

Explainability in Deep Convolutional Neural Networks and Visual Interpretability

Diego Borro

Computer Science PhD

Vision and Robotics research line at CEIT

Research Professor at TECNUN

dborro@ceit.es

Index

- 1. Context and introduction
- 2. Explainable AI (XAI) and techniques
- 3. Real use cases
- 4. Conclusions and discussion

Deep Learning models

Context and introduction

Deep Learning models = Black box models

- Deep learning models are far more complex to interpret than most machine learning models (opaque nature)
 - Many layers and parameters
 - Multiple types of non-linear activation functions
 - No well-defined criteria for choosing an architecture and hiperparameters (trial and error process)
 - Learning and reasoning are embedded in the behavior of thousands of simulated neurons, arranged in hundreds of interconnected layers
 - "Perfect" matching input-output but no direct evidence how

Context and introduction

Goals of XAI

Context and introduction

eXplainable Al

- Explainable Artificial Intelligence (XAI) is a concept that explains decisions made by machine learning models and provides justification in a way interpretable by humans [1]
- XAI are tools to visualize and understand how a complex model is making decisions, which can help "explain" these
 decisions in more intuitive terms

[1] S. Ali, et al., "Explainable artificial intelligence (xai): What we know and what is left to attain trustworthy artificial intelligence," Information Fusion, p. 101805, 2023. [2] Ribeiro, MT., et al., "Why Should I Trust You?": Explaining the Predictions of Any Classifier", ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

Universidad

de Navarra

Discovery and Data Mining, 2016. [3] SM Lundberg, SI Lee. "A unified approach to interpreting model predictions", Advances in neural information processing systems, 2017.

eXplainable Al

- Explainable Artificial Intelligence (XAI) is a concept that explains decisions made by machine learning models and provides justification in a way interpretable by humans [1]
- XAI are tools to visualize and understand how a complex model is making decisions, which can help "explain" these decisions in more intuitive terms

Universidad

de Navarra

Some XAI techniques for CNNs

Name	Focus	Eq
Layer visualization	Last convolutional layer	$\sum_{i=1}^{n} FM_i$
Saliency maps [5]	Impact in the output respected to input changes (pixels)	$\nabla(L, x) = \frac{\partial L(y, \hat{y})}{\partial x} L(y, \hat{y}) = -\sum_{i} y_i \log(\hat{y}_i)$
Grad-CAM [6]	Impact in the output respected to FM changes (high-level features)	$\mathcal{L}_{Grad-CAM}^{c} = ReLU(\sum_{k} \alpha_{k}^{c} \cdot A^{k}) \alpha_{k}^{c} = \frac{1}{Z} \cdot \sum_{i} \sum_{j} \frac{\partial y^{c}}{\partial A_{ij}^{k}}$
Attention maps [7]	Image areas where the model pays attention	$Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$
Guided Backpropagation [8]	Impact in the output respected to positive input changes	$\nabla(L, x) = \left \frac{\partial L(y, \hat{y})}{\partial x} \right \qquad L(y, \hat{y}) = -\sum_{i} y_{i} log(\hat{y}_{i})$
Integrated Gradients [9]	Impact in the output respected to changes in N inputs (pixels)	$IG = \sum_{\alpha=0}^{1} \nabla(L, x)_{\alpha}$

[5] K. Simonyan, A. Vedaldi, and A. Zisserman, "Deep inside convolutional networks: Visualising image classification models and saliency maps," arXiv preprint arXiv:1312.6034, 2013.

[6] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra, "Grad-cam: Why did you say that?" Nov. 2016.

Explainable AI (XAI)

[7] Alexey Dosovitskiy y col. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale". En: CoRR abs/2010.11929 (2020). arXiv: 2010.11929. url: https://arxiv.org/ abs/2010.11929.
[8] J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, "Striving for simplicity: the all convolutional net", Proceedings of the International Conference on Learning Representations (ICLR 2015).
[9] M. Sundararajan, A. Taly, and Q. Yan, "Axiomatic Attribution for Deep Networks", Proceedings of the 34th International Conference on Machine Learning (ICML'17), Vol. 70, pp. 3319–3328. August 2017.

8

Universidad

de Navarra

Solving wood heterogeneous texture classification: A deep learning approach with cropping data augmentation

Data heterogeneity

4				
left_extrafino_11_ A_360000.bmp	left_extrafino_11_ B_360000.bmp	left_extrafino_12_ A_360000.bmp	left_extrafino_12_ B_360000.bmp	left_extrafino_13 A_360000.bmp
4				
left_extrafino_13_ B_360000.bmp	left_extrafino_14_ A_360000.bmp	left_extrafino_14_ B_360000.bmp	left_extrafino_15_ A_360000.bmp	left_extrafino_15 B_360000.bmp
4	11/18	H	ан 1970) —	
left_extrafino_16_ A_360000.bmp	left_extrafino_16_ B_360000.bmp	left_extrafino_17_ A_360000.bmp	left_extrafino_17_ B_360000.bmp	left_extrafino_18 A_360000.bmp
.	<u> </u>			÷"
left_extrafino_18_ B_360000.bmp	left_extrafino_19_ A_360000.bmp	left_extrafino_19_ B_360000.bmp	left_extrafino_20_ A_360000.bmp	left_extrafino_20 B_360000.bmp
- 4		<u> </u>	er.	
left_extrafino_21_ A 360000.bmp	left_extrafino_21_ B 360000.bmp	left_extrafino_22_ A 360000.bmp	left_extrafino_22_ B 360000.bmp	left_extrafino_23 A 360000.bmp
Extrafino				
en la				
g				

Deep Learning for crops classification

Confusion Matrix of classification

Heat maps

IMMAES			= =
0.505 dimensional market	0.995	0.022	0.979
0,556	0.996	0.653	
12		0.0(71.)	

Solving wood heterogeneous texture classification: A deep learning approach with cropping data augmentation

Classifying road fog scenes: A deep learning approach with data imbalance and complex images

Classifying road fog scenes: A deep learning approach with data imbalance and complex images

Conclussions and discussion

• XAI for a **better understanding AI**

Conclusions and discussion

Universidad

de Navarra

Conclussions and discussion

- XAI for a **better understanding AI**
- Not a general XAI solution (like metrics)
- Depending on how XAI explanation is provided:
 - Visual interpretability methods: visual explanations and plots
 - **Textual explanations**, given in text form
 - Mathematical or numerical explanations
- XAI basis for **future authorities**?

UC Berkeley

Textual justification system embedded into refined visual attention models to provide appropriate explanation of the behavior of a deep neural vehicle controller

Examples of Action Description and Justification

Action Description	Action Justification	
The car accelerates	because the light has turned green	
The car accelerates slowly	because the light has turned green and traffic is flowing	
The car is driving forward	as traffic flows freely	
The car merges into the left lane	to get around a slower car in front of it	

Kim, Rohrbach, Darrell, Canny, and Akata. Show, Attend, Control, and Justify: Interpretable Learning for Self-Driving Cars Kim and Canny. Interpretable Learning for Self-Driving Cars by Visualizing Causal Attention

Without explanation: "The car heads down the street" With explanation: "The car heads down the street because there are no other cars in its lane and there are no red lights or stop signs"

- Refined heat maps produce more succinct visual explanations and more accurately expose the network's behavior
- Textual action description and justification provides an easy-to-interpret system for self-driving cars

Universidad

de Navarra

Conclusions and discussion