Detalle Publicación

ARTÍCULO

Electrochemical real-time analysis of bacterial biofilm adhesion and development by means of thin-film biosensors

Título de la revista: IEEE SENSORS JOURNAL
ISSN: 1530-437X
Volumen: 16
Número: 7
Páginas: 1856 - 1864
Fecha de publicación: 2016
Resumen:
Bacterial biofilms led to numerous problems in a wide variety of sectors as the medical environment, the food and water industry, or the naval sector. Completely developed biofilms are nearly impossible to eliminate due to the high antibiotic resistance these complex systems present. The lack of evidential indicators of their presence at the first stages of development makes antimicrobial treatments late and inadequate. Therefore, it is necessary to find new methods for the early detection of biofilm development in order to improve the efficiency of treatments by exposing bacterial cells before encapsulation in the extracellular matrix. For this purpose, this paper presents a real-time analysis of bacterial adhesion and biofilm growth by means of electrochemical measurements. Cyclic voltammetry and differential pulse voltammetry were performed with thin-film interdigitated microelectrode-based sensors. More sensitive and selective measurements were obtained with the second technique. Bacterial adhesion was detected 1 h after the initial inoculum, and three different redox centers were identified on bacterial surfaces. Finally, bacterial biofilm growth phases (lag, exponential, and stationary) were identified through the electrochemical measurements.