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Abstract 

This paper analyzes the capacity of the Hansen–Jagannathan volatility bound to predict 

future economic growth. Our results show that the portfolio sorting procedure employed 

to construct the data used to estimate the volatility bound is the key issue in the bound 

being able to predict real activity. We find that the volatility bound estimated with 10 

size-sorted portfolios is a powerful in-sample and out-of-sample predictor of future 

industrial production growth. 
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1. Introduction 

Does financial uncertainty predict future real activity? The answer to this question is 

particularly relevant after the recent turmoil experienced by industrial economies over 

the world. This paper shows that changes in the uncertainty embedded in stock prices 

are a powerful indicator of future economic growth.1 However, it is also the case that 

the information contained in stock return co movements is the key issue for optimally 

detecting the impact of financial uncertainty in future real activity. 

It has been recognized for a long time that the stock market is a leading economic 

indicator. The original papers by Fama (1981, 1990), and Schwert (1990) argue that 

stock returns at monthly, quarterly and annual frequencies are highly correlated with 

future output growth rates and this predicting ability increases with the length of the 

horizon. Similarly, Stock and Watson (2003) provide a comprehensive analysis of the 

forecasting capacity of different variables related to financial markets in forecasting 

production and inflation. They find that short and long interest rates, the term spread 

and the stock market index improve the forecast of real gross domestic product (GDP) 

growth, although they also point out non-trivial instability problems inherent in the 

predictive relations. 

Additionally, direct measures of uncertainty in financial markets seem to have 

relevant information about macroeconomic variables in the future. Schwert (1989) 

suggests that market volatility reflects uncertainty about future cash flows and discount 

rates. However, he does not find evidence supporting his argument since during his 

sample period volatility rises after the beginning of recessions. Campbell et al. (2001) 

find that stock volatility at a market, industry, and firm level helps to predict GDP 

                                                 
1 Bloom (2009) argues that uncertainty shocks, approximated by stock market volatility, cause  firms with 
non-convex labor and capital adjustment costs to delay hiring and investment since higher uncertainty 
increases the real option value of waiting. Aggregate growth productivity then falls after the uncertainty 
shock because the adverse effects in employment and investment slow down the reallocation from low- to 
high-productivity firms, which explains the real activity growth rate in the economy. 
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growth during the post-war period. More recently, Fornari and Mele (2011) show that a 

slowly changing measure of stock market volatility that captures the long run 

uncertainty in the financial market explains future trends of economic activity.2 

Moreover, this measure of stock market volatility, together with the term structure 

spread, anticipate all National Bureau of Economic Research recession episodes, 

including the recent financial and credit crisis. In addition, Chauvet, Senyuz, and 

Yoldas (2011) report that the long-run component of financial volatility, in the sense of 

Adrian and Rosenberg (2008) but extracted from the realized volatility of market, 

industry, and 10-year zero coupon Treasury bond returns, helps in predicting economic 

activity.3 

Finally, Nieto and Rubio (2011), using a consumption-based parametric approach 

for measuring the uncertainty embedded in financial prices, also predict real activity.4 

Specifically, they use the volatility of alternative consumption-based stochastic discount 

factor specifications as a measure of uncertainty. Working with contemporaneous and 

long-run recursive preferences, they argue that the significant predictability of this 

volatility relies mainly on the joint effect of their components, that is, the volatility of 

consumption growth, stock market volatility, and the covariance between consumption 

growth and market returns.5 

                                                 
2 Fornari and Mele (2011) justify their findings following the theoretical framework of Mele (2007, 
2008), who shows the countercyclical and asymmetric nature of volatility in recessions and expansions. 
3 In related literature, Andreou, Ghysels, and Kourtellos (2010) employ implied volatility as a predictor of 
economic activity and Backus, Chernov, and Martin (2011) employ equity index options to quantify the 
distribution of consumption growth disasters. These authors show that options suggest smaller 
probabilities of extreme outcomes than have been estimated from macroeconomic data. It is important to 
point out that not only lagged market returns and volatility have been employed as leading indicators of 
economic activity. Naes, Skleltorp, and Arne-Odegaard (2011) report a strong relation between stock 
market liquidity and the business cycle. 
4 The authors also show some power in predicting stock market returns at relatively long horizons. 
Although they show some predicting capacity at short horizons, the predictability of stock market returns 
is much weaker than at long horizons. Our current paper does not address the issue of predicting stock 
returns. For recent literature on predicting future stock market excess returns, see, among many others, 
Campbell and Yogo (2006), Cochrane (2008), Goyal and Welch (2008), Brennan and Taylor (2010), 
Ferreira and Santa-Clara (2011), and Cochrane (2011). 
5 The authors also find similar effects using non-separable durable and nondurable preferences. 
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This paper employs a much simpler approach to investigate the predictability of 

real activity. In particular, we use the Hansen–Jagannathan (HJ hereafter, 1991) 

volatility bound from a model-free perspective rather than a marginal rate of 

substitution approach. Given a set of portfolio returns and the average risk-free rate for 

the corresponding sample, we obtain the volatility bound using the expression proposed 

by HJ and a rolling window of five years of past data. We show how the model-free 

volatility bound is a powerful predictor of future economic growth for both in-sample 

and out-of-sample contexts. In the end, the HJ bound is the maximum Sharpe ratio; thus 

our measure includes not only excess market returns but also information about 

correlation or exposure to common shocks and market volatility. However, the paper’s 

main finding is that the predictability of the bound depends on the sorting procedure 

used to construct the equity portfolios employed in the bound’s estimation. Hence, the 

dynamic interaction effects between individual stocks seem to be a key issue in 

extracting the information contained in the stock markets about future real activity. 

This paper is organized as follows. Section 2 describes our data and Section 3 

presents the main in-sample predictability results, using size-sorted portfolios. Section 4 

discusses the forecasting evidence using alternative sorting procedures and Section 5 

compares the predicting ability of the HJ measure with respect to standard state variable 

predictors. Section 6 performs the out-of-sample analysis and Section 7 further 

investigates the reasons underlying the forecasting capacity throughout the principal 

components of the variance–covariance matrices of the alternative equity portfolios 

employed in the paper. Section 8 concludes with a summary and final remarks. 
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2. Data 

Most stock market data are from Kenneth French´s website. We obtain monthly data 

from January 1927 to December 2010 for the market return ( mR ), the risk-free rate 

( fR ), the small-minus-big (SMB) and high-minus-low (HML) Fama and French (1993) 

risk factors, and 10 value-weighted size-, book-to-market-, momentum-, and dividend 

yield-sorted equity portfolios. Table 1 contains descriptive statistics on these portfolios. 

We observe the well-known size and value premia. On an annualized basis, small firms 

earn, on average, 7.4% more than large firms, while value firms earn 6.3% more than 

growth firms. Similarly, high-momentum companies obtain a 14.4% higher average 

return than low-momentum firms, while high dividend yield stocks achieve a 1.9% 

higher return, on average, than low dividend payment stocks. As expected, we observe 

more dispersion in average returns in size-, book-to-market-, and momentum-sorted 

portfolios than in dividend yield-sorted stocks. At the same time, small, growth, and 

low-momentum stocks present higher volatility than large, value, and high-momentum 

firms. Extreme dividend yield stocks are more volatile than intermediate dividend yield 

firms, but the high and low dividend yield portfolio volatilities are very similar. Finally, 

the correlations between small and large companies, value and growth firms, high- and 

low-momentum stocks, and high and low dividend yield assets are found to be the 

smallest within a given sorting category: 0.698, 0.714, 0.594, and 0.667 for size-, book-

to-market-, momentum-, and dividend yield-sorted portfolios, respectively. 

The price-dividend ratio in logs (PD) is computed from the original series on 

Robert Shiller’s website. Additionally, yields for the 10-year government bond, the one-

month T-bill, and Moody’s Baa Corporate Bond series are obtained from the Federal 

Reserve Statistical Release. We then compute two state variables based on these interest 

rates: a term structure slope (Term), computed as the difference between the 10-year 
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government bond and one-month T-bill yields, and a default premium (Default) that is 

the difference between Moody´s yield on Baa Corporate Bonds and the 10-year 

government bond yields. 

 Given the real activity forecasting evidence from aggregate illiquidity reported 

by Naes, Skjeltorp, and Arne-Odegaard (2011), we also use a market-wide illiquidity 

indicator (Illiq ) based on the aggregate illiquidity ratio proposed by Amihud (2002).6 

This is the ratio of the absolute daily return over the dollar volume for a given stock, 

which is closely related to the notion of price impact. This measure is averaged monthly 

and across all available stocks to obtain the market-wide illiquidity measure for each 

month in the sample. As in Naes, Skjeltorp, and Arne-Odegaard (2011), we demean the 

series relative to a two-year moving average of the series. 

We also obtain nominal consumption expenditures on nondurable goods and 

services from the Table 2.8.5 of the National Institute of Pension Administrators 

(NIPA). Population data are from NIPA’s Table 2.6 and the price deflator is computed 

using prices from NIPA’s Table 2.8.4 with the year 2000 as its basis. All this 

information is used to construct monthly seasonally adjusted real per capita 

consumption expenditures on nondurable goods and services (∆C). Finally, monthly 

data of the industrial production index (IPI) are downloaded from the Federal Reserve, 

with series identifier G17, IP Mayor Industry Groups.7 

 

                                                 
6 The main advantage of Amihud’s illiquidity ratio is that it can be easily computed using daily data 
during long periods. Moreover, Hasbrouck (2009) shows that, at least for US data, Amihud´s ratio better 
approximates Kyle´s lambda relative to competing measures of illiquidity. 
7 With the exception of market-wide illiquidity, monthly data for all these state variables are available 
from January 1965 to July 2010. The illiquidity variable is available from January 1965 to December 
2008. 
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3. In-Sample Predictability of Real Activity with the Volatility of the HJ Bound 

We first estimate the monthly HJ volatility bound of the model-free stochastic discount 

factor with overlapping sub-periods of five years of monthly data from the 10 size-

sorted portfolios, using  

                              ( ) ( ) ( )( ) ( ) ( )( )[ ] 21

N
1

N REME1VREME1M −′−≥ −σ ,                    (1) 

where M is the stochastic discount factor satisfying the first-order pricing equations, 

[ ]1jt1tt RME1 ++= , 

[ ] 1ft1tt R1ME ++ = , 

where N1  and ( )RE  are the N-vectors of ones and average gross returns, respectively; 

1V −  is the inverse of the variance–covariance matrix of returns; and fR  is the gross 

risk-free rate. The monthly estimated volatility corresponds to the average level of the 

risk-free interest rate for each of the five-year sub-periods. Unlike the work by Nieto 

and Rubio (2011), this procedure does not depend on any particular consumption-based 

stochastic discount factor specification, so the potential predictive relation does not 

depend on any given consumption dynamics. 

Figure 1 shows this rolling-window HJ volatility bound and the National Bureau 

of Economic Research’s recession bars for the period from 1931 to 2010. It shows how 

the bound tends to increase before macroeconomic recessions, reaching its historical 

peak well before and during the recent financial turmoil. Although the peaks of the 

bound tend to occur during the corresponding recession months, the volatility of the 

stochastic discount factor always increases before the start of a recession. 

Panel A of Table 2 contains the results from the following predictive ordinary 

least squares (OLS) autocorrelation-robust standard error regressions: 

                                            ( ) ττ εσβα∆ ++ ++= ttt,t M IPI ,                                         (2) 
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where τ∆ +t,tIPI  is the growth of industrial production at horizons of one, three, six, 12, 

and 24 months calculated as ( )ttt,t IPIIPIlnIPI ττ∆ ++ = , and ( )Mtσ  is the volatility of 

the stochastic discount factor available at month t that is estimated with five years of 

monthly data up to month t. Given data restrictions on some of the state variables used 

later, we run these predictive regressions between January 1965 and July 2010. 

The regression in expression (2) is estimated with ( )Mtσ  from the use of 10 size-

sorted portfolios, as well as with the five smallest and five largest portfolios. This 

separation allows one to analyze whether the forecasting relation is especially strong 

when the uncertainty measure tracks the higher degree of sensitivity of small companies 

to economic shocks. The first block of Panel A of Table 2 reports the key results of the 

paper. There is a negative and significant relationship between the volatility of the 

stochastic discount factor and future industrial production growth. Both the magnitude 

of (the absolute value of) the coefficients and the R2 value increase considerably with 

the time horizon, with R2 as high as (approximately) 20 percent at the 24-month 

horizon. If we interpret ( )Mtσ  as a measure of the financial uncertainty embedded in 

stock prices, these results show that higher uncertainty has a negative and significant 

impact on future real activity. Therefore, our measure of uncertainty conveys 

information about future economic growth.8 

The results using the smallest or largest set of size-sorted portfolios separately also 

tend to show a negative relationship between ( )Mtσ  and future real activity. Once 

                                                 
8 Because the HJ volatility bound is very persistent, we also calculate the bias-corrected estimator and the 
corresponding bias-corrected t-statistic proposed by Amihud and Hurvich (2004). These authors suggest a 
regression method for hypothesis testing in predictive regressions in which the independent variable is 
persistent and its innovations are correlated with the dependent variable. This produces biased estimates 
and biased t-statistics. The authors’ simulations show that their adjustment outperforms other bias 
correction methods, such as those suggested by Stambaugh (1999) and Lewellen (2004). Consequently, 
we replicate the forecasting regressions with their procedure. The results are qualitatively the same as 
those reported in Table 2, and the predicting capacity of the bound remains statistically significant. The 
results are available upon request. 
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again, the longer the horizon in the regression, the stronger the predicting results. 

However, for the one-, three-, six-, and 12-month horizons, both the magnitudes of the 

coefficients and the R2 are smaller for both sets of five portfolios than for the original 

10 size-sorted portfolios. For the longest horizon, the R2 value for the original set and 

the five largest portfolios are 19.6 and 18.1 percent, respectively. It is somehow 

surprising that the R2 value when ( )Mtσ  is calculated for the five smallest portfolios is 

relatively lower and equal to 12.6 percent, although the magnitude of the negative slope 

coefficients are almost the same in all three cases. Generally speaking, we can conclude 

that forecasting capacity seems to be stronger using all assets in the stock market, as 

represented by the 10 size-sorted portfolios, rather than employing either the sets of 

largest or smallest stocks. Therefore, these initial results do not allow us to associate the 

forecasting ability reported with the potentially greater or lesser sensitivity of alternative 

equity portfolios to economic shocks. 

To further investigate this finding, Panel B of Table 2 reports the results of the 

following forecasting regressions: 

                             
( ) ( )
( ) ( ) ,MM IPI

,MM IPI

t
Big
t2

10
t1t,t

t
Small
t2

10
t1t,t

ττ

ττ

εσβσβα∆

εσβσβα∆

++

++

+++=

+++=
                       (3) 

where ( )MSmall
tσ  and ( )MBig

tσ  are the volatility of the HJ bound estimated by 

expression (1) for the five smallest and five largest portfolios, respectively, and 

( )M10
tσ  is the bound for the 10 size-sorted portfolios. The time series of these three HJ 

bounds are displayed in Figure 2. Although the series of ( )MSmall
tσ  and ( )MBig

tσ  

cross each other in several points in time, depending on the particular state of the 

economy, the series of ( )M10
tσ  is practically always above the other two estimations of 

the HJ bound. 
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The results provided in Panel B of Table 2 show that the regression coefficients 

associated with ( )M10
tσ  and R2 are practically the same as in Panel A. The inclusion of 

( )MSmall
tσ  and ( )MBig

tσ  does not add any significant explanatory power of future 

economic growth once we control for the behavior of the HJ bound under all 10 size-

sorted portfolios. The only exception occurs when we also employ ( )MBig
tσ  at the 

longest horizon. Even in this case, the coefficient associated with ( )MBig
tσ  is estimated 

with much less precession than the coefficient related to ( )M10
tσ , and the magnitude of 

the ( )MBig
tσ  coefficient is (in absolute value) approximately half the ( )M10

tσ  slope 

coefficient. 

We conclude that the forecasting ability of the volatility of the stochastic discount 

factor as characterized by the HJ bound lies in the use of the 10 size-sorted portfolios 

rather than a subset of the five smallest or five largest portfolios. It seems that the 

inclusion of all assets when estimating the HJ bound is important to capture future real 

activity. 

 

4. In-Sample Predictability of Real Activity: Other Portfolio Formation Criteria 

We now estimate three additional alternative measures of the HJ volatility bound by 

using the returns of 10 book-to-market-, momentum-, and dividend yield-sorted 

portfolios. As before, we employ a rolling window of five years of past monthly returns. 

Figure 3 displays the HJ bounds for the full sample period. We observe important 

differences between the alternative estimated bounds. Note that the volatility dispersion 

and the complex dynamic correlation behavior among the 10 portfolios in each of the 

four sets employed can generate potentially different time series of the HJ bounds. It 

seems particularly important to note that the HJ bound for the momentum portfolios 
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increases before the recessions at the end of the 1980s and at the beginning of the new 

century. These peaks are probably associated with the uncertainty generated in these 

portfolios after the crash of October 1987 and during the dot-com bubble. On the other 

hand, the highest peak before the actual crisis is clearly from the HJ bound estimated 

with the 10 size-sorted portfolios. 

We perform the forecasting regressions of equation (2) using the HJ bound 

estimated with the 10 portfolios of each set as well as with the two subsets of five 

portfolios for all three sorting criteria. Panels A to C of Table 3 report the results for the 

book-to-market-, momentum-, and dividend yield-sorted portfolios, respectively. 

Surprisingly, independently of the forecasting horizon, none of the estimates of 

the HJ volatility bound constructed from these portfolio sets present significant 

predicting results. It may be the case that the dynamics of the volatility dispersion and 

the correlation between stocks included in the alternative sorted portfolios induce a 

different forecasting ability of real activity. Although we return to this issue in Section 7 

below, we point out that the annualized volatility dispersion between the extreme 

portfolios contained in the descriptive statistics of Table 1 turns out to be the highest for 

the size-sorted portfolios. In particular, the smallest portfolios have an 18.6 percent 

higher annualized volatility than the largest stocks, while the dispersion is only 12.7 

percent, 11.4 percent, and 0.9 percent for the book-to-market-, momentum-, and 

dividend yield-sorted portfolios. Similarly, the dispersion between the minimum and 

maximum correlations between the portfolios is 0.28, 0.24, 0.35, and 0.26 for the size-, 

book-to-market-, momentum-, and dividend yield-sorted portfolios. The dynamics of 

these volatilities and correlations seem to be a potentially key factor in explaining the 

different predicting capacities of the alternative HJ bound estimates. If so, sorting 
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procedures and the corresponding time-varying diversification effects would be a 

relevant issue for forecasting production growth with volatility bounds. 

 

5. In-Sample Predictability of Real Activity: Competing Predictors 

Given the significant predicting ability of the HJ volatility bound estimated with 10 

size-sorted portfolios, we now investigate how robust our forecasting results are to 

competing predictor variables of real activity. We consider predictors related to interest 

rates, stock market returns, and illiquidity. The justification of the selection of these 

alternative predictors is presented in Section 5.1 and the forecasting results are 

discussed in Section 5.2. In addition, lagged values of the dependent variable are 

included in the forecasting regression to pick up potential autoregressive dynamics in 

industrial production, since we consider growth rates for periods longer than one month. 

Section 5.3 contains the results of this analysis. 

 

5.1. Competing Predictors of Real Activity 

The term spread, measured as the difference between the interest rates on long and 

short maturity government debt, is probably the most common financial leading 

indicator of real activity. Among many others, Estrella and Hardouvelis (1991), Estrella 

and Mishkin (1998), Stock and Watson (2003), Ang, Piazzesi, and Wei (2006), and 

Fornari and Mele (2011) show the significant predictive content of the spread for 

production growth, including its capacity to forecast a recession indicator in probit 

regressions. Additionally, there is a growing body of literature exploring the 

transmission of credit conditions into the real economy. Among recent papers, Mueller 

(2009) and Gilchrist, Yankov, and Zakrajsek (2009) show the forecasting power of the 

term structure of credit spreads for future output growth. These authors argue that there 
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is a pure credit component orthogonal to macroeconomic conditions that accounts for a 

large part of the predicting capacity of credit spreads. 

Moreover, as long as stock prices equal the expected discounted value of future 

earnings and dividends, stock returns should also be useful in forecasting output growth. 

This is the insight of Fama (1981, 1990). On top of that, given the well-known evidence 

of the aggregate dividend yield being a powerful predictor of future market excess 

returns, as discussed recently by Cochrane (2011), the price–dividend ratio becomes an 

appropriate state variable to use for forecasting real activity. Two other stock market 

indicators have become popular in predicting output growth. Naes, Skjeltorp, and Arne-

Odegaard (2011) argue that stock market liquidity tends to dry up before a crisis in the 

real economy. In fact, they show that measures of stock market liquidity contain leading 

information about future economic growth, even after controlling for other financial 

leading indicators. Finally, there has been considerable recent attention to financial 

stock market volatility as a predictor of real activity. Fornari and Mele (2011) argue that 

it is important to extract the long-run component of stock market volatility when using 

this variable as a predictor of future growth.9 To isolate extreme financial episodes that 

may not be necessarily informative about the economy’s future scenario, the authors 

propose a simple moving average of the past 12 months of absolute returns as the 

appropriate forecaster of real activity. 

 

5.2. In-Sample Predictability with Competing Predictors 

We next employ all seven variables discussed above and compare their in-sample 

predicting ability with that of the HJ volatility bound as estimated with 10 size-sorted 

                                                 
9 See the similar arguments of Chauvet, Senyuz, and Yoldas (2011).  
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portfolios. We run the following regressions with individual predictors and with pairs of 

predictors that always include the HJ bound: 

( ) ( )
,Illiq                   

TermDefPDRRM IPI

tt7

t6t5t4mtt3mt2t1t,t

τ

τ
εβ

βββσββσβα∆

+

+

++
++++++=

      (4) 

where ( )mtt Rσ  is the market return volatility estimated at each month t with 

overlapping sub-periods of five years of monthly returns, to be consistent with our 

measure of the HJ bound. 

The results are reported in Table 4. Independently of the alternative state variable 

employed and forecasting horizon, the HJ volatility bound has always a negative and 

highly significant relation with future IPI growth. Hence, our forecasting relation is 

systematically estimated with high precision. 

At the one-month horizon, all state variables present some evidence of 

predictability, except the stock market return. All predictors present the expected signs. 

The term spread coefficient is positive, while the rest of the state variable estimators 

have the theoretically correct negative sign. Note that increases in the volatility of the 

market, the default spread, and market-wide illiquidity signal a higher degree of 

uncertainty, and we also know that increases in the dividend yield forecast future 

positive market excess returns, which implies that increases in the price–dividend ratio 

should predict negative market returns and a negative impact on real activity. Once we 

combine on an individual basis the HJ volatility bound with the rest of the predictors, it 

turns out that the coefficients associated with the volatility of the market return, the 

price–dividend ratio, and the default spread are estimated with much more precision. 

This result does not seem to hold for the term and market-wide illiquidity variables. It is 

especially relevant the combined effects of the HJ bound and the default spread; the R2 

value at just the one-month horizon is 9.38 percent. 
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It is important to point out that we display the results using the volatility of the 

stock market estimated at each time t with the past five years of monthly data. We also 

repeat the regressions using the estimate suggested in Fornari and Mele (2011): 

                                  ( ) ∑
=

−+⋅=
12

1k

k1mtmtt  R 
12

1

2
R

πσ ,                                   (5) 

where 2π  is a scaled factor related to the use of absolute values. This measure 

provides slightly better results than the previous measure of market volatility. In 

particular, the coefficient is -0.072 and it is also estimated with higher precision, so that 

the t-statistic is -1.99 rather than -1.21. However, it does not change the conclusion 

about the forecasting power of the HJ bound. 

At the three-month horizon, all predictors seem to be individually significant and 

with the correct sign. Interestingly, the volatility of the stock market loses forecasting 

capacity, although, as when we use the estimator given by expression (5), the coefficient 

is estimated with more precision, and the t-statistic becomes -1.6. In the combined 

regressions, the higher R2 statistics are obtained when adding the volatility of the stock 

market, the price–dividend ratio, and the default spread to the HJ volatility bound. The 

regression with the HJ bound and the price–dividend ratio presents an R2 of 15.5 

percent. 

Finally, for all other longer horizons, the results are similar, except that the term 

spread becomes much more relevant in forecasting output growth and the default spread 

loses its significant predicting ability. Hence, the combinations of the HJ volatility 

bound with the stock market return, the volatility of the market, the price–dividend 

ratio, and the term spread seem to be relevant factors in predicting future production 

growth at long horizons. At the six-month horizon the highest R2 is observed when 

combining the HJ bound with the price–dividend ratio, while the combinations of the 
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volatility bound with the term spread have the highest R2 statistics at the 12- and 24- 

month horizons. At the longest horizons, the HJ bound and term spread explain 28.3 

percent of the variability of future production growth. To conclude, the default spread 

conveys information about future economic growth at relatively short horizons, while 

the term spread has predicting capacity at longer horizons. In all cases, the HJ volatility 

bound calculated with 10 size-sorted portfolios remains a strong predictor of real 

activity. 

 

5.3. Lagging the Dependent Variable 

Since we make multi-step ahead predictions, serial correlation in industrial production 

growth is expected. This suggests that the forecasting regressions should also include 

lagged values of the dependent variables. Therefore, we now run the regression 

                                ( ) τττ ε∆βσβα∆ +−+ +++= tt,t2t1t,t IPIM IPI .                          (6) 

The results are shown in Table 5. The autoregressive structure of IPI growth is 

confirmed for horizons of one, three, and six months. However, the coefficients 

associated with the HJ volatility bound remain negative and statistically significant in 

all cases. In fact, these coefficients are very similar to those reported in Table 2. 

Therefore, although the inclusion of the lagged dependent variable helps predict real 

activity, lagging the dependent variable does not seem to have any effect on our 

previous conclusions regarding the importance of the HJ volatility bound as an ex ante 

uncertainty predictor of economic cycles. 

 

6. Out-of-Sample Tests 

The predicting tools employed so far examine the ability of the predictors had we been 

able to use the coefficients estimated by the full-sample regressions. We now consider 
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tests designed to generate more closely actual real time forecasts. We employ two 

alternative statistics for testing the out-of-sample accuracy of two competing models: 

the t-test proposed by Diebold and Mariano (1995) and the F-statistic of McCracken 

(2007). In our case, the two compared models are always nested. The restricted model 

contains only one of the competing predictors already used in our in-sample tests: either 

the stock market return, the volatility of the stock market due to Fornari and Mele 

(2011), the price–dividend ratio, the default spread or the term spreads.10 On the other 

hand, the unrestricted model contains such a predictor and the HJ volatility bound 

estimated with 10 size-sorted portfolios. 

We now briefly describe this methodology. The total sample period contains T + 

P observations, where the initial in-sample estimation period employs information from 

1 to T, and the out-of-sample forecasting period goes from T + τ  to T + P, τ being the 

forecasting horizon. At each forecasting period t = T + τ , . . . , T + P, we estimate the 

two competing nested models using information up to the previous τ periods, generate 

the prediction, and compute the forecasting error. More formally, the restricted model is 

                               ττββ τ -t,1,s      ,uXY Rss
R
1

R
0s K+=++= − .                           (7a) 

The prediction under the restricted model is  

                                                  τββ −+= t
R
1

R
0Rt XˆˆŶ ,                                                  (7b) 

and the prediction error will be 

RttRt ŶYû −= .                                                         (7c) 

Similarly, the unrestricted model that includes the HJ volatility bound, the next period 

prediction and forecasting error are 

                  ( ) ττσβββ ττ -t,1,    s  ,uMXY Uss
U
2s

U
1

U
0s K+=+++= −− ,               (8a) 

                                                 
10 Since the market-wide illiquidity variable contains data only until the end of 2008, our out-of-sample 
tests do not employ this state variable. 
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                               )M(ˆXˆˆŶ t
U
2t

U
1

U
0Ut ττ σβββ −− ++= ,                                     (8b) 

                                                     UttUt ŶYû −=  .                                                         (8c) 

We next compute the vector of loss differentials, denoted d, that compares the two 

square errors at each month t and the mean squared forecasting error (MSE) for each 

model: 

                                        PT,,Tt    ,ûûd 2
Ut

2
Rtt ++=−= Kτ ,                                      (9) 

                                            ( ) ∑
+

+=

−+−=
PT

Tt

2
Rt

1
R û1PMSE

τ

τ ,                                        (10) 

                                            ( ) ∑
+

+=

−+−=
PT

Tt

2
Ut

1
U û1PMSE

τ

τ .                                        (11) 

The two statistics for testing equal forecasting accuracy have the null that the loss 

differentials are zero, on average. The Diebold–Mariano (1995) statistic is a t-test 

expressed as 

                                            ( )
d

21

Ŝ

d
1PtMSE −+−=− τ   ,                                      (12) 

where ( ) ∑
+

+=

−+−=
PT

Tt

t
1 d1Pd

τ

τ  and dŜ  is a consistent estimator of the variance of the 

loss differential that admits heteroskedasticity and autocorrelation. We employ the 

Newey–West (1987) specification and, following Clark and McCracken (2011), a lag 

length of τ⋅= 5.1k . Hence 

                        ( ) ( )( )∑∑
+

+=
−

−

−=

−−+−−








 −
=

PT

Tt

jtt
1

k

kj

d dddd1jP
k

 j k
Ŝ

τ

τ  .               (13) 

The McCracken (2007) statistic is an F-test given by 
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                                     ( )
U

UR

MSE

MSEMSE
1PFMSE

−
+−=− τ .                                  (14) 

It must be noted that the loss differentials are measured with an error that is due to 

the fact that the beta coefficients are unknown. This implies that the exact distribution 

of both statistics is also unknown and that the asymptotic distribution can only be 

obtained under restrictive assumptions that include non-nested models.11 As previously 

pointed out, this paper compares nested models. For this case, Clark and McCracken 

(2011) suggest deriving the asymptotic distribution by a fixed regressor bootstrap, and 

they show that the test statistics based on the proposed bootstrap have good size 

properties and better finite-sample power than alternative bootstraps. This method is 

based on the wild fixed regressor bootstrap developed by Goncalves and Killian (2004) 

but adapted to the multi-step framework of out-of-sample forecasts. To implement this 

method, we use the followings steps. 

1. We estimate both the restricted and unrestricted models using the full sample period 

and we compute the residuals from the unrestricted model: 

( ) PT,,1t     ,MˆXˆˆYû t
U
2t

U
1

U
0tUt ++=++−= −− Kτσβββ ττ . 

 2. We assume and estimate an MA (τ – 1) process to capture the implicit serial 

correlation in the residuals from a τ-step-ahead forecast, 

( ) PT,,1t    ,,u 1--t1-1-t1tUt ++=+++= KK τεθεθε ττ . 

3. We simulate a sequence of independent and identically distributed N(0,1) random 

variables denoted by tη  and generate artificial residuals by using the estimates of the 

MA process: 

( ) ( ) PT,,2t    ,ˆˆ,ˆˆˆu 1--t1--t1-1-t1t1tt
*
Ut +=+++= − KK τεηθεηθεη τττ . 

                                                 
11 See West (1996) and Clark and McCracken (2001) for a discussion.  
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4. We simulate an artificial series of the dependent variable using the artificial 

residual and imposing the null hypothesis: 

PT,,2t   ,uXˆˆŶ *
Utt

R
1

R
0

*
t +=++= − Kτββ τ . 

5. We compute both the MSE t-statistics and MSE F-statistics using these artificial 

data as if they were the original data. 

6. Repeat steps 3–5 5,000 times and the p-value is the percentage of times the 

simulated statistic is greater than the real statistic. 

The out-of-sample results are reported in Table 6. The first row for each 

forecasting horizon shows the relative MSE given by the expression 

RU MSEMSERMSE= . Note that when the RMSE is less than one, the inclusion of 

the HJ volatility bound as an additional predictor improves the forecasting capacity with 

respect to any of the competing standard predictors. Below each of the test statistics 

employed, we report the corresponding p-value obtained through the fixed regressor 

bootstrap explained above. The empirical evidence is quite conclusive. Most of the 

time, we show that the inclusion of the HJ bound significantly improves the predicting 

capacity of the model. The RMSE is practically always less than one, and the p-values 

tend to be very low. It turns out that this is the case independent of the forecasting 

horizon. The only variable that competes on a similar basis regarding its capacity to 

predict real activity is the term spread. For horizons of one, three, and six months the 

null of no difference between the forecasting errors of the two models is not rejected. 

For horizons of 12 and 24 months, the RMSE is greater than one and the null is rejected, 

indicating that the model including only the term spread has better out-of-sample 

performance. Therefore, the term spread becomes a better forecaster the longer the 

predicting horizon. On the other hand, the default spread presents with precisely the 

opposite behavior. Note that this is consistent with the in-sample results contained in 
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Table 4. Finally, we should mention that the stock market volatility consistently shows a 

higher MSE than the HJ volatility bound. In fact, the test statistics show that the 

inclusion of the HJ volatility bound always significantly improves the predicting 

capacity of the stock market volatility. 

 

7. Principal Component Predictability 

The finding that predictability of real activity occurs when HJ volatility bound is 

estimated by using size-sorted portfolios is both interesting and surprising. It seems that 

the time-varying behavior of correlations and variance dispersion between stocks may 

be the reason behind our results. This section provides further empirical evidence 

analyzing the principal components from the set of portfolio returns of the alternative 

sorting procedures. Principal component analysis allows us to decompose the behavior 

of the whole set of portfolio returns, within a given sorting procedure, into orthogonal 

components each corresponding to a different set of information. 

By definition, the first principal component is the (normalized) linear combination 

of portfolio returns with maximum variance. Table 7 shows that the first three principal 

components explain 98.6, 96.0, 96.0, and 94.0 percent of the total variability of returns 

for the size-, book-to-market-, momentum-, and dividend yield-sorted portfolios, 

respectively. The first principal component of the size-sorted portfolios explains a 

higher percentage than the first principal components of the alternative sorting 

strategies. Additionally, we observe that the correlation coefficients between the first 

principal components of the book-to-market-, momentum-, and dividend yield-sorted 

portfolios are 0.97 for the three pairs, while the correlation between the first principal 

components of these portfolios and the size-sorted portfolios is slightly lower and equal 

to 0.95, 0.93, and 0.91, respectively. The second principal component of the size-sorted 
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stocks has a correlation coefficient of 0.62 with the second component of the book-to-

market–sorted portfolios, and much lower correlation with the rest of the second 

principal components. We also find correlations higher than 0.45 between the second 

principal components from the book-to-market- and dividend yield-sorted assets and 

from the momentum- and the dividend yield-sorted portfolios. Finally, correlations 

between the third principal components from the different sets of portfolios are 

relatively much lower than in all other cases. 

To understand the economic factors behind these principal components, we next 

perform the following regressions for each of the three principal components and each 

portfolio set separately: 

                                   ttt,i uXPC ++= βα , 3 2, ,1i = ,                                       (15) 

where tX  is, alternatively, the stock market return, the price–dividend ratio, the SMB 

or HML Fama–French factors, the default spread, the term spread, the real consumption 

growth, and the market-wide illiquidity factor. 

The results are reported in Table 8. The variability of the first principal component 

from the size-sorted portfolios is clearly explained by the stock market return. However, 

R2 is 86.6 percent, which is relatively lower than the percentage explained of the first 

principal component by the market return when using alternative sorting procedures. 

The R2 values for the book-to-market-, momentum-, and dividend yield-sorted 

portfolios are 92.9, 93.2, and 92.6, respectively.12 As expected, when we run the 

regression of the first principal component of the size-sorted portfolio returns into the 

SMB factor, we find that this factor explains 38.1 percent of the variability of the first 

component. Hence, the first principal component of the size-sorted stocks is explained 

                                                 
12 The first principal component of the alternative portfolio classifications is mostly explained by the 
stock market return and the Fama–French factors. The price–dividend ratio, the default and term spread, 
and the illiquidity factor do not seem to be relevant in capturing the variability of the first principal 
component; however, consumption growth explains 3.8, 2.8, 2.9, and 4.0 of its variability.  
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not only by the aggregate market factor but also for the difference between the returns 

of small and large assets. We do not observe a similar result for other portfolio sets; any 

of the first principal components in these cases are basically explained through the stock 

market return. For example, the SMB and HML factors only explain 8.8 percent and 0.6 

percent of the variability of the first principal component of the book-to-market–sorted 

portfolio returns. 

The second principal component of the size-sorted portfolios is explained, as 

before, by the stock market return and the SMB factor, while the third principal 

component is basically the SMB factor with an R2 of 44.3 percent. On the other hand, 

the second principal component of the book-to-market assets is mainly associated with 

the market return and the HML factor, and its third principal component is the HML 

risk factor with an R2 of 22.4 percent. Note that this represents half of the explanatory 

capacity of the SMB factor for the third principal component of the size-sorted 

portfolios. Regarding the momentum- and dividend yield-sorted portfolios, it seem that 

the SMB and HML are relevant factors for the third principal component of the 

momentum sorting, with more explanatory capacity for SMB than for HML. Lastly, the 

HML factor explains as much as 53.0 percent of the variability of the second principal 

component of dividend yield-sorted returns. 

To conclude, the size factor appears to be relevant only when we use the size-

sorted portfolios. In all other cases, either the stock market return and/or the HML factor 

explains the behavior of the principal components.13 Therefore, size seems to be a key 

characteristic in explaining the forecasting capacity of the HJ volatility bound relative to 

the bound’s alternative measures. 

                                                 
13 Only the third principal component of the momentum sorting has a higher R2 for SMB than for HML. 
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To support this conjecture, we run predicting regressions using the HJ volatility 

bound estimated from the set of principal components instead of the set of portfolio 

returns. Each individual regression employs the HJ bound estimated with one, two, or 

three principal components for each portfolio-sorting procedure. We can then check 

which of these alternative bounds generates a stronger forecasting ability of real 

activity. Table 9 contains the results from the following predictive OLS autocorrelation-

robust standard error regressions: 

                     ( ) ττ εσβα∆ ++ ++= t
PC
tt,t M IPI ,                                        (16) 

where ( )MPC
tσ  now refers to the HJ volatility bound estimated with the first, the first 

two, or the first three principal components from each set of portfolio returns. Panel A 

of Table 9 contains the evidence from the HJ bounds estimated with the principal 

components of size-sorted portfolio returns. It shows that the first principal component 

does not produce significant predicting power. We need to add the second principal 

component to capture forecasting ability similar to that shown in Table 2 for the six-, 

12-, and 24-month horizons. Moreover, we even need to add the third principal 

component if we want to obtain forecasting capacity at the shortest horizons. Given the 

relevance of the SMB factor in explaining the second and third principal components of 

the size-sorted portfolios, this result suggests that the dynamic behavior of the 

difference between the returns of small and large portfolios may be the ultimate reason 

behind the forecasting ability of the HJ volatility bound. It is not only the influence of 

the interaction between the numerator and denominator of the maximum Sharpe ratio 

that helps predict real activity, but also, and even more importantly, the time-varying 

behavior of small firms relative to large ones. 

Finally, confirming the evidence provided in Table 3, Panels B to D of Table 9 

show no evidence of predictability when the volatility bound is estimated using 
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principal components from book-to-market–, momentum- or dividend yield-sorted 

portfolios. 

 

8. Conclusions 

The uncertainty embedded in equity portfolio returns helps predict future economic 

growth. This paper’s main contribution is to show a new measure of capturing changes 

in uncertainty incorporated in stock returns that forecast real activity that is based on the 

HJ volatility bound. However, data employed in the estimation of the volatility bound 

seem to be the key issue in properly incorporating uncertainty shocks that convey 

information about future economic growth. Alternative equity portfolio sorting 

formations lead to very different conclusions regarding the forecasting ability of the 

bound. It turns out that sorting stocks on the basis of size generates a very powerful 

leading predictor. We show that the HJ volatility bound, when employing data on 10 

size-sorted portfolios, generates significant predictions of real activity both in sample 

and out of sample. This is the case independent of the forecasting horizon and the 

competing standard predictor included in the predicting regressions. The inclusion of 

the HJ bound constructed with size-sorted portfolios significantly improves the out-of-

sample forecasting ability of such well-known predictors as the stock market volatility, 

the term spread, or the default spread. Moreover, when we test for forecasting using the 

HJ bound estimated from the three principal components of equity portfolio returns 

based on size, book-to-market, momentum, and dividend yield, the only relevant 

prediction comes from the principal components of the size-sorted portfolios. It turns 

out we need to include both the second and third principal components of these size 

portfolios in the estimation of the HJ bound to find significant forecasting capacity of 

real activity. These second and third principal components are significantly associated 
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with the differences in returns between the small and large portfolios. Size makes the 

difference. The dynamics of the time-varying second moments of returns among the 

size-sorted equity portfolios are a reasonable explanation of our findings. A 

comprehensive examination along these lines is left for future research. 
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Table 1 
Descriptive statistics of monthly returns for size-, book-to-market–, momentum-, and 
dividend yield-sorted portfolios, January 1927 to December 2010. 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Means 

Size 1.479 1.285 1.275 1.223 1.187 1.169 1.128 1.061 1.009 0.862 
BEME 0.848 0.949 0.932 0.925 1.007 1.041 1.046 1.206 1.270 1.377 

Momentum 0.337 0.705 0.723 0.854 0.863 0.919 1.011 1.138 1.209 1.532 
Div. Yield 0.862 0.952 0.895 0.987 0.860 0.973 1.047 1.085 1.066 1.023 

Standard deviations 

Size 10.27 8.969 8.203 7.585 7.275 6.947 6.575 6.238 5.938 5.148 
BEME 5.773 5.536 5.355 6.112 5.687 6.235 6.706 7.031 7.628 9.455 

Momentum 9.875 8.225 7.108 6.506 6.031 5.876 5.611 5.444 5.737 6.579 
Div. Yield 6.454 5.765 5.575 5.421 5.692 5.533 5.481 5.826 6.096 6.736 

Correlations P2 P3 P4 P5 P6 P7 P8 P9 P10 

Size-sorted portfolios 

 P1 0.958 0.930 0.915 0.885 0.857 0.848 0.806 0.788 0.698 
 P2  0.972 0.965 0.948 0.925 0.913 0.882 0.860 0.780 

Max P3   0.979 0.973 0.957 0.944 0.925 0.901 0.825 
0.980 P4    0.979 0.969 0.960 0.938 0.915 0.838 
Min P5     0.980 0.973 0.961 0.943 0.873 

0.698 P6      0.978 0.972 0.958 0.898 
 P7       0.979 0.968 0.912 
 P8        0.978 0.930 
 P9         0.951 

Book-to-market–sorted portfolios 

 P1 0.928 0.899 0.863 0.836 0.831 0.795 0.780 0.768 0.714 
 P2  0.940 0.904 0.886 0.873 0.847 0.829 0.827 0.773 

Max P3   0.910 0.899 0.884 0.860 0.835 0.839 0.784 
0.950 P4    0.937 0.931 0.915 0.904 0.875 0.833 
Min P5     0.933 0.918 0.906 0.891 0.832 

0.714 P6      0.941 0.933 0.903 0.861 
 P7       0.950 0.937 0.895 
 P8        0.937 0.911 
 P9         0.931 

Momentum-sorted portfolios 

 P1 0.932 0.904 0.882 0.866 0.833 0.777 0.730 0.690 0.594 
 P2  0.940 0.921 0.906 0.882 0.820 0.769 0.718 0.604 

Max P3   0.944 0.931 0.906 0.850 0.804 0.751 0.622 
0.944 P4    0.935 0.922 0.882 0.842 0.789 0.661 
Min P5     0.937 0.903 0.867 0.819 0.695 

0.594 P6      0.935 0.905 0.874 0.754 
 P7       0.928 0.900 0.785 
 P8        0.932 0.844 
 P9         0.888 

Dividend yield-sorted portfolios 

 P1 0.926 0.901 0.864 0.837 0.809 0.818 0.773 0.728 0.667 
 P2  0.913 0.892 0.869 0.835 0.837 0.793 0.762 0.689 

Max P3   0.910 0.881 0.868 0.863 0.814 0.771 0.716 
0.926 P4    0.926 0.906 0.896 0.865 0.836 0.772 
Min P5     0.901 0.888 0.869 0.846 0.786 

0.667 P6      0.898 0.884 0.874 0.806 
 P7       0.898 0.882 0.816 
 P8        0.906 0.872 
 P9         0.891 
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Table 2 
Monthly predicting regressions with the HJ volatility bound estimated with either 10 
size-sorted portfolios or the five smallest or five largest portfolios, January 1965 to July 
2010. 

PANEL A 

 
10 Size 

( ) ττ εβσα ++ ++=∆ t
10
ttt MIPI ,  

5 Small 

( ) ττ εβσα ++ ++=∆ t
Small
ttt MIPI ,  

5 Big 

( ) ττ εβσα ++ ++=∆ t
Big
ttt MIPI ,  

τ  α  β  Adj. R2 α  β  Adj. R2 α  β  Adj. R2 

0.007 -0.009 3.24 0.005 -0.007 1.16 0.004 -0.007 1.30 
1 

(4.26) (-3.02)  (3.62) (-2.10)  (3.48) (-1.96)  
0.021 -0.030 6.95 0.015 -0.023 3.00 0.014 -0.023 2.82 

3 
(4.89) (-3.42)  (4.21) (-2.47)  (3.70) (-2.10)  
0.042 -0.060 9.41 0.031 -0.049 4.65 0.028 -0.049 4.64 

6 
(5.34) (-3.66)  (4.76) (-2.77)  (3.98) (-2.32)  
0.080 -0.111 12.36 0.062 -0.101 7.47 0.058 -0.106 8.28 

12 
(5.91) (-3.95)  (5.56) (-3.21)  (4.73) (-2.79)  
0.149 -0.207 19.56 0.117 -0.190 12.60 0.120 -0.227 18.13 

24 
(7.16) (-4.74)  (6.42) (-3.64)  (7.46) (-4.51)  

PANEL B 

 ( ) ( ) ττ εσβσβα∆ ++ +++= t
Small
t2

10
t1t,t MMIPI  ( ) ( ) ττ εσβσβα ++ +++=∆ t

Big
t2

10
t1tt MMIPI ,  

τ  α  1β  2β  Adj. R2 α  1β  2β  Adj. R2 

0.007 -0.009 0.007 3.49 0.007 -0.009 0.003 3.15 
1 

(4.18) (-2.93) (1.25)  (4.29) (-3.02) (0.53)  
0.021 -0.029 0.017 7.34 0.021 -0.030 0.009 6.98 

3 
(4.85) (-3.35) (1.07)  (4.93) (-3.41) (0.62)  
0.041 -0.058 0.026 9.68 0.042 -0.059 0.008 9.30 

6 
(5.34) (-3.61) (0.82)  (5.38) (-3.64) (0.29)  
0.079 -0.109 0.020 12.28 0.079 -0.111 -0.019 12.31 

12 
(5.92) (-3.92) (0.38)  (5.98) (-3.97) (-0.39)  
0.149 -0.206 0.014 19.43 0.147 -0.207 -0.114 21.40 

24 
(7.09) (-4.67) (0.20)  (7.22) (-4.86) (-1.80)  

All the panels report OLS autocorrelation-robust standard error predicting regressions of future industrial 
production growth, IPI∆ , on the HJ volatility bound, ( )Mσ , estimated with either 10 size-sorted 

portfolios or with the five smallest and five largest portfolios. We employ five prediction horizons: τ = 1, 
3, 6, 12, and 24 months. The volatility bounds are estimated with overlapping sub-periods of five years of 
monthly data. 
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Table 3 
Monthly predicting regressions with the HJ volatility bound estimated from alternative 
portfolio sets, January 1965 to July 2010. 

( ) ττ εβσα∆ ++ ++= ttt,t MIPI  

PANEL A: Book-to-market–sorted portfolios 

 10 BM 5 Value 5 Growth 

τ  α  β  Adj. R2 α  β  Adj. R2 α  β  Adj. R2 

0.001 0.003 0.04 0.001 0.004 0.30 0.001 0.005 0.38 
1 

(0.45) (0.81)  (0.38) (1.26)  (0.42) (1.29)  
0.003 0.006 0.05 0.002 0.013 0.64 0.003 0.011 0.40 

3 
(0.65) (0.63)  (0.41) (1.24)  (0.71) (1.01)  
0.008 0.009 -0.02 0.004 0.025 0.83 0.008 0.013 0.10 

6 
(0.83) (0.47)  (0.46) (1.18)  (1.13) (0.64)  
0.021 0.006 -0.16 0.010 0.042 0.88 0.026 -0.005 -0.17 

12 
(1.36) (0.20)  (0.70) (1.12)  (2.01) (-0.14)  
0.060 -0.027 0.08 0.032 0.041 0.31 0.076 -0.089 2.18 

24 
(2.88) (-0.66)  (1.85) (0.88)  (4.13) (-1.64)  

PANEL B: Momentum-sorted portfolios 

 10 Momentum 5 Winners 5 Losers 

τ  α  β  Adj. R2 α  β  Adj. R2 α  β  Adj. R2 

0.002 0.000 -0.18 0.002 0.000 -0.18 0.002 0.000 -0.18 
1 

(1.16) (-0.03)  (1.26) (0.09)  (2.12) (-0.01)  

0.007 -0.002 -0.16 0.007 -0.003 -0.15 0.006 0.000 -0.18 
3 

(1.36) (-0.21)  (1.69) (-0.24)  (2.23) (-0.06)  

0.014 -0.003 -0.16 0.016 -0.012 0.01 0.012 0.000 -0.18 
6 

(1.43) (-0.20)  (2.25) (-0.59)  (2.27) (0.02)  

0.026 -0.004 -0.17 0.034 -0.029 0.27 0.023 0.003 -0.17 
12 

(1.61) (-0.16)  (3.03) (-0.91)  (2.37) (0.16)  

0.045 0.003 -0.19 0.052 -0.016 -0.12 0.046 0.001 -0.19 
24 

(1.82) (0.08)  (2.75) (-0.31)  (3.06) (0.02)  

PANEL C: Dividend yield-sorted portfolios 

 10 DY 5 High DY 5 Low DY 

τ  α  β  Adj. R2 α  β  Adj. R2 α  β  Adj. R2 

0.000 0.004 0.23 0.001 0.005 0.44 0.001 0.004 0.10 
1 

(0.05) (1.09)  (0.49) (1.44)  (0.52) (0.80)  

0.002 0.009 0.21 0.003 0.012 0.56 0.003 0.009 0.13 
3 

(0.37) (0.78)  (0.73) (1.17)  (0.71) (0.62)  

0.008 0.010 -0.03 0.008 0.015 0.19 0.009 0.009 -0.08 
6 

(0.76) (0.44)  (1.16) (0.72)  (1.10) (0.32)  

0.023 0.003 -0.18 0.020 0.012 -0.09 0.024 0.000 -0.19 
12 

(1.27) (0.06)  (1.65) (0.31)  (1.62) (0.00)  

0.040 0.014 -0.14 0.043 0.010 -0.16 0.046 0.000 -0.19 
24 

(1.56) (0.24)  (2.48) (0.19)  (2.23) (0.00)  
All panels report OLS autocorrelation-robust standard error predicting regressions of future 

τ+t industrial production growth, IPI∆ , on the HJ volatility bounds available at time t, ( )Mσ , and 

estimated with either10 or five book-to-market–, momentum-, and dividend yield-sorted portfolios. We 
employ five prediction horizons, =τ 1, 3, 6, 12 and 24 months. The volatility bounds are estimated with 
overlapping sub-periods of five years of monthly data. 
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Table 4 
Monthly predicting regressions with the HJ volatility bound estimated with 10 size-
sorted portfolios and additional predictors, January 1965 to July 2010. 

( ) ( ) ττ εββββσββσβα ++ ++++++++=∆ tt7t6t5t4mt3mt2t1tt IlliqTermDefPDRRM IPI ,

 
month 1=τ  

α  1β  2β  3β  4β  5β  6β  β7  Adj. R2 
0.007 
(4.26) 

-0.009 
(-3.02) 

 
 

    3.24 

0.002 
(4.11) 

 
0.004 
(0.45) 

 
    0.00 

0.005 
(2.05) 

  
-0.068 
(-1.21) 

    0.38 

0.005 
(3.29) 

  
 -0.960 

(-1.64) 
   1.37 

0.007 
(6.02) 

  
 

 
-3.344 
(-3.97) 

  7.28 

0.001 
(1.28) 

  
 

  
1.050 
(2.92) 

 2.55 

0.002 
(4.15) 

  
 

   
-0.0005 
(-1.77) 

0.27 

0.007 
(4.37) 

-0.009 
(-3.06) 

0.003 
(0.35) 

 
    3.09 

0.016 
(5.23) 

-0.013 
(-3.99) 

 
-0.170 
(-3.30) 

    5.93 

0.014 
(5.20) 

-0.015 
(-4.43) 

 
 -1.903 

(-3.02) 
   8.08 

0.012 
(6.86) 

-0.008 
(-3.18) 

 
 

 
-3.100 
(-3.96) 

  9.38 

0.005 
(2.24) 

-0.008 
(-2.05) 

 
 

  
0.788 
(1.83) 

 4.49 

0.006 
(4.12) 

-0.008 
(-2.89) 

 
 

   
-0.0005 
(-1.46) 

2.84 

months 3=τ  

α  1β  2β  3β  4β  5β  6β  β7  Adj. R2 

0.021 
(4.89) 

-0.030 
(-3.43) 

 
 

    6.95 

0.006 
(3.82) 

 
0.059 
(2.62) 

 
    2.46 

0.013 
(1.74) 

  
-0.148 
(-0.90) 

    0.35 

0.013 
(3.21) 

  
 -2.659 

(-1.57) 
   2.21 

0.018 
(4.60) 

  
 

 
-7.410 
(-2.81) 

  7.16 

0.002 
(1.06) 

  
 

  
3.599 
(3.66) 

 6.25 

0.006 
(4.18) 

  
 

   
-0.001 
(-2.88) 

0.38 

0.021 
(5.01) 

-0.030 
(-3.58) 

0.056 
(2.84) 

 
    9.16 

0.047 
(5.27) 

-0.041 
(-4.20) 

 
-0.461 
(-3.17) 

    11.01 

0.043 
(5.37) 

-0.046 
(-4.72) 

 
 -5.605 

(-3.04) 
   15.53 

0.030 
(5.78) 

-0.027 
(-3.73) 

 
 

 
-6.566 
(-2.77) 

  12.45 

0.015 
(2.43) 

-0.024 
(-2.26) 

 
 

  
2.769 
(2.34) 

 10.31 

0.020 
(4.80) 

-0.029 
(-3.35) 

 
 

   
-0.001 
(-2.53) 

6.66 
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months 6=τ  

α  1β  2β  3β  4β  5β  6β  β7  Adj. R2 

0.042 
(5.34) 

-0.060 
(-3.66) 

 
 

    9.41 

0.011 
(3.96) 

 
0.135 
(3.34) 

 
    4.43 

0.018 
(1.19) 

  
-0.127 
(-0.39) 

    0.00 

0.022 
(2.95) 

  
 -3.816 

(-1.26) 
   1.50 

0.026 
(3.37) 

  
 

 
-8.566 
(-1.63) 

  3.17 

0.004 
(1.14) 

  
 

  
7.219 
(4.26) 

 8.58 

0.012 
(4.29) 

  
 

   
-0.003 
(-2.70) 

0.51 

0.040 
(5.44) 

-0.058 
(-3.86) 

0.128 
(3.62) 

 
    13.45 

0.082 
(4.97) 

-0.076 
(-4.28) 

 
-0.715 
(-2.60) 

    12.72 

0.079 
(5.50) 

-0.085 
(-4.76) 

 
 -9.349 

(-2.91) 
   17.55 

0.051 
(4.70) 

-0.056 
(-3.88) 

 
 

 
-6.792 
(-1.50) 

  11.32 

0.030 
(2.71) 

-0.047 
(-2.46) 

 
 

  
5.552 
(2.72) 

 14.04 

0.042 
(5.27) 

-0.061 
(-3.64) 

 
 

   
-0.002 
(-2.32) 

10.13 

months 12=τ  

α  1β  2β  3β  4β  5β  6β  β7  Adj. R2 

0.080 
(5.91) 

-0.111 
(-3.95) 

 
 

    12.36 

0.022 
(4.64) 

 
0.237 
(4.63) 

 
    5.14 

0.024 
(0.82) 

  
0.001 
(0.00) 

    0.00 

0.030 
(2.36) 

  
 -2.355 

(-0.49) 
   0.05 

0.030 
(2.40) 

  
 

 
-3.360 
(-0.43) 

  0.01 

0.007 
(1.14) 

  
 

  
15.154 
(5.08) 

 14.02 

0.023 
(4.89) 

  
 

   
-0.003 
(-2.00) 

0.11 

0.077 
(5.97) 

-0.109 
(-4.09) 

0.225 
(4.88) 

 
    17.01 

0.138 
(4.82) 

-0.136 
(-4.55) 

 
-1.051 
(-2.08) 

    15.00 

0.126 
(5.76) 

-0.143 
(-4.79) 

 
 -11.674 

(-2.48) 
   17.04 

0.079 
(4.31) 

-0.111 
(-4.08) 

 
 

 
0.180 
(0.03) 

  12.19 

0.053 
(2.95) 

-0.084 
(-2.65) 

 
 

  
12.096 
(3.49) 

 20.53 

0.082 
(5.96) 

-0.117 
(-4.06) 

 
 

   
-0.002 
(-1.27) 

13.51 
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months 24=τ  

α  1β
 2β

 3β
 4β

 5β
 6β

 
β7  

Adj. R2 

0.149 
(7.16) 

-0.207 
(-4.74) 

 
 

    19.56 

0.044 
(6.33) 

 
0.219 
(3.43) 

 
    1.81 

0.047 
(1.14) 

  
-0.014 
(-0.02) 

    0.00 

0.032 
(1.68) 

  
 5.565 

(0.81) 
   0.46 

0.025 
(1.20) 

  
 

 
14.315 
(1.08) 

  0.92 

0.019 
(2.21) 

  
 

  
25.108 
(6.26) 

 18.16 

0.046 
(6.53) 

  
 

   
0.001 
(0.48) 

0.00 

0.147 
(7.19) 

-0.207 
(-4.81) 

0.216 
(3.77) 

 
    21.37 

0.261 
(5.63) 

-0.257 
(-5.10) 

 
-2.00 

(-2.71) 
    24.22 

0.189 
(6.16) 

-0.236 
(-5.19) 

 
 -9.817 

(-1.53) 
   21.03 

0.129 
(4.62) 

-0.206 
(-4.70) 

 
 

 
13.137 
(1.15) 

  20.34 

0.105 
(4.56) 

-0.158 
(-3.63) 

 
 

  
18.529 
(4.72) 

 28.33 

0.150 
(7.18) 

-0.208 
(-4.76) 

 
 

   
0.003 
(1.18) 

19.60 

All panels report OLS autocorrelation-robust standard error predicting regressions of future industrial 
production growth, IPI∆ , on the HJ volatility bound, ( )Mσ , estimated with 10 size-sorted portfolios 

and/or an additional standard predictor that is the market portfolio return, mR ; the volatility of the market 

portfolio return, ( )mRσ ; the log of the price–dividend ratio, PD ; the default spread, Def, calculated as 

the spread between the rates of Baa corporate bonds and 10-year government bonds; the term spread, 
Term, measured as the difference between the 10-year government bond and the one-month T-bill rate; 
and the market-wide illiquidity measure (Illiq ) calculated from Amihud’s (2002) ratio. Each panel refers 
to a different prediction horizon:  τ = 1, 3, 6, 12, and 24 months. Both the volatility bound and the market 
volatility are estimated with overlapping sub-periods of five years of monthly data. 
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Table 5 
Monthly predicting regressions with the HJ volatility bound estimated with 10 size-
sorted portfolios and controlling for persistence in the dependent variable, January 1965 
to July 2010. 

( ) τττ ε∆βσβα∆ +−+ +++= tt,t2t1t,t IPIM IPI  

τ  α  1β  2β  Adj. R2 

0.005 -0.006 0.326 13.37 
1 

(3.49) (-2.74) (4.39)  
0.013 -0.019 0.424 23.99 

3 
(3.85) (-3.11) (5.57)  
0.032 -0.048 0.282 16.72 

6 
(3.92) (-3.11) (2.88)  
0.077 -0.107 -0.003 11.80 

12 
(5.41) (-3.79) (-0.03)  
0.157 -0.193 -0.299 25.92 

24 
(7.99) (-4.45) (-2.98)  

This table reports OLS autocorrelation-robust standard error predicting regressions of future industrial 
production growth, IPI∆ , on the HJ volatility bound, ( )Mσ , and the lagged growth of industrial 

production. We employ five prediction horizons: τ = 1, 3, 6, 12, and 24 months. The volatility bounds are 
estimated with overlapping sub-periods of five years of monthly data. 
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Table 6 
Monthly out-of-sample forecast accuracy of the model that includes the HJ volatility 
bound, estimated with 10 size-sorted portfolios, in addition to a standard predictor, 
January 1965 to July 2010. 

Unrestricted model: ( ) ττ εσββα ++ +++=∆ tt2t1tt MX IPI ,  

Restricted model: ττ εβα ++ ++=∆ tt1tt X IPI ,  

 τ = 1 month 
 

mR  ( )σ mR  PD  Def  Term 

RMSE 0.9709 0.9705 0.9389 0.9886 0.9869 
MSE-t 1.5537 1.2212 1.9240 0.4114 1.0460 
(p-value) (0) (0) (0) (0) (0.099) 
MSE-F 14.6251 14.8134 31.7330 5.6467 6.4758 
(p-value) (0) (0) (0) (0) (0.075) 

 τ = 3 months 
 

mR  ( )σ mR  PD  Def  Term 

RMSE 0.9431 0.9589 0.8967 0.9789 0.9770 
MSE-t 1.2967 0.7533 1.3724 0.3810 0.8389 
(p-value) (0) (0.0004) (0.0002) (0) (0.2344) 
MSE-F 29.3053 20.8111 55.9710 10.4856 11.4637 
(p-value) (0) (0.0004) (0) (0) (0.2148) 

 τ = 6 months 
 

mR  ( )σ mR  PD  Def  Term 

RMSE 0.9284 0.9631 0.8977 0.9711 0.9767 
MSE-t 1.0457 0.4293 0.9671 0.3884 0.5611 
(p-value) (0.0002) (0) (0) (0.0008) (0.1406) 
MSE-F 37.2363 18.5075 55.0176 14.3956 11.5043 
(p-value) (0.0006) (0.0002) (0.0002) (0.0010) (0.1442) 

 τ = 12 months 
 

mR  ( )σ mR  PD  Def  Term 

RMSE 0.9315 0.9549 0.8932 0.9056 1.0246 
MSE-t 0.6190 0.3564 0.8253 0.7871 -0.3627 
(p-value) (0.0004) (0.0008) (0) (0.0018) (0.0326) 
MSE-F 35.1043 22.5347 57.0603 47.7192 -11.4718 
(p-value) (0.0014) (0.0010) (0.0004) (0.0038) (0.0210) 

 τ = 24 month 
 

mR  ( )σ mR  PD  Def  Term 

RMSE 0.9883 0.9742 0.9484 0.8680 1.1202 
MSE-t 0.0592 0.1255 0.2713 0.6164 -0.6341 
(p-value) (0.0226) (0.0116) (0.0090) (0.0182) (0.0512) 
MSE-F 5.4911 12.3342 25.2884 70.7180 -49.8949 
(p-value) (0.0224) (0.0120) (0.0114) (0.0214) (0.0396) 
This table contains the RMSE (=MSEU/MSER) and the MSE t-statistics and MSE F-statistics and their p-
values, in parentheses, obtained by an efficient bootstrap method for simulating asymptotic critical values 
for tests of equal forecast accuracy. Each panel corresponds to a given forecasting horizon: τ = 1, 3, 6, 
12, and 24 months. The dependent variable is the industrial production growth ( IPI∆ ), and the restricted 
model contains one of the variables indicated in the first row of every horizon panel. Here MSER is the 
mean square forecasting error of the restricted model, and MSEU is the mean square error of the 
unrestricted model that always includes the HJ volatility bound as a predictor. The market volatility is 
estimated as the moving average of past absolute returns using a lag of 12 months to obtain volatility 
estimates from past returns. The initial estimation period has 60 months (from January 1965 to December 
1969) and therefore the out-of-sample period has 488 - τ months. 
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Table 7 
Three principal components from size-, book-to-market–, momentum-, and 
dividend yield-sorted portfolio returns, January 1927 to December 2010. 

 SPC1 SPC2 SPC3 BPC1 BPC2 BPC3 MPC1 MPC2 MPC3 DPC1 DPC2 DPC3 

% Exp 92.72 5.00 0.86 88.84 5.30 1.86 85.16 8.37 2.47 85.31 6.74 1.97 

SPC1  -0.04 -0.04 0.95 -0.06 -0.10 0.93 0.08 -0.14 0.91 -0.01 -0.13 

SPC2   -0.02 0.17 0.62 0.20 0.23 0.28 0.31 0.32 0.28 0.21 

SPC3    0.06 0.10 -0.06 0.08 -0.04 0.21 0.10 0.04 0.03 

BPC1     -0.04 0.00 0.97 0.08 0.02 0.97 -0.05 -0.07 

BPC2      0.02 0.09 0.34 0.06 0.15 0.59 0.20 

BPC3       -0.04 -0.07 0.27 0.02 -0.36 0.25 

MPC1        0.00 -0.01 0.97 0.02 -0.08 

MPC2         0.00 0.14 0.47 0.06 

MPC3          0.08 -0.18 0.25 

DPC1           0.01 -0.01 

DPC2            0.02 

In this table SPC, BPC, MPC, and DPC indicate the corresponding principal components of size-, 
book-to-market–, momentum-, and dividend yield-sorted portfolios, respectively. The first row 
displays the percentage explained by the corresponding principal component of the variability of 
portfolio returns. The correlation coefficients between alternative principal components from 
different sorted portfolios higher than 0.45 are indicated in bold. 
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Table 8 
Monthly regressions of individual principal components on aggregate state variables, 
January 1965 to July 2010. 

321i uXPC ttti ,,,, =++= βα  

   mR  PD   SMB HML Def  Term ∆C  Illiq 

β  1.121 1.189 1.059 -0.503 4.870 3.493 3.125 5.117 

t-Value (47.05) (0.49) (10.68) (-3.70) (0.65) (1.73) (5.00) (7.40) PC1 

R2 (%) [86.55] [0.04] [38.10] [7.34] [0.29] [0.55] [3.81] [0.83] 

β  0.870 2.103 -0.971 -0.339 3.781 -1.789 1.320 -0.527 

t-Value (15.74) (0.71) (-8.41) (-1.55) (0.64) (-0.78) (1.37) (-0.14) PC2 

R2 [34.53] [0.09] [21.25] [2.20] [0.12] [0.10] [0.45] [0.01] 

β  0.015 -7.750 -2.252 0.076 -8.376 0.796 -1.949 -8.587 

t-Value (0.12) (-1.89) (-10.69) (0.28) (-1.03) (0.24) (-1.50) (-2.33) 

Size  

PC3 

R2 [0.00] [0.48] [44.31] [0.04] [0.22] [0.01] [0.38] [0.59] 

β  0.963 1.200 0.422 -0.121 3.354 1.828 2.220 2.944 

t-Value (39.51) (0.63) (3.36) (-1.08) (0.48) (1.09) (4.19) (4.69) PC1 

R2 [92.93] [0.07] [8.82] [0.62] [0.20] [0.22] [2.80] [0.41] 

β  -0.007 -1.236 0.002 -1.955 7.400 1.390 3.029 3.119 

t-Value (9.82) (-0.33) (0.36) (-10.92) (1.44) (0.48) (3.30) (1.82) PC2 

R2 [40.14] [0.03] [0.04] [61.29] [0.38] [0.05] [1.98] [0.17] 

β  -1.604 4.832 -2.765 5.385 -27.79 -18.35 1.197 -31.65 

t-Value (-3.83) (0.27) (-4.49) (7.68) (-0.82) (-1.23) (0.27) (-2.86) 

Book 
to 

Market 

PC3 

R2 [4.71] [0.02] [6.92] [22.38] [0.25] [0.41] [0.02] [0.83] 

β  1.069 1.346 0.504 -0.377 6.620 2.629 2.510 4.385 

t-Value (43.86) (0.62) (3.38) (-2.67) (0.85) (1.39) (4.09) (3.80) PC1 

R2 [93.22] [0.07] [10.20] [4.88] [0.64] [0.37] [2.91] [0.75] 

β  0.672 2.362 0.270 -0.756 -19.11 2.422 2.178 -5.668 

t-Value (3.64) (0.55) (1.08) (-2.65) (-1.60) (0.56) (1.64) (-0.52) PC2 

R2 [9.37] [0.05] [0.74] [5.00] [1.36] [0.08] [0.56] [0.33] 

β  -0.632 2.510 -2.282 1.672 8.452 -2.285 -1.798 -9.044 

t-Value (-3.27) (0.34) (-9.47) (3.66) (0.60) (-0.43) (-0.97) (-1.23) 

Momentum 

PC3 

R2 [4.62] [0.03] [29.70] [13.61] [0.15] [0.04] [0.21] [0.43] 

β  0.909 1.023 0.248 -0.198 3.319 1.304 2.019 2.475 

t-Value (38.09) (0.55) (1.93) (-1.65) (0.50) (0.82) (3.97) (3.73) PC1 

R2 [92.62] [0.05] [3.39] [1.84] [0.22] [0.13] [2.59] [0.32] 

β  9.165 5.059 5.489 -20.71 3.651 30.27 26.32 33.62 

t-Value (8.01) (0.11) (3.83) (-12.99) (0.05) (0.88) (2.85) (0.98) PC2 

R2 [24.62] [0.00] [4.36] [52.95] [0.00] [0.18] [1.15] [0.15] 

β  0.586 7.037 -1.530 0.615 54.95 0.551 -0.821 -0.246 

t-Value (1.44) (0.68) (-3.17) (0.98) (2.12) (0.06) (-0.30) (-0.02) 

Dividend 
Yield 

PC3 

R2 [1.32] [0.09] [4.44] [0.61] [2.08] [0.00] [0.02] [0.00] 
All panels report the individual OLS autocorrelation-robust standard error regressions of each of the three 
principal components, 3 2, 1,i ,PCi = , on one of the following variables: the market portfolio return, mR ; 

the log of the price–dividend ratio, PD ; the SMB factor; the HML factor; the default spread between the 
rates of Baa corporate bonds and 10-year government bonds, Def; the term spread between the 10-year 
government bond rate and the one-month T-bill rate, Term; the real consumption growth on nondurable 
goods and services, ∆C ; and Amihud’s (2002) market-wide illiquidity measure, Illiq . Each panel refers 
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to a different set of portfolios, that is, the size-, book-to-market–, momentum-, and dividend yield-sorted 
portfolio returns. 
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Table 9 
Monthly predicting regressions with the HJ volatility bound estimated with principal 
components, January 1965-July 2010. 

( ) ττ εσβα ++ ++=∆ t
PC
ttt M IPI ,  

Panel A: Size-sorted portfolios 

 1st PC 1st PC + 2nd PC 1st PC + 2nd PC + 3rd PC 

τ  α  β  Adj. R2 α  β  Adj. R2 α  β  Adj. R2 

0.001 0.004 0.15 0.004 -0.006 0.72 0.005 -0.008 1.45 
1 

(1.60) (1.10)  (3.17) (-1.63)  (3.66) (-2.16)  
0.005 0.009 0.12 0.012 -0.022 1.92 0.014 -0.027 3.08 

3 
(1.90) (0.77)  (3.47) (-1.90)  (4.04) (-2.46)  
0.012 0.004 -0.17 0.025 -0.051 3.67 0.028 -0.054 4.46 

6 
(0.26) (0.16)  (4.07) (-2.41)  (4.44) (-2.79)  
0.030 -0.037 0.41 0.056 -0.128 8.62 0.059 -0.120 8.29 

12 
(4.25) (-0.86)  (6.23) (-3.90)  (5.98) (-3.82)  
0.066 -0.121 2.75 0.106 -0.234 13.63 0.111 -0.222 13.63 

24 
(5.24) (-1.55)  (7.66) (-4.82)  (7.54) (-4.66)  

Panel B: Book-to-market–sorted portfolios 

0.001 0.007 0.89 0.001 0.004 0.14 0.001 0.004 0.10 
1 

(1.01) (1.91)  (1.00) (1.02)  (0.80) (0.89)  
0.003 0.018 1.34 0.004 0.008 0.15 0.004 0.008 0.08 

3 
(1.20) (1.76)  (1.26) (0.82)  (1.08) (0.68)  
0.008 0.025 0.81 0.010 0.010 -0.04 0.010 0.007 -0.10 

6 
(1.69) (1.25)  (1.64) (0.49)  (1.52) (0.36)  
0.021 0.014 -0.06 0.022 0.008 -0.15 0.026 -0.006 -0.16 

12 
(2.63) (0.37)  (1.94) (0.21)  (2.14) (-0.17)  
0.052 -0.035 0.15 0.047 -0.002 -0.19 0.064 -0.062 0.91 

24 
(4.02) (-0.52)  (2.58) (-0.04)  (3.17) (-0.95)  

Panel C:Momentum-sorted portfolios 

0.001 0.006 0.29 0.001 0.004 0.25 0.002 0.000 -0.18 
1 

(1.88) (1.42)  (0.89) (1.45)  (1.94) (-0.02)  
0.004 0.014 0.39 0.003 0.010 0.28 0.007 -0.003 -0.13 

3 
(2.13) (1.17)  (1.20) (1.11)  (2.35) (-0.40)  
0.010 0.016 0.07 0.006 0.022 0.53 0.014 -0.006 -0.12 

6 
(2.69) (0.67)  (1.17) (1.30)  (2.40) (-0.40)  
0.025 -0.014 -0.12 0.014 0.036 0.51 0.028 -0.013 -0.08 

12 
(3.89) (-0.28)  (1.55) (1.25)  (2.61) (-0.45)  
0.059 -0.107 1.83 0.036 0.037 0.14 0.049 -0.010 -0.17 

24 
(5.41) (-1.25)  (2.40) (0.72)  (2.68) (-0.19)  

Panel D: Dividend yield-sorted portfolios 

0.001 0.006 0.61 0.001 0.006 0.62 0.001 0.005 0.24 
1 

(1.37) (1.72)  (0.77) (1.53)  (0.62) (1.04)  
0.004 0.017 1.06 0.003 0.015 0.94 0.003 0.012 0.44 

3 
(1.52) (1.68)  (0.94) (1.43)  (0.75) (1.01)  
0.008 0.025 0.75 0.007 0.024 0.83 0.006 0.022 0.50 

6 
(1.92) (1.28)  (1.17) (1.23)  (0.85) (0.94)  
0.021 0.020 0.03 0.017 0.029 0.36 0.015 0.033 0.40 

12 
(2.72) (0.50)  (1.61) (0.75)  (1.11) (0.76)  
0.050 -0.026 0.00 0.049 -0.012 -0.15 0.051 -0.017 -0.12 

24 
(4.14) (-0.40)  (2.91) (-0.19)  (2.71) (-0.27)  
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All panels report OLS autocorrelation-robust standard error predicting regressions of future industrial 

production growth, IPI∆ , on the HJ volatility bound, ( )MPCσ , estimated with the first, two first, or 

three first principal components obtained from the alternative sets of portfolio-sorting procedures based 
on size, book to market, momentum, and dividend yield. We employ five prediction horizons: τ = 1, 3, 6, 
12, and 24 months. 
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Figure 1 
The HJ bound estimated with the overlapping 60-month periods of returns for 10 size-

sorted portfolios 
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Figure 2 
The HJ bound estimated with the overlapping 60-month periods of returns for 10 size-

sorted and the five smallest and five largest portfolios 
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Figure 3 
The HJ bound computed with the overlapping 60-month periods of returns for size-, 

book-to-market–, momentum-, and dividend yield-sorted portfolios 
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