# Fairness in classification algorithms

Conformal Prediction and Optimal Transport

Rubén Armañanzas and Jesús López Fidalgo

Alberto García Galindo, Elena Martín de Diego

Time to Share: Ética e Inteligencia Artificial

TECNUN, San Sebastián

December 18, 2023



DATAI INSTITUTE OF DATA SCIENCE AND ARTIFICIAL INTELLIGENCE

## OUTLINE.



### Universidad | DATAI de Navarra | DATAI INSTITUTE OF DATA SCIENCE AND ARTIFICIAL INTELLIGENCE

| Introduction                              | <b>02</b><br>Conformal Prediction |             |
|-------------------------------------------|-----------------------------------|-------------|
| <b>01</b><br>Fairness in Machine Learning | <b>03</b><br>Optimal Transport    | Conclusions |

## INTRODUCTION.

Loan approval Candidate screening Clinical diagnosis

Decision-making based on algorithms can have a **substantial impact** in our lives.

Despite promise, the application of machine learning may have unintended consequences.

Criminal justice: recidivism algorithms (COMPAS)

• Predicting if a defendant should be imprisoned.

ProPublica Analysis of COMPAS algorithm (Angwin et al., 2022)

|                               | White | Black |
|-------------------------------|-------|-------|
| Wrongly labelled as high-risk | 23.5% | 44.9% |
| Wrongly labelled as low-risk  | 47.7% | 28.0% |

### INTRODUCTION.



### | DATAI | INSTITUTE OF DATA SCIENCE | AND ARTIFICIAL INTELLIGENCE

Decision-making based on algorithms can have a **substantial impact** in our lives.

Despite promise, the application of machine learning may have **unintended consequences**.

As the integration of data-driven algorithms into safety-critical systems has become more widespread, so has the **ethical concerns** about its misuse.







P(g(X)=1|S=0,Y=1)=P(g(X)=1|S=1,Y=1)





### Universidad de Navarra | DATAI INSTITUTE OF DATA SCIENCE AND ARTIFICIAL INTELLIGENCE



## CONFORMAL PREDICTION.

**Conformal Prediction** Quantify uncertainty through prediction sets with quarantees

Main idea: **Calibrate** a trained machine learning model 🛛 🔀 with an external calibration dataset.



•••

### Example: Automated diagnosis of COVID19 (Angelopoulos et al, 2022)

Underlying deep learning model: ResNet-18.

Prediction sets are computed with coverage guarantees: contain the true diagnosis with 90% of confidence.









[bacterial, covid19]



More uncertainty (larger interval)

Less uncertainty (shorter interval)

Angelopoulos, A. N., Bates, S., Zrnic, T., & Jordan, M. I. (2022). Private Prediction Sets. Harvard Data Science Review, 4(2)

## CONFORMAL PREDICTION AND FAIRNESS.



#### Universidad de Navarra | DATAI INSTITUTE OF DATA SCIENCE AND ARTIFICIAL INTELLIGENCE

Convey predictions with uncertainty is a fundamental way to support fair decision-making.

# $f_1 = \frac{1}{n} \sum_{i=1}^{n} |\mathcal{C}(x_i)|$ Compute Efficient Prediction Sets with Fairness Guarantees $f_2 = |\text{Cov}_{\mathsf{male}} - \text{Cov}_{\mathsf{female}}|$ Proposal

### Tune the hyperparameters of the underlying model with multiobjective evolutionary algorithms



Dataset: Adult Income Prediction: Gross annual income (3 tiers) Sensitive attribute: gender Confidence level: 90% Optimized classifier: decision tree

## OUTLINE.



### DATAI INSTITUTE OF DATA SCIENCE AND ARTIFICIAL INTELLIGENCE

| Introduction                              | <b>02</b><br>Conformal Prediction |             |
|-------------------------------------------|-----------------------------------|-------------|
| <b>01</b><br>Fairness in Machine Learning | <b>03</b><br>Optimal Transport    | Conclusions |

## OPTIMAL TRANSPORT.



Universidad de Navarra

**Discrimination** of the classification procedures appears as soon as the prediction and the protected attribute are too closely related.



**OPTIMAL TRANSPORT.** 



| DATAI | INSTITUTE OF DATA SCIENCE | AND ARTIFICIAL INTELLIGENCE

$$\begin{array}{ll} \textbf{Methodology} \quad \mathcal{L}\left(\tilde{X} \mid S=0\right) = \mathcal{L}\left(\tilde{X} \mid S=1\right) \\ \\ \mathcal{L}\left(g(\tilde{X}) \mid S=0\right) = \mathcal{L}\left(g(\tilde{X}) \mid S=1\right) \end{array}$$



 $\mu_0 \coloneqq \mathcal{L}(X|S=0) \qquad \mu_B \in \operatorname{argmin}_{\nu \in \mathcal{P}_2} \{ \pi_0 \mathcal{W}_2^2(\mu_0, \nu) + \pi_1 \mathcal{W}_2^2(\mu_1, \nu) \} \quad \mu_1 \coloneqq \mathcal{L}(X|S=1)$ 

## OUTLINE.



### Universidad | DATAI de Navarra | DATAI INSTITUTE OF DATA SCIENCE AND ARTIFICIAL INTELLIGENCE

| Introduction                              | <b>02</b><br>Conformal Prediction |             |
|-------------------------------------------|-----------------------------------|-------------|
| <b>01</b><br>Fairness in Machine Learning | <b>03</b><br>Optimal Transport    | Conclusions |

## CONCLUSIONS AND FUTURE WORK.



### d | DATAI INSTITUTE OF DATA SCIENCE I | AND ARTIFICIAL INTELLIGENCE

Machine learning have penetrated safety-critical domains.

There is a dire need to develop **technical solutions** for addressing the problem of unfair decisions.



- Novel calibration procedures
- Fair classifiers with **reject option**
- Conformal Risk Control with **Fairness Guarantees**





- Extended total repair to online scenarios
- Fairness in Large Language Models
- Fairness in different data structures
- Ethical **guidelines** for auditing AI models

We need the ethical fundamentals to do all this!

# Fairness in classification algorithms

Conformal Prediction and Optimal Transport



Thank you for your attention!