Publicador de contenidos

Cointegration in Fractional Systems with Unknown Integration Orders

WPnull/02 Cointegration in Fractional Systems with Unknown Integration Orders
Download (463 Kb)


Cointegration of nonstationary time series is considered in a fractional context. Both the observable series and the cointegrating error can be fractional processes. The familiar situation in which the respective integration orders are 1 and 0 is nested, but these values have typically been assumed known. We allow one or more of them to be unknown real values, in which case Robinson and Marinucci (1997,2001) have justified least squares estimates of the cointegrating vector, as well as narrow-band frequencydomain estimates, which may be less biased. While consistent, these estimates do not always have optimal convergence rates, and they have non-standard limit distributional behaviour. We consider estimates formulated in the frequency domain, that consequently allow for a wide variety of (parametric) autocorrelation in the short memory input series, as well as time-domain estimates based on autoregressive transformation. Both can be interpreted as approximating generalized least squares and Gaussian maximum likelihood estimates. The estimates share the same limiting distribution, having mixed normal asymptotics (yielding Wald test statistics with null limit distributions), irrespective of whether the integration orders are known or unknown, subject in the latter case to their estimation with adequate rates of convergence. The parameters describing the short memory stationary input series are -consistently estimable, but the assumptions imposed on these series are much more general than ones of autoregressive moving average type. A Monte Carlo study of finite-sample performance and an empirical application to testing the PPP hypothesis are included.

Classification JEL:C22

Keywords:Fractional cointegration; Unknown integration orders; System estimates;Mixed normal asymptotics

Number of Pages:48

Creation Date:2002-11-01




Raúl Bajo

Raúl Bajo

Campus Universitario

31009 Pamplona, España

+34 948 42 56 00


Biblioteca para investigadores

+ info