Detalle Publicación


Perinatal maternal feeding with an energy dense diet and/or micronutrient mixture drives offspring fat distribution depending on the sex and growth stage

ISSN: 0931-2439
Volumen: 99
Número: 5
Páginas: 834 - 840
Fecha de publicación: 2015
Maternal nutrition during pregnancy and lactation influences offspring development and health. Novel studies have described the effects on next generation obesity-related features depending on maternal macro- and micro-nutrient perinatal feeding. We hypothesized that the maternal obesogenic diet during pregnancy and lactation programs an obese phenotype, while maternal micronutrient supplementation at these stages could partially prevent these features. Thus, the aim was to assess the influence of a perinatal maternal feeding with an obesogenic diet enriched in fat and sucrose and a micronutrient supplementation during pregnancy and lactation on offspring growth and obese phenotypical features during life course. Female Wistar rats were assigned to four dietary groups during pregnancy and lactation: control, control supplemented with micronutrients (choline, betaine, folic acid and vitamin B12 ), high-fat sucrose (HFS) and HFS supplemented. At weaning, the offspring were transferred to a chow diet, and weight and fat mass were measured at weeks 3, 12 and 20. At birth, both male and female offspring from mothers fed the obesogenic diet showed lower body weight (-5 and -6%, respectively), while only female offspring weight decreased by maternal micronutrient supplementation (-5%). During lactation, maternal HFS diet was associated with increased body weight, while micronutrient supplementation protected against body weight gain. Whole body fat mass content increased at weeks 3, 12 and 20 (from 16 to 65%) due to maternal HFS diet. Maternal micronutrient supplementation decreased offspring fat mass content at week 3 (-8%). Male offspring showed higher adiposity than females at weeks 12 and 20. In conclusion, maternal HFS feeding during pregnancy and lactation was associated with a low offspring weight at birth and obese phenotypical features during adult life in a sex- and time-dependent manner. Furthermore, maternal methyl donor supplementation protected against body weight gain in male offspring during lactation and in female offspring also during juvenile period.