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Abstract

This paper analyzes the capacity of the Hansenrdatfzan volatility bound to predict
future economic growth. Our results show that tbefplio sorting procedure employed
to construct the data used to estimate the vdlablbund is the key issue in the bound
being able to predict real activity. We find thhetvolatility bound estimated with 10
size-sorted portfolios is a powerful in-sample and-of-sample predictor of future

industrial production growth.
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1. Introduction

Does financial uncertainty predict future real @tg? The answer to this question is
particularly relevant after the recent turmoil esieeced by industrial economies over
the world. This paper shows that changes in them@oty embedded in stock prices
are a powerful indicator of future economic growtHowever, it is also the case that
the information contained in stock return co movetaeas the key issue for optimally
detecting the impact of financial uncertainty itufte real activity.

It has been recognized for a long time that thekstoarket is a leading economic
indicator. The original papers by Fama (1981, 199@d Schwert (1990) argue that
stock returns at monthly, quarterly and annual deegies are highly correlated with
future output growth rates and this predicting iabincreases with the length of the
horizon. Similarly, Stock and Watson (2003) provaleomprehensive analysis of the
forecasting capacity of different variables relatedfinancial markets in forecasting
production and inflation. They find that short dodg interest rates, the term spread
and the stock market index improve the forecaseaf gross domestic product (GDP)
growth, although they also point out non-triviaktability problems inherent in the
predictive relations.

Additionally, direct measures of uncertainty indntial markets seem to have
relevant information about macroeconomic variahleshe future. Schwert (1989)
suggests that market volatility reflects uncertambout future cash flows and discount
rates. However, he does not find evidence supmpittis argument since during his
sample period volatility rises after the beginnofgrecessions. Campbell et al. (2001)

find that stock volatility at a market, industryncafirm level helps to predict GDP

! Bloom (2009) argues that uncertainty shocks, apprated by stock market volatility, cause firmstwi
non-convex labor and capital adjustment costs taydeiring and investment since higher uncertainty
increases the real option value of waiting. Aggteggowth productivity then falls after the uncerta
shock because the adverse effects in employmenhaastment slow down the reallocation from low- to
high-productivity firms, which explains the reakiaity growth rate in the economy.



growth during the post-war period. More recentlgrrfari and Mele (2011) show that a
slowly changing measure of stock market volatilityat captures the long run
uncertainty in the financial market explains futumends of economic activify.
Moreover, this measure of stock market volatilitygether with the term structure
spread, anticipate all National Bureau of EconorRiesearch recession episodes,
including the recent financial and credit crisig. dddition, Chauvet, Senyuz, and
Yoldas (2011) report that the long-run componerfirancial volatility, in the sense of
Adrian and Rosenberg (2008) but extracted from reémdized volatility of market,
industry, and 10-year zero coupon Treasury bondnst helps in predicting economic
activity.®

Finally, Nieto and Rubio (2011), using a consumpiiased parametric approach
for measuring the uncertainty embedded in finangiaes, also predict real activity.
Specifically, they use the volatility of alternaticonsumption-based stochastic discount
factor specifications as a measure of uncertaMtgrking with contemporaneous and
long-run recursive preferences, they argue thatsigaificant predictability of this
volatility relies mainly on the joint effect of thecomponents, that is, the volatility of
consumption growth, stock market volatility, ane ttovariance between consumption

growth and market returris.

2 Fornari and Mele (2011) justify their findings lfmhing the theoretical framework of Mele (2007,
2008), who shows the countercyclical and asymmattare of volatility in recessions and expansions.

% In related literature, Andreou, Ghysels, and Kellos (2010) employ implied volatility as a predicof
economic activity and Backus, Chernov, and Mar2@l(l) employ equity index options to quantify the
distribution of consumption growth disasters. Them&thors show that options suggest smaller
probabilities of extreme outcomes than have beémated from macroeconomic data. It is important to
point out that not only lagged market returns aathtity have been employed as leading indicatfrs
economic activity. Naes, Skleltorp, and Arne-Odeda@011) report a strong relation between stock
market liquidity and the business cycle.

* The authors also show some power in predictingkstmarket returns at relatively long horizons.
Although they show some predicting capacity at shorizons, the predictability of stock market reis

is much weaker than at long horizons. Our curreqiep does not address the issue of predicting stock
returns. For recent literature on predicting futateck market excess returns, see, among manysether
Campbell and Yogo (2006), Cochrane (2008), Goyal Wrelch (2008), Brennan and Taylor (2010),
Ferreira and Santa-Clara (2011), and Cochrane §2011

® The authors also find similar effects using nopasable durable and nondurable preferences.



This paper employs a much simpler approach to tigade the predictability of
real activity. In particular, we use the Hansenadagthan (HJ hereafter, 1991)
volatility bound from a model-free perspective mththan a marginal rate of
substitution approach. Given a set of portfoliaures and the average risk-free rate for
the corresponding sample, we obtain the volatilitynd using the expression proposed
by HJ and a rolling window of five years of pastadaVe show how the model-free
volatility bound is a powerful predictor of futuezonomic growth for both in-sample
and out-of-sample contexts. In the end, the HJ Bosithe maximum Sharpe ratio; thus
our measure includes not only excess market retbutsalso information about
correlation or exposure to common shocks and masddetility. However, the paper’'s
main finding is that the predictability of the baludepends on the sorting procedure
used to construct the equity portfolios employedhi@ bound’s estimation. Hence, the
dynamic interaction effects between individual Eoseem to be a key issue in
extracting the information contained in the stockrkets about future real activity.

This paper is organized as follows. Section 2 dessrour data and Section 3
presents the main in-sample predictability resuissng size-sorted portfolios. Section 4
discusses the forecasting evidence using altemaivting procedures and Section 5
compares the predicting ability of the HJ measuth vespect to standard state variable
predictors. Section 6 performs the out-of-samplalymms and Section 7 further
investigates the reasons underlying the forecastapacity throughout the principal
components of the variance—covariance matriceshefalternative equity portfolios

employed in the paper. Section 8 concludes withinansary and final remarks.



2. Data

Most stock market data are from Kenneth French’Bsite We obtain monthly data

from January 1927 to December 2010 for the markeirm (R,,), the risk-free rate
(Rs ), the small-minus-big§MB and high-minus-lowHML) Fama and French (1993)

risk factors, and 10 value-weighted size-, booknatrket-, momentum-, and dividend
yield-sorted equity portfolios. Table 1 containschgptive statistics on these portfolios.
We observe the well-known size and value premiaa®annualized basis, small firms
earn, on average, 7.4% more than large firms, widlae firms earn 6.3% more than
growth firms. Similarly, high-momentum companiestaob a 14.4% higher average
return than low-momentum firms, while high dividegckld stocks achieve a 1.9%
higher return, on average, than low dividend paynséocks. As expected, we observe
more dispersion in average returns in size-, boekwirket-, and momentum-sorted
portfolios than in dividend yield-sorted stocks. the same time, small, growth, and
low-momentum stocks present higher volatility tharge, value, and high-momentum
firms. Extreme dividend yield stocks are more vt#dahan intermediate dividend yield
firms, but the high and low dividend yield portimiolatilities are very similar. Finally,
the correlations between small and large compamadae and growth firms, high- and
low-momentum stocks, and high and low dividend d/iaksets are found to be the
smallest within a given sorting category: 0.69814@, 0.594, and 0.667 for size-, book-
to-market-, momentum-, and dividend yield-sortedfpbos, respectively.

The price-dividend ratio in logD) is computed from the original series on
Robert Shiller's website. Additionally, yields ftre 10-year government bond, the one-
month T-bill, and Moody’'s Baa Corporate Bond semes obtained from the Federal
Reserve Statistical Release. We then compute @te gariables based on these interest

rates: a term structure slop€efn), computed as the difference between the 10-year



government bond and one-month T-bill yields, ardefault premium Defaul) that is
the difference between Moody's yield on Baa CorgorBonds and the 10-year
government bond yields.

Given the real activity forecasting evidence fraggregate illiquidity reported
by Naes, Skjeltorp, and Arne-Odegaard (2011), we ake a market-wide illiquidity
indicator (lliq) based on the aggregate illiquidity ratio propobgdAmihud (20025.
This is the ratio of the absolute daily return otlee dollar volume for a given stock,
which is closely related to the notion of price aap This measure is averaged monthly
and across all available stocks to obtain the ntawiae illiquidity measure for each
month in the sample. As in Naes, Skjeltorp, andeAddegaard (2011), we demean the
series relative to a two-year moving average of#rees.

We also obtain nominal consumption expendituresnondurable goods and
services from the Table 2.8.5 of the National tng# of Pension Administrators
(NIPA). Population data are from NIPA’s Table 2r&lahe price deflator is computed
using prices from NIPA’'s Table 2.8.4 with the ye2000 as its basis. All this
information is used to construct monthly seasonadgjusted real per capita
consumption expenditures on nondurable goods andces AC). Finally, monthly
data of the industrial production indetl) are downloaded from the Federal Reserve,

with series identifier G17, IP Mayor Industry Graup

® The main advantage of Amihud’s illiquidity ratie that it can be easily computed using daily data
during long periods. Moreover, Hasbrouck (2009)vehthat, at least for US data, Amihud’s ratio lrette
approximates Kyle's lambda relative to competingsniees of illiquidity.

" With the exception of market-wide illiquidity, mttly data for all these state variables are avkilab
from January 1965 to July 2010. The illiquidity iedole is available from January 1965 to December
2008.



3. In-Sample Predictability of Real Activity with the VVolatility of the HJ Bound

We first estimate the monthly HJ volatility bounfitbe model-free stochastic discount
factor with overlapping sub-periods of five yearfsnoonthly data from the 10 size-
sorted portfolios, using

(1 - EMER)V 1y - EM)ER)]. R

aM)z
whereM is the stochastic discount factor satisfying th&-order pricing equations,

1= Etl_Mt+1Rjt+1]’

Ec[Mes1]=1/Ress

where 1, and E(R) are theN-vectors of ones and average gross returns, respigct

V1 is the inverse of the variance—covariance matfixeturns; andR; is the gross

risk-free rate. The monthly estimated volatilityr@sponds to the average level of the
risk-free interest rate for each of the five-yeab-periods. Unlike the work by Nieto
and Rubio (2011), this procedure does not depermahgrparticular consumption-based
stochastic discount factor specification, so théepial predictive relation does not
depend on any given consumption dynamics.

Figure 1 shows this rolling-window HJ volatility lod and the National Bureau
of Economic Research’s recession bars for the gdraom 1931 to 2010. It shows how
the bound tends to increase before macroeconormess®ns, reaching its historical
peak well before and during the recent financiamuil. Although the peaks of the
bound tend to occur during the corresponding rémessionths, the volatility of the
stochastic discount factor always increases bef@atart of a recession.

Panel A of Table 2 contains the results from thiéowang predictive ordinary
least squares (OLS) autocorrelation-robust staneiacd regressions:

APl =a+ B0 M)+, 2)



where 4IPI ., is the growth of industrial production at horizafsone, three, six, 12,
and 24 months calculated &Pl ., =In(IPl.,,/IPI;), ando;(M) is the volatility of

the stochastic discount factor available at mdnttmat is estimated with five years of
monthly data up to month Given data restrictions on some of the stateatses used
later, we run these predictive regressions betwaenary 1965 and July 2010.

The regression in expression (2) is estimated with) from the use of 10 size-

sorted portfolios, as well as with the five smallesd five largest portfolios. This

separation allows one to analyze whether the fotexs relation is especially strong
when the uncertainty measure tracks the higheregegfr sensitivity of small companies
to economic shocks. The first block of Panel A able 2 reports the key results of the
paper. There is a negative and significant relatign between the volatility of the

stochastic discount factor and future industriadoction growth. Both the magnitude
of (the absolute value of) the coefficients and Rievalue increase considerably with
the time horizon, with Ras high as (approximately) 20 percent at the 24tmon

horizon. If we interpreio, (M) as a measure of the financial uncertainty embedted

stock prices, these results show that higher uaicgyt has a negative and significant
impact on future real activity. Therefore, our meas of uncertainty conveys
information about future economic growth.

The results using the smallest or largest setzefsorted portfolios separately also

tend to show a negative relationship betwegfM) and future real activity. Once

® Because the HJ volatility bound is very persistert also calculate the bias-corrected estimatdrtae
corresponding bias-correctedtatistic proposed by Amihud and Hurvich (2004)e3e authors suggest a
regression method for hypothesis testing in pragictegressions in which the independent variable i
persistent and its innovations are correlated thithdependent variable. This produces biased dstma
and biasedt-statistics. The authors’ simulations show thatirtlaljustment outperforms other bias
correction methods, such as those suggested bybStayh (1999) and Lewellen (2004). Consequently,
we replicate the forecasting regressions with tpearcedure. The results are qualitatively the same
those reported in Table 2, and the predicting dapa€ the bound remains statistically significaifhe
results are available upon request.
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again, the longer the horizon in the regressioe, stronger the predicting results.
However, for the one-, three-, six-, and 12-morahzZons, both the magnitudes of the
coefficients and the Rare smaller for both sets of five portfolios ttan the original

10 size-sorted portfolios. For the longest horizive, R value for the original set and
the five largest portfolios are 19.6 and 18.1 peticeespectively. It is somehow

surprising that the Rvalue wheno, (M) is calculated for the five smallest portfolios is

relatively lower and equal to 12.6 percent, althotlge magnitude of the negative slope
coefficients are almost the same in all three caSegserally speaking, we can conclude
that forecasting capacity seems to be strongemgualinassets in the stock market, as
represented by the 10 size-sorted portfolios, rath@n employing either the sets of
largest or smallest stocks. Therefore, these ingsults do not allow us to associate the
forecasting ability reported with the potentiallyegter or lesser sensitivity of alternative
equity portfolios to economic shocks.
To further investigate this finding, Panel B of Tal2 reports the results of the

following forecasting regressions:

APl =a+ ot®(M)+ Boo ™M)+ 4,
10 Big (3)
APl =a+ B op (M) + Booy O (M) + s,

where g°™(M) and o9

(M) are the volatility of the HJ bound estimated by
expression (1) for the five smallest and five latg@ortfolios, respectively, and

o°(M) is the bound for the 10 size-sorted portfoliose Time series of these three HJ

bounds are displayed in Figure 2. Although theeseof Jtsma”(M) and JtBig (M)
cross each other in several points in time, depgnadin the particular state of the
economy, the series @:ftlo(M) is practically always above the other two estioraiof

the HJ bound.



The results provided in Panel B of Table 2 show tha regression coefficients

associated wittr{°(M ) and R are practically the same as in Panel A. The inatusf

oo™(M) and 0f9(M) does not add any significant explanatory powefutdire

economic growth once we control for the behaviotha&f HJ bound under all 10 size-

sorted portfolios. The only exception occurs whes also employatBig (M) at the

longest horizon. Even in this case, the coefficasstociated withr,2'9 (M) is estimated

with much less precession than the coefficientedl4o oi°(M ), and the magnitude of

the 0£9(M) coefficient is (in absolute value) approximateBifithe o°(M) slope

coefficient.

We conclude that the forecasting ability of theafdity of the stochastic discount
factor as characterized by the HJ bound lies inusge of the 10 size-sorted portfolios
rather than a subset of the five smallest or famgedst portfolios. It seems that the
inclusion of all assets when estimating the HJ ldosnmportant to capture future real

activity.

4. In-Sample Predictability of Real Activity: Other Portfolio Formation Criteria

We now estimate three additional alternative messwof the HJ volatility bound by

using the returns of 10 book-to-market-, momentuand dividend yield-sorted

portfolios. As before, we employ a rolling windowfive years of past monthly returns.
Figure 3 displays the HJ bounds for the full sampdeiod. We observe important
differences between the alternative estimated bauNdte that the volatility dispersion
and the complex dynamic correlation behavior amitveg10 portfolios in each of the
four sets employed can generate potentially diffetame series of the HJ bounds. It

seems particularly important to note that the Hdngbfor the momentum portfolios

10



increases before the recessions at the end of98@sland at the beginning of the new
century. These peaks are probably associated Wihuhcertainty generated in these
portfolios after the crash of October 1987 andmyithe dot-com bubble. On the other
hand, the highest peak before the actual crisedeisrly from the HJ bound estimated
with the 10 size-sorted portfolios.

We perform the forecasting regressions of equaf{®nusing the HJ bound
estimated with the 10 portfolios of each set asl wslwith the two subsets of five
portfolios for all three sorting criteria. Panels®C of Table 3 report the results for the
book-to-market-, momentum-, and dividend yield-sdmportfolios, respectively.

Surprisingly, independently of the forecasting hon, none of the estimates of
the HJ volatility bound constructed from these fodid sets present significant
predicting results. It may be the case that theadyos of the volatility dispersion and
the correlation between stocks included in therrdtive sorted portfolios induce a
different forecasting ability of real activity. Albugh we return to this issue in Section 7
below, we point out that the annualized volatildispersion between the extreme
portfolios contained in the descriptive statisté¢S able 1 turns out to be the highest for
the size-sorted portfolios. In particular, the dewsdl portfolios have an 18.6 percent
higher annualized volatility than the largest s&cWhile the dispersion is only 12.7
percent, 11.4 percent, and 0.9 percent for the owokarket-, momentum-, and
dividend vyield-sorted portfolios. Similarly, thesgersion between the minimum and
maximum correlations between the portfolios is 0284, 0.35, and 0.26 for the size-,
book-to-market-, momentum-, and dividend yield-sdrportfolios. The dynamics of
these volatilities and correlations seem to be targi@lly key factor in explaining the

different predicting capacities of the alternatidd bound estimates. If so, sorting

11



procedures and the corresponding time-varying difreation effects would be a

relevant issue for forecasting production growtthwiolatility bounds.

5. In-Sample Predictability of Real Activity: Competing Predictors

Given the significant predicting ability of the Halatility bound estimated with 10

size-sorted portfolios, we now investigate how ibaur forecasting results are to
competing predictor variables of real activity. \&nsider predictors related to interest
rates, stock market returns, and illiquidity. Thestjfication of the selection of these
alternative predictors is presented in Section & the forecasting results are
discussed in Section 5.2. In addition, lagged \saloé the dependent variable are
included in the forecasting regression to pick opeptial autoregressive dynamics in
industrial production, since we consider growtlesdor periods longer than one month.

Section 5.3 contains the results of this analysis.

5.1. Competing Predictors of Real Activity

The term spread, measured as the difference bettiveenterest rates on long and
short maturity government debt, is probably the tmosmmon financial leading
indicator of real activity. Among many others, [Efx and Hardouvelis (1991), Estrella
and Mishkin (1998), Stock and Watson (2003), AngzEesi, and Wei (2006), and
Fornari and Mele (2011) show the significant prede content of the spread for
production growth, including its capacity to forsta recession indicator in probit
regressions. Additionally, there is a growing body literature exploring the
transmission of credit conditions into the realremoy. Among recent papers, Mueller
(2009) and Gilchrist, Yankov, and Zakrajsek (2088pw the forecasting power of the

term structure of credit spreads for future ougnatwth. These authors argue that there

12



is a pure credit component orthogonal to macroexanconditions that accounts for a
large part of the predicting capacity of creditesguts.

Moreover, as long as stock prices equal the exgetitcounted value of future
earnings and dividends, stock returns should adsasleful in forecasting output growth.
This is the insight of Fama (1981, 1990). On tophat, given the well-known evidence
of the aggregate dividend yield being a powerfiddictor of future market excess
returns, as discussed recently by Cochrane (2814 price—dividend ratio becomes an
appropriate state variable to use for forecastesj activity. Two other stock market
indicators have become popular in predicting outpatvth. Naes, Skjeltorp, and Arne-
Odegaard (2011) argue that stock market liquidityds to dry up before a crisis in the
real economy. In fact, they show that measuresoakamarket liquidity contain leading
information about future economic growth, even raftentrolling for other financial
leading indicators. Finally, there has been comalile recent attention to financial
stock market volatility as a predictor of real aityi. Fornari and Mele (2011) argue that
it is important to extract the long-run componehsimck market volatility when using
this variable as a predictor of future growtlio isolate extreme financial episodes that
may not be necessarily informative about the ecor®ruture scenario, the authors
propose a simple moving average of the past 12 msoof absolute returns as the

appropriate forecaster of real activity.

5.2. In-Sample Predictability with Competing Predrs
We next employ all seven variables discussed alzow® compare their in-sample

predicting ability with that of the HJ volatilitydund as estimated with 10 size-sorted

° See the similar arguments of Chauvet, SenyuzyYatahs (2011).
13



portfolios. We run the following regressions wittdividual predictors and with pairs of

predictors that always include the HJ bound:

APl g4r =a+ P10y (M)+ SR + B30t (R ) + B4PDy + BsDef; + BgTermy

. 4
+ Gl + &y g,

where o(R,) is the market return volatility estimated at eastonth t with

overlapping sub-periods of five years of monthlyures, to be consistent with our
measure of the HJ bound.

The results are reported in Table 4. Independearitthe alternative state variable
employed and forecasting horizon, the HJ volatibbund has always a negative and
highly significant relation with futuréPl growth. Hence, our forecasting relation is
systematically estimated with high precision.

At the one-month horizon, all state variables pmessome evidence of
predictability, except the stock market return. pdédictors present the expected signs.
The term spread coefficient is positive, while tiest of the state variable estimators
have the theoretically correct negative sign. Nbtd increases in the volatility of the
market, the default spread, and market-wide iltlgyi signal a higher degree of
uncertainty, and we also know that increases indiveend yield forecast future
positive market excess returns, which implies thateases in the price—dividend ratio
should predict negative market returns and a negatmpact on real activity. Once we
combine on an individual basis the HJ volatilityubd with the rest of the predictors, it
turns out that the coefficients associated with thhatility of the market return, the
price—dividend ratio, and the default spread atamesed with much more precision.
This result does not seem to hold for the termraadket-wide illiquidity variables. It is
especially relevant the combined effects of thebbidnd and the default spread; the R

value at just the one-month horizon is 9.38 petcent

14



It is important to point out that we display thesukts using the volatility of the
stock market estimated at each titneith the past five years of monthly data. We also

repeat the regressions using the estimate suggedt@dnari and Mele (2011):

AGNE ﬁ 122 Roeeak | )

where /77/2 is a scaled factor related to the use of absoratees. This measure

provides slightly better results than the previousasure of market volatility. In
particular, the coefficient is -0.072 and it iscabstimated with higher precision, so that
the t-statistic is -1.99 rather than -1.21. Howeverdaes not change the conclusion
about the forecasting power of the HJ bound.

At the three-month horizon, all predictors seenbeaindividually significant and
with the correct sign. Interestingly, the volayiliof the stock market loses forecasting
capacity, although, as when we use the estimatendiy expression (5), the coefficient
Is estimated with more precision, and thstatistic becomes -1.6. In the combined
regressions, the higher’ Rtatistics are obtained when adding the volatditghe stock
market, the price—dividend ratio, and the defaptead to the HJ volatility bound. The
regression with the HJ bound and the price—divideatib presents an Fof 15.5
percent.

Finally, for all other longer horizons, the resudi® similar, except that the term
spread becomes much more relevant in forecastitppbgrowth and the default spread
loses its significant predicting abilittHence, the combinations of the HJ volatility
bound with the stock market return, the volatildfy the market, the price—dividend
ratio, and the term spread seem to be relevanbriaat predicting future production
growth at long horizons. At the six-month horizdre thighest Ris observed when

combining the HJ bound with the price—dividendaatvhile the combinations of the

15



volatility bound with the term spread have the leigthR statistics at the 12- and 24-
month horizons. At the longest horizons, the HJroband term spread explain 28.3
percent of the variability of future production gith. To conclude, the default spread
conveys information about future economic growthredéitively short horizons, while

the term spread has predicting capacity at longaedns. In all cases, the HJ volatility
bound calculated with 10 size-sorted portfolios aeme a strong predictor of real

activity.

5.3. Lagging the Dependent Variable
Since we make multi-step ahead predictions, seaaklation in industrial production
growth is expected. This suggests that the foremasegressions should also include
lagged values of the dependent variables. Therefggeow run the regression
APl =a+ P10 (M)+ BoAP1 L, + iy (6)

The results are shown in Table 5. The autoregresstinuicture olPl growth is
confirmed for horizons of one, three, and six mentklowever, the coefficients
associated with the HJ volatility bound remain riegaand statistically significant in
all cases. In fact, these coefficients are veryilamto those reported in Table 2.
Therefore, although the inclusion of the laggededeient variable helps predict real
activity, lagging the dependent variable does redns to have any effect on our
previous conclusions regarding the importance efHkl volatility bound as an ex ante

uncertainty predictor of economic cycles.

6. Out-of-Sample Tests
The predicting tools employed so far examine thétylof the predictors had we been

able to use the coefficients estimated by thedaltiple regressions. We now consider
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tests designed to generate more closely actualtireal forecasts. We employ two
alternative statistics for testing the out-of-saenptcuracy of two competing models:
the t-test proposed by Diebold and Mariano (1995) amdRistatistic of McCracken
(2007). In our case, the two compared models avaysl nested. The restricted model
contains only one of the competing predictors alyassed in our in-sample tests: either
the stock market return, the volatility of the &amarket due to Fornari and Mele
(2011), the price—dividend ratio, the default spgreathe term spread8.0n the other
hand, the unrestricted model contains such a poedend the HJ volatility bound
estimated with 10 size-sorted portfolios.

We now briefly describe this methodology. The taample period containk +
P observations, where the initial in-sample estioraperiod employs information from
1to T, and the out-of-sample forecasting period goesiffo+ z toT + P, z being the
forecasting horizon. At each forecasting peticdT + 7, ..., T + B we estimate the
two competing nested models using information ugh®previous periods, generate

the prediction, and compute the forecasting eMare formally, the restricted model is
Yo = B+ BRX ., +Upg , S=T+1,..t-T. (7a)
The prediction under the restricted model is
Yoo =55+ B X e (7b)
and the prediction error will be
Ure =Y ~ Yre- (7¢)
Similarly, the unrestricted model that includes Hag volatility bound, the next period
prediction and forecasting error are

Yo =5 +00 Xeey + 550 (M)+uys , sS=T+1,..t-7, (8a)

1% Since the market-wide illiquidity variable contsidata only until the end of 2008, our out-of-sampl
tests do not employ this state variable.
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Yor =B + B Xier + 85 01 (M), (8b)
Uye =Y, = Yot - (8c)
We next compute the vector of loss differentiabnatedd, that compares the two

square errors at each moritAnd the mean squared forecasting error (MSE) dch e

model:
d —_n2 _n~2 —
t TUg— UG ,t=TH+r7,...T+P, 9
T+P
MSE: = (P-7+2)™ > 0, (10)
t=T+r
T+P
MSEy =(P-7+2)™ > if; . (11)
t=T+r

The two statistics for testing equal forecastinguaacy have the null that the loss
differentials are zero, on average. The Diebold-dfer (1995) statistic is &test

expressed as

MSE-t = (P—r+1)‘]/2$ : (12)
VSq
whered =(P-7+1)7* Zdt and Sy is a consistent estimator of the variance of the
t=T+r

loss differential that admits heteroskedasticityd autocorrelation. We employ the
Newey-West (1987) specification and, following ®land McCracken (2011), a lag
length ofk = 1.5[7. Hence
- k k=| | . _1T+P B B
S, = Z(T](P—T—J+l) > (d, -d)le,-; -d) . (13)
j=—k t=T+7

The McCracken (2007) statistic is Brtest given by
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MSE-F =(P-r+1) MSEGS_EI\TSEJ . (14)

It must be noted that the loss differentials arasneed with an error that is due to
the fact that the beta coefficients are unknowris Tinplies that the exact distribution
of both statistics is also unknown and that themgdgtic distribution can only be
obtained under restrictive assumptions that incluole-nested models.As previously
pointed out, this paper compares nested modelsthtrcase, Clark and McCracken
(2011) suggest deriving the asymptotic distributiigna fixed regressor bootstrap, and
they show that the test statistics based on the@osed bootstrap have good size
properties and better finite-sample power thanr@étieve bootstraps. This method is
based on the wild fixed regressor bootstrap deeeldyy Goncalves and Killian (2004)
but adapted to the multi-step framework of out-afaple forecasts. To implement this
method, we use the followings steps.

1. We estimate both the restricted and unrestrictedels using the full sample period

and we compute the residuals from the unrestrictedel:
A SU L U U -
Oy =Y, =Bo +Bi Xir + B3 0 (M), t=1+7,. T+P.
2. We assume and estimate an MA—(1) process to capture the implicit serial

correlation in the residuals fromratep-ahead forecast,
Uyt = & + 018 g+ F 06 (ra)  t=1+T, T +P.
3. We simulate a sequence of independent and a@dgtidistributedN(0,1) random
variables denoted by, and generate artificial residuals by using théreges of the

MA process:

Uye =& + Ofh1Eea + - A () Ei(ra) » 1=20,.. T +P.

1 See West (1996) and Clark and McCracken (2001a fitiscussion.
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4. We simulate an artificial series of the depemdeariable using the artificial

residual and imposing the null hypothesis:
\?t* :,ZJ’OR +ﬁ’1RXt_, +ufJt ,t=2r,...T+P.

5. We compute both the MSEstatistics and MSHE-statistics using these artificial
data as if they were the original data.

6. Repeat steps 3-5 5,000 times and ghalue is the percentage of times the
simulated statistic is greater than the real siatis

The out-of-sample results are reported in TableThe first row for each

forecasting horizon shows the relative MSE given IWie expression

RMSE= MSE” /MSER . Note that when the RMSE is less than one, theisian of

the HJ volatility bound as an additional prediataproves the forecasting capacity with
respect to any of the competing standard predic®etow each of the test statistics
employed, we report the correspondipgyalue obtained through the fixed regressor
bootstrap explained above. The empirical evidemscguite conclusive. Most of the
time, we show that the inclusion of the HJ bourghificantly improves the predicting
capacity of the model. The RMSE is practically ale/éess than one, and thevalues
tend to be very low. It turns out that this is ttese independent of the forecasting
horizon. The only variable that competes on a asimilasis regarding its capacity to
predict real activity is the term spread. For hong of one, three, and six months the
null of no difference between the forecasting exrof the two models is not rejected.
For horizons of 12 and 24 months, the RMSE is greaan one and the null is rejected,
indicating that the model including only the termpread has better out-of-sample
performance. Therefore, the term spread becomesttar dorecaster the longer the
predicting horizon. On the other hand, the defgplead presents with precisely the

opposite behavior. Note that this is consistenh e in-sample results contained in
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Table 4. Finally, we should mention that the stowkket volatility consistently shows a
higher MSE than the HJ volatility bound. In fadhettest statistics show that the
inclusion of the HJ volatility bound always sigodntly improves the predicting

capacity of the stock market volatility.

7. Principal Component Predictability

The finding that predictability of real activity cars when HJ volatility bound is
estimated by using size-sorted portfolios is bateresting and surprising. It seems that
the time-varying behavior of correlations and vacm dispersion between stocks may
be the reason behind our results. This sectionigesvfurther empirical evidence
analyzing the principal components from the sepaftfolio returns of the alternative
sorting procedures. Principal component analysmsval us to decompose the behavior
of the whole set of portfolio returns, within a givsorting procedure, into orthogonal
components each corresponding to a different setfafmation.

By definition, the first principal component is tfreormalized) linear combination
of portfolio returns with maximum variance. Tablashows that the first three principal
components explain 98.6, 96.0, 96.0, and 94.0 pewdfethe total variability of returns
for the size-, book-to-market-, momentum-, and dabwd yield-sorted portfolios,
respectively. The first principal component of thige-sorted portfolios explains a
higher percentage than the first principal comptheof the alternative sorting
strategies. Additionally, we observe that the datien coefficients between the first
principal components of the book-to-market-, moraent and dividend yield-sorted
portfolios are 0.97 for the three pairs, while tuerelation between the first principal
components of these portfolios and the size-sqrtetfolios is slightly lower and equal

to 0.95, 0.93, and 0.91, respectively. The secaimtipal component of the size-sorted
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stocks has a correlation coefficient of 0.62 whbk second component of the book-to-
market—sorted portfolios, and much lower correfatiwith the rest of the second
principal components. We also find correlationshiigthan 0.45 between the second
principal components from the book-to-market- amddénd yield-sorted assets and
from the momentum- and the dividend yield-sortedtfpbos. Finally, correlations
between the third principal components from thefed#int sets of portfolios are
relatively much lower than in all other cases.

To understand the economic factors behind theseipal components, we next
perform the following regressions for each of theeé principal components and each
portfolio set separately:

PCi, =a+pBX;+u;, i= 123, (15)
where X; is, alternatively, the stock market return, thegrdividend ratio, the SMB

or HML Fama—French factors, the default spreadie¢h@a spread, the real consumption
growth, and the market-wide illiquidity factor.

The results are reported in Table 8. The varighdftthe first principal component
from the size-sorted portfolios is clearly explair®y the stock market return. However,
R? is 86.6 percent, which is relatively lower thae hercentage explained of the first
principal component by the market return when usfigrnative sorting procedures.
The R values for the book-to-market-, momentum-, andidgind yield-sorted
portfolios are 92.9, 93.2, and 92.6, respectivéljAs expected, when we run the
regression of the first principal component of #iee-sorted portfolio returns into the
SMB factor, we find that this factor explains 3@drcent of the variability of the first

component. Hence, the first principal componenthef size-sorted stocks is explained

12 The first principal component of the alternativertfolio classifications is mostly explained by the
stock market return and the Fama—French factors.prite—dividend ratio, the default and term spread
and the illiquidity factor do not seem to be relevin capturing the variability of the first prinzl
component; however, consumption growth explains 38 2.9, and 4.0 of its variability.
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not only by the aggregate market factor but alsate difference between the returns
of small and large assets. We do not observe dasinesult for other portfolio sets; any
of the first principal components in these casesdasically explained through the stock
market return. For example, the SMB and HML factmmky explain 8.8 percent and 0.6
percent of the variability of the first principabmponent of the book-to-market—sorted
portfolio returns.

The second principal component of the size-sortedfgios is explained, as
before, by the stock market return and the SMBofactvhile the third principal
component is basically the SMB factor with ahd® 44.3 percent. On the other hand,
the second principal component of the book-to-ntaakksets is mainly associated with
the market return and the HML factor, and its thprehcipal component is the HML
risk factor with an Rof 22.4 percent. Note that this represents hathefexplanatory
capacity of the SMB factor for the third principabmponent of the size-sorted
portfolios. Regarding the momentum- and dividergldssorted portfolios, it seem that
the SMB and HML are relevant factors for the thpdncipal component of the
momentum sorting, with more explanatory capacityS®B than for HML. Lastly, the
HML factor explains as much as 53.0 percent ofvdugability of the second principal
component of dividend yield-sorted returns.

To conclude, the size factor appears to be relegatyt when we use the size-
sorted portfolios. In all other cases, either ttoels market return and/or the HML factor
explains the behavior of the principal componéntBherefore, size seems to be a key
characteristic in explaining the forecasting catyaci the HJ volatility bound relative to

the bound’s alternative measures.

13 Only the third principal component of the momentsmnting has a higher’®or SMB than for HML.
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To support this conjecture, we run predicting regiens using the HJ volatility
bound estimated from the set of principal componenstead of the set of portfolio
returns. Each individual regression employs thebbidnd estimated with one, two, or
three principal components for each portfolio-swytprocedure. We can then check
which of these alternative bounds generates a g#roforecasting ability of real
activity. Table 9 contains the results from thédwing predictive OLS autocorrelation-

robust standard error regressions:

APl =a+ Lot (M) +e.,, (16)

where g “(M) now refers to the HJ volatility bound estimatedhwthe first, the first

two, or the first three principal components froatle set of portfolio returns. Panel A
of Table 9 contains the evidence from the HJ bouestsmated with the principal
components of size-sorted portfolio returns. Itvehidhat the first principal component
does not produce significant predicting power. Wechto add the second principal
component to capture forecasting ability similathat shown in Table 2 for the six-,
12-, and 24-month horizons. Moreover, we even needdd the third principal
component if we want to obtain forecasting capaaitthe shortest horizons. Given the
relevance of the SMB factor in explaining the secand third principal components of
the size-sorted portfolios, this result suggestst tthe dynamic behavior of the
difference between the returns of small and lag#f@ios may be the ultimate reason
behind the forecasting ability of the HJ volatillhpund. It is not only the influence of
the interaction between the numerator and denooriratthe maximum Sharpe ratio
that helps predict real activity, but also, andremeore importantly, the time-varying
behavior of small firms relative to large ones.

Finally, confirming the evidence provided in TallePanels B to D of Table 9

show no evidence of predictability when the voitilbound is estimated using
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principal components from book-to-market—, momenturn dividend vyield-sorted

portfolios.

8. Conclusions

The uncertainty embedded in equity portfolio retuhrelps predict future economic
growth. This paper’'s main contribution is to showeav measure of capturing changes
in uncertainty incorporated in stock returns tluae€ast real activity that is based on the
HJ volatility bound. However, data employed in #gstimation of the volatility bound
seem to be the key issue in properly incorporatingertainty shocks that convey
information about future economic growth. Alternati equity portfolio sorting
formations lead to very different conclusions relyag the forecasting ability of the
bound. It turns out that sorting stocks on the afisize generates a very powerful
leading predictor. We show that the HJ volatiliyubd, when employing data on 10
size-sorted portfolios, generates significant preoins of real activity both in sample
and out of sample. This is the case independenhefforecasting horizon and the
competing standard predictor included in the ptadicregressions. The inclusion of
the HJ bound constructed with size-sorted portfosmnificantly improves the out-of-
sample forecasting ability of such well-known prgdis as the stock market volatility,
the term spread, or the default spread. Moreovikevwve test for forecasting using the
HJ bound estimated from the three principal comptmef equity portfolio returns
based on size, book-to-market, momentum, and dididgeld, the only relevant
prediction comes from the principal componentshaf size-sorted portfolios. It turns
out we need to include both the second and thingcipal components of these size
portfolios in the estimation of the HJ bound todfisignificant forecasting capacity of

real activity. These second and third principal poments are significantly associated
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with the differences in returns between the smadl Earge portfolios. Size makes the
difference. The dynamics of the time-varying secomoiments of returns among the
size-sorted equity portfolios are a reasonable agilon of our findings. A

comprehensive examination along these lines igdefuture research.
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Table 1
Descriptive statistics of monthly returns for sizbeok-to-market—, momentum-, and
dividend yield-sorted portfolios, January 1927 #cBmber 2010.

P1 P2 P3 P4 P5 P6 P7 P8 PO P1D

Means

Size 1479 1285 1275 1223 1187 1.169 1128 1.061 091.00.862
BEME 0.848 0949 0.932 0925 1.007 1.041 1.046 1.206 701.21.377
Momentum 0.337 0.705 0.723 0.854 0.863 0.919 1011 1.138 091.21.532
Div. Yield 0.862 0.952 0.895 0.987 0.860 0.973 1.047 1.085 661.01.023

Standard deviations

Size 10.27 8969 8.203 7.585 7.275 6.947 6.575 6.238 38.95.148
BEME 5773 5536 5355 6.112 5687 6.235 6.706 7.031 287.6 9.455
Momentum 9.875 8.225 7.108 6.506 6.031 5876 5.611 5.444 375.76.579
Div. Yield 6.454 5.765 5575 5421 5.692 5533 5481 5.826 966.06.736

Correlations P2 P3 P4 P5 P6 P7 P8 P9 P10

Size-sorted portfolios

P1 | 0958 0930 0915 0.885 0.857 0848 0.806 0.788 980.6

P2 0972 0965 0948 0925 0913 0.882 0.860 0.780
Max P3 0979 0973 0957 0944 0925 0.901 0.825
0.980 P4 0979 0969 0960 0.938 0915 0.838
Min PS5 0.980 0.973 0961 0.943 0.873
0.698 P6 0978 0.972 0958 0.898
pP7 0.979 0.968 0.917
P8 0.978 0.930
P9 0.951

Book-to-market—sorted portfolios

P1 | 0928 0.899 0863 0836 0.831 0.795 0.780 0.768 140.7

P2 0940 0904 0886 0.873 0847 0.829 0827 0.773
Max P3 0910 0.899 0884 0860 0.835 0.839 0.784
0.950 P4 0937 0931 0915 0904 0875 0.833
Min PS5 0933 0918 0906 0.891 0.832
0.714 P6 0.941 0.933 0903 0.861
pP7 0.950 0.937 0.895
P8 0.937 0.911
P9 0.931

Momentum-sorted portfolios

P1 | 0932 0904 0.882 0866 0.833 0.777 0.730 0.690 940.b

P2 0940 0921 0906 0.882 0820 0.769 0.718 0.604
Max P3 0.944 0931 0906 0.850 0804 0.751 0.622
0.944 P4 0.935 0922 0.882 0.842 0.789 0.661
Min P5 0.937 0.903 0.867 0.819 0.695
0.594 P6 0.935 0.905 0.874 0.754
P7 0.928 0.900 0.785
P8 0.932 0.844
P9 0.888

Dividend yield-sorted portfolios

P1 | 0926 0901 0.864 0837 0809 0818 0.773 0.728 670.pb
P2 0913 0.892 0869 0.835 0837 0.793 0.762 0.689
Max P3 0910 0.881 0.868 0.863 0.814 0.771 0.716
0.926 P4 0926 0906 089 0.865 0.836 0.772
Min PS5 0901 0.888 0869 0.846 0.786
0.667 P6 0.898 0.884 0.874 0.806
P7 0.898 0.882  0.816
P8 0.906 0.872
P9 0.891
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Table 2
Monthly predicting regressions with the HJ vol#&ilbound estimated with either 10
size-sorted portfolios or the five smallest or flaggest portfolios, January 1965 to July
2010.

PANEL A
10 Size 5 Small 5 Big
APl =@+ Boi®(M)+ &, | AP, = a+ Bo™ (M) +&,p [AIPI,,, =a+Bof9(M)+e,.,
T a B Adj. R a B Adj. R a B Adj. R
. | 0007  -0.000 324 0.005  -0.007 1.16 0.004  -0.007 301.
(4.26)  (-3.02) (3.62)  (-2.10) (3.48)  (-1.96)
g | 0021 -0.030 6.95 0.015  -0.023  3.00 0.014  -0.023 822.
(4.89)  (-3.42) (4.21)  (-2.47) (3.70)  (-2.10)
¢ | 0042  -0.060 9.41 0.031  -0.049  4.65 0.028  -0.049 644.
(5.34)  (-3.66) (4.76)  (-2.77) (3.98)  (-2.32)
1o | 0080  -0111 1236 0.062  -0.101 7.4 0.058  -0.106 .288
(5.91)  (-3.95) (5.56)  (-3.21) (4.73)  (-2.79)
o4 | 0149 -0.207 1956/ 0117  -0.190 1260 0120  -0.22718.13
(7.16)  (-4.74) (6.42)  (-3.64) (7.46)  (-4.51)
PANEL B
APl =a +,510t10(M )+:820tsma”(M )+5t+r AIPL ¢y, = 0'+/31‘7t10 (M )+ ﬁthBig (M )+ Eivr
T a By B> Adj. R a B B> Adj. R
1 0.007 -0.009 0.007 3.49 0.007 -0.009 0.003 3.1b
(4.18) (-2.93) (1.25) (4.29) (-3.02) (0.53)
3 0.021 -0.029 0.017 7.34 0.021 -0.030 0.009 6.98
(4.85) (-3.35) (1.07) (4.93) (-3.41) (0.62)
6 0.041 -0.058 0.026 9.68 0.042 -0.059 0.008 9.3p
(5.34) (-3.61) (0.82) (5.38) (-3.64) (0.29)
1o | 0:079 -0.109 0.020 12.28 0.079 -0.111 -0.019 12.31
(5.92) (-3.92) (0.38) (5.98) (-3.97) (-0.39)
o | 0-149 -0.206 0.014 19.43 0.147 -0.207 -0.114 21.40
(7.09) (-4.67) (0.20) (7.22) (-4.86) (-1.80)

All the panels report OLS autocorrelation-robuahsiard error predicting regressions of future itrikls
production growth, AIPI , on the HJ volatility bound,a(M ) estimated with either 10 size-sorted
portfolios or with the five smallest and five lagggortfolios. We employ five prediction horizors= 1,
3, 6, 12, and 24 months. The volatility boundsestmated with overlapping sub-periods of five geair

monthly data.
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Table 3

Monthly predicting regressions with the HJ volagilbound estimated from alternative
portfolio sets, January 1965 to July 2010.

APy, =a+ o (M)+ &y

PANEL A: Book-to-market—sorted portfolios

10 BM 5 Value 5 Growth
7 a B Ad.R | «a B Ad.R | «a B Adj. R
1 0.001 0.003 0.04 0.001 0.004 0.30 0.001 0.005 0.38
(0.45) (0.81) (0.38) (1.26) (0.42) (1.29)
3 0.003 0.006 0.05 0.002 0.013 0.64 0.003 0.011 0.40
(0.65) (0.63) (0.41) (1.24) (0.71) (1.01)
6 0.008 0.009 -0.02 0.004 0.025 0.83 0.008 0.013 0.10
(0.83) (0.47) (0.46) (1.18) (1.13) (0.64)
12 0.021 0.006 -0.16 0.010 0.042 0.88 0.026  -0.005 17-0
(2.36) (0.20) (0.70) (1.12) (2.01) (-0.14)
24 0.060 -0.027 0.08 0.032 0.041 0.31 0.076  -0.089 821
(2.88) (-0.66) (1.85) (0.88) (4.13) (-1.64)
PANEL B: Momentum-sorted portfolios
10 Momentum 5 Winners 5 Losers
T a B Adj. R a B Adj. R a B Adj. R
1 0.002 0.000 -0.18 0.002 0.000 -0.18 0.002 0.000 180
(2.16) (-0.03) (12.26)  (0.09) (2.12) (-0.01)
3 0.007  -0.002 -0.16 0.007  -0.003 -0.1p6 0.006 0.0000.18
(2.36) (-0.21) (1.69) (-0.24) (2.23) (-0.06)
6 0.014  -0.003 -0.16 0.016  -0.012 0.01 0.012 0.000 .180
(1.43) (-0.20) (2.25) (-0.59) (2.27)  (0.02)
12 0.026  -0.004 -0.17 0.034  -0.029 0.2y 0.023 0.003 .17-0
(1.61) (-0.16) (3.03) (-0.91) (2.37)  (0.16)
24 0.045 0.003 -0.19 0.052 -0.016 -0.1p 0.046 0.001 .190
(1.82) (0.08) (2.75)  (-0.31) (3.06) (0.02)
PANEL C: Dividend yield-sorted portfolios
10 DY 5 High DY 5 Low DY
r a B Adj. R a B Adj. R a B Adj. R
1 0.000 0.004 0.23 0.001 0.005 0.44 0.001 0.004 0.10
(0.05) (1.09) (0.49) (1.44) (0.52)  (0.80)
3 0.002 0.009 0.21 0.003 0.012 0.56 0.003 0.009 013
(0.37) (0.78) (0.73) (1.17) (0.71)  (0.62)
6 0.008 0.010 -0.03 0.008 0.015 0.19 0.009 0.009 8-0|0
(0.76)  (0.44) (12.16) (0.72) (2.10) (0.32)
12 0.023 0.003 -0.18 0.020 0.012 -0.09 0.024 0.000 190
(2.27)  (0.06) (12.65) (0.31) (1.62) (0.00)
24 0.040 0.014 -0.14 0.043 0.010 -0.16 0.046 0.000 190
(1.56) (0.24) (2.48) (0.19) (2.23)  (0.00)
All panels report OLS autocorrelation-robust staddeerror predicting regressions of future

t + 7 industrial production growthAIPI , on the HJ volatility bounds available at timea(M), and
estimated with either10 or five book-to-market—,mamtum-, and dividend yield-sorted portfolios. We
employ five prediction horizong, =1, 3, 6, 12 and 24 months. The volatility bounds estimated with
overlapping sub-periods of five years of monthlyada
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Table 4
Monthly predicting regressions with the HJ vol&gilbound estimated with 10 size-
sorted portfolios and additional predictors, Japu&65 to July 2010.

APl p = a+ By 0 (M) + BoRoy + B30t (Ry) + BiPD, + BoDef, + fsTerm + Bl + &
T = 1month

a By B Bs By Bs Be B Adj. R
0.007 _ -0.009
4.26)  (-3.02) 3.24
0.002 0.004
(4.11) (0.45) 0.00
0.005 -0.068
(2.05) (-1.21) 0.38
0.005 -0.960
(3.29) (-1.64) 137
0.007 -3.344
(6.02) (-3.97) 7.28
0.001 1.050
(1.28) (2.92) 285
0.002 -0.0005
(4.15) (-1.77) 0.27
0.007  -0009  0.003 500
437)  (-3.06)  (0.35) :
0016  -0.013 -0.170 6 o3
(5.23)  (-3.99) (-3.30) :
0014  -0.015 -1.903 6 08
(5.20)  (-4.43) (-3.02) :
0012  -0.008 -3.100 038
6.86)  (-3.18) (-3.96) :
0.005  -0.008 0.788 a0
(2.24)  (-2.05) (1.83) :
0.006  -0.008 00005 .,
4.12)  (-2.89) (-1.46) :

7 = 3months

a By B, Bs By Bs Be B Adj. R
0021 -0.030
4.89)  (-3.43) 6.95
0.006 0.059
(3.82) (2.62) 246
0.013 -0.148
(1.74) (-0.90) 035
0.013 -2.659
(3.21) (-1.57) 2.21
0.018 -7.410
(4.60) (-2.81) 7.16
0.002 3.599
(1.06) (3.66) 6.25
0.006 -0.001
(4.18) (-2.88) 0.38
0021  -0030  0.056 016
(5.01)  (-3.58)  (2.84) :
0.047  -0.041 -0.461
(5.27)  (-4.20) (-3.17) 11.01
0.043  -0.046 -5.605
(5.37) (-4.72) (-3.04) 15.53
0030  -0.027 6.566
5.78)  (-3.73) (2.77) 12.45
0015  -0.024 2.769
2.43)  (-2.26) (2.34) 10.31
0020  -0.029 -0.001 666
(4.80)  (-3.35) (-2.53) :
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7 =6 months
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7 = 24months

a B B Bs B Bs Bs 5 Adj. R2
(07'.11%% ((1127217) 19.56
639 @19 181
119 oo 0.00
00 s
(Oi.ozzoF; %;‘;881)5 0.92
@21 25108 18.16
(Oé.osg %%1) 0.00
Gis)  che)  (Grm 2137
(Oéi%l) (--05_21%7) (23332) 24.22
616 (519 (159 21.03
o o sz
o s AR
(i (ao 0003 1060

All panels report OLS autocorrelation-robust staddarror predicting regressions of future industria
production growth,AIPI , on the HJ volatility bounda(M), estimated with 10 size-sorted portfolios

and/or an additional standard predictor that ismtaeket portfolio returnR,,; the volatility of the market
portfolio return, G'(Rm); the log of the price—dividend ratid?D ; the default spreadef, calculated as

the spread between the rates of Baa corporate bamtlslO-year government bonds; the term spread,
Term measured as the difference between the 10-yearigment bond and the one-month T-bill rate;
and the market-wide illiquidity measurilli§) calculated from Amihud’s (2002) ratio. Each parefers

to a different prediction horizonr = 1, 3, 6, 12, and 24 months. Both the volatilipubd and the market
volatility are estimated with overlapping sub-pesmf five years of monthly data.
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Table 5
Monthly predicting regressions with the HJ vol&gilbound estimated with 10 size-
sorted portfolios and controlling for persistencdhe dependent variable, January 1965
to July 2010.

APy =a+ B 0y (M)+ BrAIPl gy + £y
T a By B, Adj. R
1 0.005 -0.006 0.326 13.37
(3.49) (-2.74) (4.39)
3 0.013 -0.019 0.424 23.99
(3.85) (-3.11) (5.57)
6 0.032 -0.048 0.282 16.72
(3.92) (-3.11) (2.88)
12 0.077 -0.107 -0.003 11.80
(5.41) (-3.79) (-0.03)
o4 0.157 -0.193 -0.299 25.92
(7.99) (-4.45) (-2.98)

This table reports OLS autocorrelation-robust séadderror predicting regressions of future indastri
production growth,AIPl , on the HJ volatility boundﬂ(M), and the lagged growth of industrial

production. We employ five prediction horizors= 1, 3, 6, 12, and 24 months. The volatility bouads
estimated with overlapping sub-periods of five geairmonthly data.
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Table 6
Monthly out-of-sample forecast accuracy of the nhidtat includes the HJ volatility
bound, estimated with 10 size-sorted portfolios,addition to a standard predictor,
January 1965 to July 2010.

Unrestricted modelAIPI ., =a+ B, X, +B,0,(M)+&,;
Restricted modelAIPly ., =a + B X, + &,
7 =1 month
R, o(R,) PD Def Term
RMSE 0.9709 0.9705 0.9389 0.9886 0.9869
MSE-t 1.5537 1.2212 1.9240 0.4114 1.0460
(p-value) (0) (0) 0) 0) (0.099)
MSE-F 14.6251 14.8134 31.7330 5.6467 6.4758
(p-value) (0) (0) (0) (0) (0.075)
7 =3 months
R, o(R,) PD Def Term
RMSE 0.9431 0.9589 0.8967 0.9789 0.9770
MSE-t 1.2967 0.7533 1.3724 0.3810 0.8389
(p-value) (0) (0.0004) (0.0002) 0) (0.2344)
MSE-F 29.3053 20.8111 55.9710 10.4856 11.4637
(p-value) (0) (0.0004) (0) (0) (0.2148)
7 =6 months
Rn o(Ry) PD Def Term
RMSE 0.9284 0.9631 0.8977 0.9711 0.9767
MSE-t 1.0457 0.4293 0.9671 0.3884 0.5611
(p-value) (0.0002) () (0) (0.0008) (0.1406)
MSE-F 37.2363 18.5075 55.0176 14.3956 11.5043
(p-value) (0.0006) (0.0002) (0.0002) (0.0010) (0.1442
7 =12 months
Rn o(Ry) PD Def Term
RMSE 0.9315 0.9549 0.8932 0.9056 1.0246
MSE-t 0.6190 0.3564 0.8253 0.7871 -0.3627
(p-value) (0.0004) (0.0008) (0) (0.0018) (0.0326)
MSE-F 35.1043 22.5347 57.0603 47.7192 -11.4718
(p-value) (0.0014) (0.0010) (0.0004) (0.0038) (0.0210
7 =24 montt
Ry o(Ry) PD Def Term
RMSE 0.9883 0.9742 0.9484 0.8680 1.1202
MSE-t 0.0592 0.1255 0.2713 0.6164 -0.6341
(p-value) (0.0226) (0.0116) (0.0090) (0.0182) (0.0512
MSE-F 5.4911 12.3342 25.2884 70.7180 -49.8949
(p-value) (0.0224) (0.0120) (0.0114) (0.0214) (0.0396

This table contains the RMSENISE,/MSEg) and the MSH-statistics and MSIE-statistics and thejp-
values, in parentheses, obtained by an efficieatdtimp method for simulating asymptotic criticalues

for tests of equal forecast accuracy. Each parmeésponds to a given forecasting horizers 1, 3, 6,

12, and 24 months. The dependent variable is thesinial productiomgrowth (AIPI ), and the restricted
model contains one of the variables indicated & fitfst row of every horizon panel. Here MSE the
mean square forecasting error of the restricted einoghd MSE is the mean square error of the
unrestricted model that always includes the HJtiltyabound as a predictor. The market volatility
estimated as the moving average of past absoltienseusing a lag of 12 months to obtain volatility
estimates from past returns. The initial estimaperiod has 60 months (from January 1965 to Decembe
1969) and therefore the out-of-sample period h&s-48nonths.
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Table 7

Three principal components from size-, book-to-reerk momentum-, and
dividend yield-sorted portfolio returns, Januar279o December 2010.

SPC1 SPC2 SPC3|BPC1 BPC2 BPC3|MPC1 MPC2 MPC3/DPC1 DPC2 DPC3
% Exp [92.72 5.00 0.86| 88.845.30 1.86| 85.168.37 2.47| 85.316.74 1.97
SPC1 -0.04 -0.04| 095 -0.06 -0.10| 0.93 0.08 -0.14/ 091 -0.01 -0.13
SPC2 -0.02| 0.17 0.62 0.20| 0.23 0.28 031 032 0.28 0.21
SPC3 0.06 0.10 -0.06 0.08 -0.04 0.21| 0.10 0.04 0.03
BPC1 -0.04 0.00 | 097 0.08 0.02| 0.97 -0.05 -0.07
BPC2 0.02| 0.09 0.34 0.06 0.15059 0.20
BPC3 -0.04 -0.07 0.27| 0.02 -0.36 0.25
MPC1 0.00 -0.01 097 0.02 -0.08
MPC2 0.00| 0.14 047 0.06
MPC3 0.08 -0.18 0.25
DPC1 0.01 -0.01
DPC2 0.02

In this tableSPC,BPC, MPC, andDPC indicate the corresponding principal componentsioé-,

book-to-market—, momentum-, and dividend yield-atriportfolios, respectively. The first row
displays the percentage explained by the correspgratincipal component of the variability of
portfolio returns. The correlation coefficients Wween alternative principal components from
different sorted portfolios higher than 0.45 ardi¢ated in bold.
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Table 8

Monthly regressions of individual principal compote on aggregate state variables,

January 1965 to July 2010.

PG =a+pX;+u,i =123
R, PD SMB  HML  Def Term AC lllig
B 1121 1189 1.059 -0.503 4.870 3.493 3.125 5.117
PClt-Value (47.05) (0.49) (10.68) (-3.70) (0.65) (1.73)  (5.00) (7.40
R*(%) [86.55] [0.04] [38.10] [7.34] [0.29] [0.55] [3.81] [0.83]
B 0870 2103 -0.971 -0.339 3781 -1.789  1.320 -0.527
Size |PC2t-Value (15.74) (0.71) (-8.41) (-1.55) (0.64) (-0.78) (1.37)  (-0.14)
R [34.53] [0.09] [21.25] [2.20] [0.12] [0.10] [0.45] [0.01]
B 0.015 -7.750 -2.252 0.076 -8.376 0.796  -1.949  B.58
PC3t-Value (0.12) (-1.89) (-10.69) (0.28) (-1.03) (0.24)  (-1.50)  (-2.33)
R [0.00] [0.48] [44.31] [0.04] [0.22] [0.01] [0.38] [0.59]
B 0963 1.200 0422 -0.121 3.354 1.828 2.220 2.944
PClt-Value (39.51) (0.63) (3.36) (-1.08) (0.48) (1.09)  (4.19) (4.69)
R [92.93] [0.07] [8.82] [0.62] [0.20] [0.22] [2.80] [0.41]
Book B -0.007 -1.236 0.002 -1.955 7.400 1.390 3.029 3.119
to  [PC2t-Value (9.82) (-0.33) (0.36) (-10.92)(1.44) (0.48)  (3.30) (1.82
Market R [40.14] [0.03] [0.04] [61.29] [0.38] [0.05] [1.98] [0.17]
B -1604 4.832 -2.765 5.385 -27.79 -18.35  1.197 31.6
PC3t-Value (-3.83) (0.27) (-4.49) (7.68) (-0.82) (-1.23) (0.27)  (-2.86)
R®  [4.71] [0.02] [6.92] [22.38] [0.25] [0.41]  [0.02] [0.83]
B 1.069 1346 0504 -0.377 6.620 2.629 2.510 4.385
PClt-Value (43.86) (0.62) (3.38) (-2.67) (0.85) (1.39)  (4.09) (3.80)
R® [93.22] [0.07] [10.20] [4.88] [0.64] [0.37] [2.91] [0.75]
B 0.672 2362 0270 -0.756 -19.11 2.422 2.178 -5.668
MomentunPC2t-Value (3.64) (0.55) (1.08) (-2.65) (-1.60) (0.56)  (1.64) (-0.52)
R [9.37] [0.05] [0.74] [5.00] [1.36] [0.08]  [0.56] [83]
B -0632 2510 -2.282 1672 8452 -2285 -1.798 9.04
PC3t-Value (-3.27) (0.34) (-9.47) (3.66) (0.60) (-0.43) (-0.97)  (-1.23)
R* [4.62] [0.03] [29.70] [13.61] [0.15] [0.04]  [0.21] [0.43]
B 0.909 1.023 0.248 -0.198 3.319 1.304 2.019 2.475
PClt-Value (38.09) (0.55) (1.93) (-1.65) (0.50) (0.82)  (3.97) (3.7B)
R [92.62] [0.05] [3.39] [1.84] [0.22] [0.13]  [2.59] [0.32]
o B 9165 5.059 5489 -20.71 3.651 30.27 26.32 3362
D'xggﬁ;‘d PCAt-value (8.01) (0.11) (3.83) (-12.99)(0.05) (0.88) (2.85)  (0.98
R* [24.62] [0.00] [4.36] [52.95] [0.00] [0.18]  [1.15] [0.15]
B 0586 7.037 -1.530 0.615 5495 0.551  -0.821  -0.246
PC3t-Value (1.44) (0.68) (-3.17) (0.98) (2.12) (0.06)  (-0.30) (-0.02)
R [1.32] [0.09] [4.44] [0.61] [2.08] [0.00] [0.02] [00]

All panels report the individual OLS autocorrelatimbust standard error regressions of each aiiee
principal componentsPC;,i = 1,2,3, on one of the following variables: the markettfmio return, R,;
the log of the price—dividend ratid?D ; the SMB factor; theHML factor; the default spread between the
rates of Baa corporate bonds and 10-year governbwmds,Def, the term spread between the 10-year
government bond rate and the one-month T-bill raéem the real consumption growth on nondurable
goods and serviced)\C; and Amihud’s (2002) market-wide illiquidity measullliq. Each panel refers
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to a different set of portfolios, that is, the sjz@ook-to-market—, momentum-, and dividend yiebdted
portfolio returns.
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components, January 1965-July 2010.

Table 9
Monthly predicting regressions with the HJ vol#§ilbound estimated with principal

APl =a+BofC(M)+ &,
Panel A: Size-sorted portfolios
1*'PC F'PC +29PC P'PC+29PC +3°PC

r a B Adj. R a i Adj. R a J;; Adj. R

1 0.001 0.004 0.15 0.004 -0.006 0.7 0.005 -0.008 514
(1.60) (1.10) (3.17) (-1.63) (3.66) (-2.16)

3 0.005 0.009 0.12 0.012 -0.022 1.92 0.014 -0.027 83.0
(1.90) (0.77) (3.47) (-1.90) (4.04) (-2.46)

6 0.012 0.004 -0.17 0.025 -0.051 3.67 0.028 -0.054 46 4.
(0.26) (0.16) (4.07) (-2.41) (4.44) (-2.79)

12 0.030 -0.037 0.41 0.056 -0.128 8.62 0.059 -0.120 298.
(4.25) (-0.86) (6.23) (-3.90) (5.98) (-3.82)

24 0.066 -0.121 2.75 0.106 -0.234 13.68 0.111 -0.222 3.63
(5.24) (-1.55) (7.66) (-4.82) (7.54) (-4.66)

Panel B: Book-to-market—sorted portfolios

1 0.001 0.007 0.89 0.001 0.004 0.14 0.001 0.004 0.10
(1.01) (1.91) (1.00) (1.02) (0.80) (0.89)

3 0.003 0.018 1.34 0.004 0.008 0.15 0.004 0.008 0.08
(1.20) (1.76) (1.26) (0.82) (1.08) (0.68)

6 0.008 0.025 0.81 0.010 0.010 -0.04 0.010 0.007 0-0.1
(1.69) (1.25) (1.64) (0.49) (1.52) (0.36)

12 0.021 0.014 -0.06 0.022 0.008 -0.1% 0.026 -0.006 .16-0
(2.63) (0.37) (1.94) (0.21) (2.14) (-0.17)

24 0.052 -0.035 0.15 0.047 -0.002 -0.19 0.064 -0.062 910
(4.02) (-0.52) (2.58) (-0.04) (3.17) (-0.95)

Panel C:Momentum-sorted portfolios

1 0.001 0.006 0.29 0.001 0.004 0.25 0.002 0.000 -0.18
(1.88) (1.42) (0.89) (1.45) (1.94) (-0.02)

3 0.004 0.014 0.39 0.003 0.010 0.2§ 0.007 -0.003 3-0.1
(2.13) (2.17) (1.20) (1.11) (2.35) (-0.40)

6 0.010 0.016 0.07 0.006 0.022 0.53 0.014 -0.006 2-0.1
(2.69) (0.67) (2.17) (1.30) (2.40) (-0.40)

12 0.025 -0.014 -0.12 0.014 0.036 0.51 0.028 -0.013 .080
(3.89) (-0.28) (1.55) (1.25) (2.61) (-0.45)

24 0.059 -0.107 1.83 0.036 0.037 0.14 0.049 -0.010 17-0.
(5.41) (-1.25) (2.40) (0.72) (2.68) (-0.19)

Panel D: Dividend yield-sorted portfolios

1 0.001 0.006 0.61 0.001 0.006 0.62 0.001 0.005 0.24
(1.37) (1.72) (0.77) (1.53) (0.62) (1.04)

3 0.004 0.017 1.06 0.003 0.015 0.94 0.003 0.012 0.44
(1.52) (1.68) (0.94) (1.43) (0.75) (1.01)

6 0.008 0.025 0.75 0.007 0.024 0.83 0.006 0.022 0.50
(1.92) (1.28) (2.17) (1.23) (0.85) (0.94)

12 0.021 0.020 0.03 0.017 0.029 0.36 0.015 0.033 0.40
(2.72) (0.50) (1.61) (0.75) (1.11) (0.76)

24 0.050 -0.026 0.00 0.049 -0.012 -0.15 0.051 -0.017 0.12
(4.14) (-0.40) (2.91) (-0.19) (2.71) (-0.27)
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All panels report OLS autocorrelation-robust stadderror predicting regressions of future industria
production growthAIPI , on the HJ volatility boundg ™ (M) estimated with the first, two first, or

three first principal components obtained from #fiernative sets of portfolio-sorting proceduresdzh

on size, book to market, momentum, and dividenttlyM/e employ five prediction horizong:= 1, 3, 6,
12, and 24 months.
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Figure 1
The HJ bound estimated with the overlapping 60-im@etriods of returns for 10 size-

sorted portfolios

9v-98d
€y-28d
0¥-93d
L€-28d
¥€-93d

1,25

0,75

025+ |

60-98d
90-9ad
€0-9ad
00-28d
16-98d
¥6-93d
T6-98d
88-98d
G8-28d
¢8-9ad
6/.-98d
9/-%8d
€/-98d
0/-98d
19-98d
¥9-93d
T19-98d
8G-98d
§5-98d
¢5-98d
6%-99d
o

T€-98d

HJ Bound‘

Recessions

44



Figure 2
The HJ bound estimated with the overlapping 60-im@etriods of returns for 10 size-
sorted and the five smallest and five largest pbo$
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Figure 3
The HJ bound computed with the overlapping 60-mqettiods of returns for size-,
book-to-market—, momentum-, and dividend yield-sdportfolios
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