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Deep Learning models

| Artificial Ability of a machine to imitate

Machine
Learning =
_ Application of Machine Learning
L:'m : > that uses complex algorithms and

deep neural nets to train @ model
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Deep Learning models = Black box models

e Deep learning models are far more complex to interpret than most machine learning models (opaque nature)
e Many layers and parameters
e Multiple types of non-linear activation functions
* No well-defined criteria for choosing an architecture and hiperparameters (trial and error process)
e Learning and reasoning are embedded in the behavior of thousands of simulated neurons, arranged in hundreds of
interconnected layers
e “Perfect” matching input-output but no direct evidence how

Al system

SELF-DRIVING FINANCE
User
‘ - Why did the Al system do that?

- Why not something else?

- When did the system succeed?
- When did the system failed?

- How do | trust this decision?

) - How do | correct an error?
Massive Dataset

o
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Goals of XAl

How robust is the system Do stakeholders understand the model's

performance against \ FrearEe decisions in terms of formats and language?

changes in parameters

and inputs? \_ Do the predicted changes

Reliability Causality in the output due to input
perturbations also occur
in the actual system?
How capable is the systemto [\ Explainable Al

provide a safe and effective
environment for users to
perform their tasks?

Usability Privacy Can the protection of
sensitive user information
be guaranteed?

Trust Fairness
Can it be verified that

model decisions are fair
over protected groups?

How confident are the human
users in working with the system?
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eXplainable Al

e Explainable Artificial Intelligence (XAIl) is a concept that explains decisions made by machine learning models and

provides justification in a way interpretable by humans [1]
e XAl are tools to visualize and understand how a complex model is making decisions, which can help "explain" these

decisions in more intuitive terms

/na FNN (fully-connected neural network),\
neurons learn representation and patterns

that is difficult to extract and present in a
human-readable form
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e LIME (Local Interpretable Model-Agnostic Exp
e SHAP (SHapley Additive exPlanations) [3]

lanations) [2]

They try to understand the importance of
features by seeing how predictions change
when input features are perturbed, removed
of changed (Bias detection!!)
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[1]S. Ali, et al., "Explainable artificial intelligence (xai): What we know and what is left to attain trustworthy artificial intelligence,” Information Fusion,

p. 101805, 2023.

Discovery and Data Mining, 2016.

Explainable Al (XAl)

[2] Ribeiro, MT,, et al., "Why Should | Trust You?": Explaining the Predictions of Any Classifier", ACM SIGKDD International Conference on Knowledge

[3] SM Lundberg, SI Lee. “A unified approach to interpreting model predictions”, Advances in neural information processing systems, 2017.
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eXplainable Al

e Explainable Artificial Intelligence (XAIl) is a concept that explains decisions made by machine learning models and

provides justification in a way interpretable by humans [1]
e XAl are tools to visualize and understand how a complex model is making decisions, which can help "explain" these

decisions in more intuitive terms

CNN are focused on image processing
problems so, those patterns are images!!
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[4] M. Aouayeb, et. al. “Learning Vision Transformer with Squeeze and Excitation for Facial Expression Recognition”, ArXiv,

2021.
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Some XAl technigques for CNNs

Layer visualization Last convolutional layer ZFMi
i=1
. ) . ) OL(y, 1) -
Saliency maps [5] Impact in the output respected to input changes (pixels) V(L) =—"  Lv.9) Zﬁ log(7:)
| in th FM ch high-level — ReLU(S af - AY)
Grad-CAM [6] mpact in the output respected to FM changes (high-leve Lépaa—carr = ReLU (;_k AR) o 1
features)
Attention maps [7] Image areas where the model pays attention Attention(Q, K, V) —‘wofhmx( )
. . . T 0 aL ’A ~ A~
Guided Backpropagation [8]  Impact in the output respected to positive input changes V(L x) =‘ é};y) Ly.y) = —Ziyilog(yi)
Integrated Gradients [9] Impact in the output respected to changes in N inputs (pixels) 1G =3 V(L)

a=0

[5] K. Simonyan, A. Vedaldi, and A. Zisserman, "Deep inside convolutional networks: Visualising image classification models and saliency maps,” arXiv preprint arXiv:1312.6034, 2013.

[6] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra, "Grad-cam: Why did you say that?" Nov. 2016.

[7] Alexey Dosovitskiy y col. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale” En: CoRR abs/2010.11929 (2020). arXiv: 2010.11929. url: https://arxiv.org/ abs/2010.11929.
[8] J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, "Striving for simplicity: the all convolutional net", Proceedings of the International Conference on Learning Representations (ICLR 2015).
[9] M. Sundararajan, A. Taly, and Q. Yan, "Axiomatic Attribution for Deep Networks", Proceedings of the 34th International Conference on Machine Learning (ICML'17), Vol. 70, pp. 3319-3328. August
2017.
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Solving wood heterogeneous texture classification: A deep learning app

with cropping data augmentation

roach

Data heterogeneity Deep Learning for crops classification

Heat maps

Model architecture
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Solving wood heterogeneous texture classification: A deep learning approach
with cropping data augmentation

Layer visualization Saliency maps Grad-CAM
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Classifying road fog scenes: A deep learning approach with data imbalance and
complex images

Data acquisition and labelling Dataset split, augmentation and Deep Learning Different fog level classification

Original driving videos: K-fold cross-validation to manage imbalance Models accuracy
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Manually label each frame:

when splitting the dataset:

Dataset augmentation:

Model comparision by accuracy in test data
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Classifying road fog scenes: A deep learning approach with data imbalance and
complex images

Saliency maps Attention maps Saliency maps Attention maps
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Conclussions and discussion

e XAl for a better understanding Al

How capable is the system to
provide a safe and effective
environment for users to
perform their tasks?

How robust is the system
performance against
changes in parameters
and inputs?

How confident are the human

users in working with the system?

Reliability

Usability

Transparency

Explainable Al

Do stakeholders understand the model's
decisions in terms of formats and language?

\_ Do the predicted changes
Causality in the output due to input
perturbations also occur
in the actual system?

Privacy Can the protection of
sensitive user information
be guaranteed?

Can it be verified that
model decisions are fair

over protected groups?

Conclusions and discussion
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Conclussions and discussion

e XAl for a better understanding Al

* Not a general XAl solution (like metrics)

e Depending on how XAl explanation is

provided:

 Visual interpretability methods: visual

explanations and plots
e Textual explanations, given in text form
e Mathematical or numerical explanations

e XAl basis for future authorities?

UC Berkeley
Textual justification system embedded into refined visual attention models to provide appropriate
explanation of the behavior of a deep neural vehicle controller

Input
Images

Attention
Heat Maps

Refined Maps of
Visual Saliency
Vehicle controller Explanation generator - ,.!,
Acceleration, change control Textual descriptions
of course oufpuits + explanations

Without explanation: "The car heads down the street”

Examples of Action Description and Justification With explanation: "The car heads down the street because

Action Description Action Justification there are no other cars In its lane and there are no red lights or
The car accelerates because the light has turned green stap signs”

The car accelerates slowly m‘ﬁ‘niﬁfuﬂ?“ has turned green and + Refined heat maps produce more succinct visual
The car Is driving forward as traffic flows freely explanations anq more accurately expose the

The car merges into the left lane te get around a slower car in front of it network’s behavior

+ Textual action description and justification provides
an easy-to-interpret system for self-driving cars

Kiny, Rofwhach, Damall Canny, and Akata, Show, Aftend, Control and Justif: Interpretable Learming for SeltDnving Cars
Kimr and Cany. Interpretalie Learming for Self-Drivng Cars by Visualizing Cousad Affemtion

Conclusions and discussion
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