779
Motivation: With the advent of meta-'omics' data, the use of metabolic networks for the functional analysis of microbial communities became possible. However, while network-based methods are widely developed for single organisms, their application to bacterial communities is currently limited. Results: Herein, we provide a novel, context-specific reconstruction procedure based on metaproteomic and taxonomic data. Without previous knowledge of a high-quality, genome-scale metabolic networks for each different member in a bacterial community, we propose a meta-network approach, where the expression levels and taxonomic assignments of proteins are used as the most relevant clues for inferring an active set of reactions. Our approach was applied to draft the context-specific metabolic networks of two different naphthalene-enriched communities derived from an anthropogenically influenced, polyaromatic hydrocarbon contaminated soil, with (CN2) or without (CN1) bio-stimulation. We were able to capture the overall functional differences between the two conditions at the metabolic level and predict an important activity for the fluorobenzoate degradation pathway in CN1 and for geraniol metabolism in CN2. Experimental validation was conducted, and good agreement with our computational predictions was observed. We also hypothesize different pathway organizations at the organismal level, which is relevant to disentangle the role of each member in the communities. The approach presented here can be easily transferred to the analysis of genomic, transcriptomic and metabolomic data.
Autores: Rezola, Alberto; Rubio, A; et al.
Revista: PLOS ONE
ISSN 1932-6203  Vol. 9  Nº 8  2014 
Metabolism expresses the phenotype of living cells and understanding it is crucial for different applications in biotechnology and health. With the increasing availability of metabolomic, proteomic and, to a larger extent, transcriptomic data, the elucidation of specific metabolic properties in different scenarios and cell types is a key topic in systems biology. Despite the potential of the elementary flux mode (EFM) concept for this purpose, its use has been limited so far, mainly because their computation has been infeasible for genome-scale metabolic networks. In a recent work, we determined a subset of EFMs in human metabolism and proposed a new protocol to integrate gene expression data, spotting key 'characteristic EFMs' in different scenarios. Our approach was successfully applied to identify metabolic differences among several human healthy tissues. In this article, we evaluated the performance of our approach in clinically interesting situation. In particular, we identified key EFMs and metabolites in adenocarcinoma and squamous-cell carcinoma subtypes of non-small cell lung cancers. Results are consistent with previous knowledge of these major subtypes of lung cancer in the medical literature. Therefore, this work constitutes the starting point to establish a new methodology that could lead to distinguish key metabolic processes among different clinical outcomes.
Autores: Planes, Francisco Javier; Beasley, J.;
Revista: BIOINFORMATICS
ISSN 1367-4803  Vol. 30  Nº 7  2014  págs. 975 - 980
Motivation: Pathway analysis tools are a powerful strategy to analyze 'omics' data in the field of systems biology. From a metabolic perspective, several pathway definitions can be found in the literature, each one appropriate for a particular study. Recently, a novel pathway concept termed carbon flux paths (CFPs) was introduced and benchmarked against existing approaches, showing a clear advantage for finding linear pathways from a given source to target metabolite. CFPs are simple paths in a metabolite-metabolite graph that satisfy typical constraints in stoichiometric models: mass balancing and thermodynamics (irreversibility). In addition, CFPs guarantee carbon exchange in each of their intermediate steps, but not between the source and the target metabolites and consequently false positive solutions may arise. These pathways often lack biological interest, particularly when studying biosynthetic or degradation routes of a metabolite. To overcome this issue, we amend the formulation in CFP, so as to account for atomic fate information. This approach is termed atomic CFP (aCFP). Results: By means of a side-by-side comparison in a medium scale metabolic network in Escherichia Coli, we show that aCFP provides more biologically relevant pathways than CFP, because canonical pathways are more easily recovered, which reflects the benefits of removing false positives. In addition, we demonstrate that aCFP can be successfully applied to genome-scale metabolic networks. As the quality of genome-scale atomic reconstruction is improved, methods such as the one presented here will undoubtedly be of value to interpret 'omics' data.
Autores: Planes, Francisco Javier;
Revista: BIOINFORMATICS
ISSN 1367-4803  Vol. 30  Nº 15  2014  págs. 2197 - 2203
Motivation: The concept of Elementary Flux Mode (EFM) has been widely used for the past 20 years. However, its application to genomescale metabolic networks (GSMNs) is still under development because of methodological limitations. Therefore, novel approaches are demanded to extend the application of EFMs. A novel family of methods based on optimization is emerging that provides us with a subset of EFMs. Because the calculation of the whole set of EFMs goes beyond our capacity, performing a selective search is a proper strategy. Results: Here, we present a novel mathematical approach calculating EFMs fulfilling additional linear constraints. We validated our approach based on two metabolic networks in which all the EFMs can be obtained. Finally, we analyzed the performance of our methodology in the GSMN of the yeast Saccharomyces cerevisiae by calculating EFMs producing ethanol with a given minimum carbon yield. Overall, this new approach opens new avenues for the calculation of EFMs in GSMNs.
Autores: Seifert, J.; Herbst, F.A.; Nielsen, P.H.; et al.
Revista: PROTEOMICS
ISSN 1615-9853  Vol. 13  Nº 18-19  2013  págs. 2786 - 2804
Metaproteomics of microbial communities promises to add functional information to the blueprint of genes derived from metagenomics. Right from its beginning, the achievements and developments in metaproteomics were closely interlinked with metagenomics. In addition, the evaluation, visualization, and interpretation of metaproteome data demanded for the developments in bioinformatics. This review will give an overview about recent strategies to use genomic data either from public databases or organismal specific genomes/metagenomes to increase the number of identified proteins obtained by mass spectrometric measurements. We will review different published metaproteogenomic approaches in respect to the used MS pipeline and to the used protein identification workflow. Furthermore, different approaches of data visualization and strategies for phylogenetic interpretation of metaproteome data are discussed as well as approaches for functional mapping of the results to the investigated biological systems. This information will in the end allow a comprehensive analysis of interactions and interdependencies within microbial communities.
Autores: Planes, Francisco Javier; et al.
Revista: BRIEFINGS IN BIOINFORMATICS
ISSN 1467-5463  Vol. 14  Nº 3  2013  págs. 263 - 278
miRNAs are small RNA molecules ('22 nt) that interact with their target mRNAs inhibiting translation or/and cleavaging the target mRNA. This interaction is guided by sequence complentarity and results in the reduction of mRNA and/or protein levels. miRNAs are involved in key biological processes and different diseases. Therefore, deciphering miRNA targets is crucial for diagnostics and therapeutics. However, miRNA regulatory mechanisms are complex and there is still no high-throughput and low-cost miRNA target screening technique. In recent years, several computational methods based on sequence complementarity of the miRNA and the mRNAs have been developed. However, the predicted interactions using these computational methods are inconsistent and the expected false positive rates are still large. Recently, it has been proposed to use the expression values of miRNAs and mRNAs (and/or proteins) to refine the results of sequence-based putative targets for a particular experiment. These methods have shown to be effective identifying the most prominent interactions from the databases of putative targets. Here, we review these methods that combine both expression and sequence-based putative targets to predict miRNA targets.
Autores: Valgepea, K.; Rubio, A; et al.
Revista: BMC SYSTEMS BIOLOGY
ISSN 1752-0509  Vol. 7  Nº 134  2013 
Background: The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. Results: We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. Conclusions: A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.
Autores: Rezola, Alberto; de Figueiredo, L.F.; et al.
Revista: BIOINFORMATICS
ISSN 1367-4803  Vol. 29  Nº 16  2013  págs. 2009 - 2016
Motivation: The analysis of high-throughput molecular data in the context of metabolic pathways is essential to uncover their underlying functional structure. Among different metabolic pathway concepts in systems biology, elementary flux modes (EFMs) hold a predominant place, as they naturally capture the complexity and plasticity of cellular metabolism and go beyond predefined metabolic maps. However, their use to interpret high-throughput data has been limited so far, mainly because their computation in genome-scale metabolic networks has been unfeasible. To face this issue, different optimization-based techniques have been recently introduced and their application to human metabolism is promising. Results: In this article, we exploit and generalize the K-shortest EFM algorithm to determine a subset of EFMs in a human genome-scale metabolic network. This subset of EFMs involves a wide number of reported human metabolic pathways, as well as potential novel routes, and constitutes a valuable database where high-throughput data can be mapped and contextualized from a metabolic perspective. To illustrate this, we took expression data of 10 healthy human tissues from a previous study and predicted their characteristic EFMs based on enrichment analysis. We used a multivariate hypergeometric test and showed that it leads to more biologically meaningful results than standard hypergeometric. Finally, a biological discussion on the characteristic EFMs obtained in liver is conducted, finding a high level of agreement when compared with the literature.
Autores: Tobalina, L.; de Cisneros, J.; et al.
Revista: BMC SYSTEMS BIOLOGY
ISSN 1752-0509  Vol. 7  2013 
Background: The study of metabolism has attracted much attention during the last years due to its relevance in various diseases. The advance in metabolomics platforms allows us to detect an increasing number of metabolites in abnormal high/low concentration in a disease phenotype. Finding a mechanistic interpretation for these alterations is important to understand pathophysiological processes, however it is not an easy task. The availability of genome scale metabolic networks and Systems Biology techniques open new avenues to address this question. Results: In this article we present a novel mathematical framework to find enzymes whose malfunction explains the accumulation/depletion of a given metabolite in a disease phenotype. Our approach is based on a recently introduced pathway concept termed Carbon Flux Paths (CFPs), which extends classical topological definition by including network stoichiometry. Using CFPs, we determine the Connectivity Curve of an altered metabolite, which allows us to quantify changes in its pathway structure when a certain enzyme is removed. The influence of enzyme removal is then ranked and used to explain the accumulation/depletion of such metabolite. For illustration, we center our study in the accumulation of two metabolites (L-Cystine and Homocysteine) found in high concentration in the brain of patients with mental disorders. Our results were discussed based on literature and found a good agreement with previously reported mechanisms. In addition, we hypothesize a novel role of several enzymes for the accumulation of these metabolites, which opens new strategies to understand the metabolic processes underlying these diseases. Conclusions: With personalized medicine on the horizon, metabolomic platforms are providing us with a vast amount of experimental data for a number of complex diseases. Our approach provides a novel apparatus to rationally investigate and understand metabolite alterations under disease phenotypes. This work contributes to the development of Systems Medicine, whose objective is to answer clinical questions based on theoretical methods and high-throughput "omics" data.
Autores: Rubio, A; Theodoropoulos, C.; et al.
Revista: METABOLIC ENGINEERING
ISSN 1096-7176  Vol. 14  Nº 4  2012  págs. 344 - 353
Constraints-based modeling is an emergent area in Systems Biology that includes an increasing set of methods for the analysis of metabolic networks. In order to refine its predictions, the development of novel methods integrating high-throughput experimental data is currently a key challenge in the field. In this paper, we present a novel set of constraints that integrate tracer-based metabolomics data from Isotope Labeling Experiments and metabolic fluxes in a linear fashion. These constraints are based on Elementary Carbon Modes (ECMs), a recently developed concept that generalizes Elementary Flux Modes at the carbon level. To illustrate the effect of our ECMs-based constraints, a Flux Variability Analysis approach was applied to a previously published metabolic network involving the main pathways in the metabolism of glucose. The addition of our ECMs-based constraints substantially reduced the under-determination resulting from a standard application of Flux Variability Analysis, which shows a clear progress over the state of the art. In addition, our approach is adjusted to deal with combinatorial explosion of ECMs in genome-scale metabolic networks. This extension was applied to infer the maximum biosynthetic capacity of non-essential amino acids in human metabolism. Finally, as linearity is the hallmark of our approach, its importance is discussed at a methodological, computational and theoretical level and illustrated with a practical application in the field of Isotope Labeling Experiments. (C) 2012 Elsevier Inc. All rights reserved.
Autores:  Prada, J.; Beasley, J.E.; et al.
Revista: GENOME BIOLOGY
ISSN 1474-7596  Vol. 12  Nº 5  2011 
Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic networks has been much discussed, in particular noting that an important weakness in such methods is that reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into path-finding approaches via mixed-integer linear programming. This major advance at the modeling level results in improved prediction of topological and functional properties in metabolic networks.
Autores: Theodoropoulos, C.; Rezola, Alberto; et al.
Revista: BIOSYSTEMS
ISSN 0303-2647  Vol. 105  Nº 2  2011  págs. 140 - 146
The elementary flux modes (EFMs) approach is an efficient computational tool to predict novel metabolic pathways. Elucidating the physiological relevance of EFMs in a particular cellular state is still an open challenge. Different methods have been presented to carry out this task. However, these methods typically use little experimental data, exploiting methodologies where an a priori optimization function is used to deal with the indetermination underlying metabolic networks. Available "omics" data represent an opportunity to refine current methods. In this article we discuss whether (or not) metabolomics data from isotope labeling experiments (ILEs) and EFMs can be integrated into a linear system of equations. Aside from refining current approaches to infer the physiological relevance of EFMs, this question is important for the integration of metabolomics data from ILEs into metabolic networks, which generally involve non-linear relationships. As a result of our analysis, we concluded that in general the concept of EFMs needs to be redefined at the atomic level for the modeling of ILEs. For this purpose, the concept of Elementary Carbon Modes (ECMs) is introduced. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Autores: Rezola, Alberto; de Figueiredo, L.F.; Brock, M.; et al.
Revista: BIOINFORMATICS
ISSN 1367-4803  Vol. 27  Nº 4  2011  págs. 534 - 540
Motivation: The reconstruction of metabolic networks at the genome scale has allowed the analysis of metabolic pathways at an unprecedented level of complexity. Elementary flux modes (EFMs) are an appropriate concept for such analysis. However, their number grows in a combinatorial fashion as the size of the metabolic network increases, which renders the application of EFMs approach to large metabolic networks difficult. Novel methods are expected to deal with such complexity. Results: In this article, we present a novel optimization-based method for determining a minimal generating set of EFMs, i.e. a convex basis. We show that a subset of elements of this convex basis can be effectively computed even in large metabolic networks. Our method was applied to examine the structure of pathways producing lysine in Escherichia coli. We obtained a more varied and informative set of pathways in comparison with existing methods. In addition, an alternative pathway to produce lysine was identified using a detour via propionyl-CoA, which shows the predictive power of our novel approach.