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Introduction

Introduction

@ In this talk we deal with the widely studied resource-constrained
project scheduling problem (RCPSP).

@ The RCPSP consists of determining a schedule for the activities
optimizing a performance measure subject to precedence and resource

constraints.

@ We propose a new variant of the RCPSP with time-dependent
resource costs (the cost depends on the resource being considered as
well as on the time it is used).

@ We focus on a bi-criteria RCPSP considering the makespan and the
total costs for resource usage as the objectives to optimize.

@ Some examples:

e Scarce resources (e.g., water in summer vs autumn).
o Energy costs (off-peak times vs peak times).
o Labor costs (weekdays vs weekends).
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Introduction

Introduction

@ Alcaraz, J., Anton-Sanchez, L., and Saldanha-da-Gama, F. (2022).
Bi-objective resource-constrained project scheduling problem with
time-dependent resource costs. Journal of Manufacturing Systems,
63:506-523.

@ Our goal is to find the Pareto front, i.e., the entire set of solutions
that cannot be improved in terms of one objective without
deteriorating the other.

@ We develop an exact procedure for determining the exact Pareto front.

@ We propose a metaheuristic for approximating the Pareto front
aiming at tackling large-scale instances of the problem.
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Problem details
Problem details

Resource-Constrained Project Scheduling Problem:

@ A project consists of a set of activities V = {0,1,...,n,n+ 1}
(activities 0 and n+ 1 are dummy activities)

@ For each activity, a duration or processing time d; is known.
Preemption is not allowed (activities are executed without

interruption).

@ There are precedence relations between activities (P; is the set of
predecessors of activity j).

@ Activities make use of a set K of renewable resources ( By is the
availability of resource k in each time unit).

@ Activity j requires rj, units of resource k per time unit.

@ The original problem consists of finding the start time for each
activity so that the precedence relations and the resource constraints
are satisfied and the project makespan is minimized.
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Problem details
Problem details

T: planning horizon (all the activities must be completed by time T).
ES;: earlier starting time of activity j € V.
LS;: latest starting time of activity j € V.

1 if j starts at time t

Decision variables: yj; = "VjeV,te{ES,..., LS}

0 otherwise,

For a vector of objective functions of interest, say f(y), a vector optimization
RCPSP can be formulated as follows [Pritsker et al., 1969]:

minimize  f(y) = (f(y), (), - -, fi(y)), (1)
LS
subject to Z yjir =1 vjeV, (2)
tZESJ'
LSj LS;
d typ— > tye>d Vi,je Vi€ P, (3)
t:ESJ t:ES,'
min{t,LS;}
> ric > vir <Bx VkeK,tc{0,..., T —1}, (4)
Jjev T=max{t—d;+1,ES;}
Yjt € {0,1} VieV,te {ESj,...,LSj}. (5)
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Problem details
Problem details

Set of objective functions:

@ The makespan is straightforwardly defined as:

.
AlY)= > tymine (6)

@ For the total cost for resource usage, we denote by ci; the cost of

employing one unit of resource k in period between times t and t + 1,
forall ke Kandt€{0,..., T —1}:

min{T—l,LSj} t—|—dj—1
hly)= ) > Yie ) D ik Ckr (7)
JeEV\{n+1} t=max{0,ES;} T=t keK

Laura Anton-Sanchez, Universidad Miguel Hernandez DATAI Seminars. October 25, 2023



Problem details
Example

@ The project consists of 7 activities making use of a single renewable
resource, which has an availability of 6 units per period.

@ The length of the planning horizon for this project was set equal to

the sum of all the processing times.

(4,5)
1
0
(0,0) 2
G,1)

(3.3)
3 (4.2

6
4 —
(2,2) 7
5 / 2.3)
(3.3)

V=1{0,1,2,3,4,5,6,7, 8}

(0,0)

K= {1} (Resource)
B1= 6 (Availability per period)

J dj= Duration of activity j
— 1j1=Requirement of
(dj, 1j1) resource 1 by activity j
T =21

¢;; = 2,Vt € [0,4] U [7,11] U [14,18]
¢, = 4,vt € {5,6,12,13, 19, 20}
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Problem details

Example

@ [wo different feasible solutions.

@ None of them dominates the other — no objective can be improved
without deteriorating the other.

6 2 6 2 | T 1
5 5 3
W 4 6 e -
3 1 3 1

2 3 5 7 2 S

1 T 4 6

o 2 4 6 8 10 12 o 2 4 6 8 10 12 1
Schedule 1 Schedule 2
Project makespan = 12 Project makespan = 14
Project cost = 134 Project cost = 130
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Finding exact Pareto solutions

Finding exact Pareto solutions

@ Our goal is to obtain Pareto solutions to the problem:

minimize  f(y) = (fi(y), 22(y)), (8)
subject to  (2) — (5).

@ The e-constrained method is a well-known procedure for finding
non-dominated solutions in vector optimization.

@ This method relies on a single objective model, keeping one of the
objective functions and setting bounds on the others (by means of
additional constraints).

@ Without loss of generality, in our case we can consider the following
model:

minimize  fi(y),

subjectto y € S,
f(y) <e. (9)

where S denotes the feasibility set for the y vector.
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Finding exact Pareto solutions

Finding exact Pareto solutions

@ Since we are considering two objectives, we adopt the improvement of the

e-constrained method introduced by [Mavrotas, 2009]: the so-called
AUGMECON method, that in our case is:

.
minimize Z t Y(n+1),t — VS,

t=ES, 1
(10)
subject to  (2) — (5),
min{ T—1,LS;} t+di—1
Z Z Yjt S: S:fjkaT +s=¢, (11)
jeV\{n+1} t=max{0,ES;} T—t keK
s > 0. (12)

where s is the slack variable of the € constraint and ~ is a small factor
ensuring that the slack of the € is as high as possible.

@ This method replaces ¢ successively with different values in the range of
interest for the objective function that we are setting as a constraint, f(y).

Laura Anton-Sanchez, Universidad Miguel Hernandez DATAI Seminars. October 25, 2023




Metaheuristic for approximating the Pareto front

Metaheuristic

@ We have designed a multi-objective metaheuristic for the RCPSP with
time-dependent resource costs.

@ The algorithm is based on the general purpose template of the
Non-dominated Sorting Genetic Algorithm I, NSGA-II [Deb et al., 2002]

Algorithm NSGA-II
1: £+ 0;

P, +- create initial population(N);
fast non dominated sort(F;);

crowding distance assignment(F,);

@ < selection population(F;);
@ < crossover population(Q),);
(): + mutation population(Q););
Ry + P, U Qy;

10: fast non dominated sort(R;);

2:
3:
1:
5: while not stopping criterion do
6
7
8
9

11: crowding distance assignment(R;);
12: P41 < reduce population(R;);

13: t+«1t4+1;

11: end while
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Metaheuristic for approximating the Pareto front

Solutions encoding

@ The activity list representation (ALR) is the most commonly used
encoding to solve the RCPSP using heuristics or metaheuristics.

@ A solution is encoded as a permutation of the activities in the project
where an activity always appears in the solution after its predecessors.

@ This encoding does not allow the consideration of different objectives
in the construction of the schedule.

@ We propose an innovative encoding where solutions are represented
by a double list:

e A list of activities.
e A binary list with the criterion to be prioritized when scheduling an
activity j in the scheduling process:

e Makespan — the activity will be scheduled from the moment where
all its predecessors finish, as soon as there are enough resources to be
executed, s; = s

@ Cost — the start time of the activity will be that in the interval
[smak mak | max_shift;] where the cost is cheaper and there are
enough resources to be executed, s; = s7°.
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Metaheuristic for approximating the Pareto front

Activity list with scheduling objective. Example

@ If the scheduling objective of an activity is 0 it represents the

makespan and 1 indicates the cost.

® max_shift; =5 for all j.

Solution A
Solution B
Solution A
sl 2 | ] L
5
----- 4
4 5 7
3 1
2 3
1 6
0 2 4 6 8 | l:0
Schedule 3
Project makespan = 11
Project cost = 140

211345
1100|000 1]1
1(2(5(4|3|7
O/1|{1/1|1(0]1
Solution B
sl 2 1 1 1
kN .| 3
4
301
2 | 5 7 6
1
0 2 4 6 38 10 12 14 16 18
Schedule 4

Project makespan = 18
Project cost =118
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Metaheuristic for approximating the Pareto front

Crossover

@ The crossover operator is applied with probability Pcross over a pair
of solutions and it combines the information of both solutions, the
parents, in order to create the offspring.

@ The crossover operator we have designed has two phases:

@ The activity lists of the parents are combined (two-point crossover
proposed by [Hartmann, 1998])

@ The offspring inherit the information contained in the scheduling
objective lists.

Mother 211(4|3[|5|7|6 Daughter (2|1 (3|4 7
0[{1/0[{0|1]0]1 01011110

Father 1131462 |5]|7 Son 1131245 7
0|1(1[]0(0]0 00|01 (1]0

Random crossover points: k1=2, k2=5
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Metaheuristic for approximating the Pareto front

Mutation

@ The mutation mechanism is applied to every individual in the current
population and, if the solution mutates, it replaces the original one.

@ We have designed a mutation operator that is applied to every
individual and consists of two phases:

@ For each activity in the sequence, a new position is randomly chosen,
between the last of its predecessors and the first of its successors which
ensures the generation of only precedence feasible solutions. The
activity is inserted in the new position with a probability of Pmut_act
[Alcaraz and Maroto, 2001].

@ The scheduling objective of each activity changes from 0 to 1 or vice
versa with a probability of Pmut_obj.
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Empirical analysis
Test data

@ We consider the single mode data sets J30, J60, J90 and J120 available in

the PSPLIB library.
We selected a total of 48 instances with 30 and 60 activities.

For the larger instances (90 and 120 activities) we report results for only a
few in each set.

For each instance, we set T as the sum of the processing times of all the
activities.

For each instance, time-dependent costs for the resources were generated.
We considered four patterns for the evolution of a resource cost:

© Trend with a positive slope; no seasonality.
@ Trend with a negative slope; no seasonality.
© Trend with a positive slope; with seasonality.
© Trend with a negative slope; with seasonality.

Given that the instances available in PSPLIB for the RCPSP contain 4
resources each, we assigned one pattern to each resource.

Laura Anton-Sanchez, Universidad Miguel Hernandez DATAI Seminars. October 25, 2023



AUGMECON & Metaheuristic

@ The AUGMECON method was coded in C++ and integrated with
IBM CPLEX 20.1 through Concert Technology.

@ For all instances the time limit was 200 hours.

@ We implemented the metaheuristic proposed using the jMetal
framework [Durillo and Nebro, 2011, Nebro et al., 2015].

@ The following combination of parameters was set in all the runs:

e Pcross = 0.9

o Pmut_act = Pmut_obj = 1/n, where n is the number of activities
e Population size: 100

e Total number of evaluations: 20 million

@ For the parameter max_shift;, for all j € V, we used 4 different
strategies that can be consulted in [Alcaraz et al., 2022].
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Empirical analysis

Metrics for evaluating the approximate Pareto front

@ Metrics can be classified according to their properties. We follow the
classification by [Audet et al., 2021]:

e Cardinality: quantify the number of non-dominated points generated by
an algorithm.

e Convergence: quantify how close a set of non-dominated points is from
the Pareto front in the objective space.

e Distribution: measures how well every region of the objective space is
represented.

e Spread: focuses on the aspect that points should be far away from
each other.
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Empirical analysis

Metrics for evaluating the approximate Pareto front

We decided to calculate the following metrics to compare two fronts:

Cardinality:

@ Overall non-dominated Vector Generation (OVNG)
[van Veldhuizen and Lamont, 1999]: number of non-dominated points on
the front.

@ C-metric [Zitler and Thiele, 1998]: gives for two fronts, F; and F,, the
fraction of solutions in 1 that are dominated by one or more solutions in F.

Convergence:

@ c-indicator [Zitzler et al., 2003]: gives the minimum additive factor by which
the approximation set has to be translated in the objective space in order to
(weakly) dominate the reference set. A lower value is desirable.
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Empirical analysis

Metrics for evaluating the approximate Pareto front

We decided to calculate the following metrics to compare two fronts:

Distribution and spread:

@ [-metric [Custodio et al., 2011]: in a bi-objective problem is the maximum
distance between two consecutive points in the Pareto front approximation.
A lower value of I is desirable.

@ Mj-metric [Zitler et al., 2000]: in a bi-objective problem is the distance of
the two outer solutions. A higher distance is desired.
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Empirical analysis

Metrics for evaluating the approximate Pareto front

In addition to the above metrics, for the instances where the optimal Pareto front
Is known, we also calculate the following metrics:

Convergence and distribution:

@ Hypervolume ratio, HVR [Zitzler, 1999]: computes the proportion of the
space dominated by the optimal Pareto front which is dominated by the
approximation method. A value closer to 1 indicates a better approximation
(decision vectors are normalized).

@ Modified Inverted Generational Distance, IGD+ [Ishibuchi et al., 2015]:
represents a distance between the fronts. A lower value is considered to be
better.

Distribution and spread:

@ Spread [Deb et al., 2002]: takes into account the extent of the Pareto front
approximation. A lower value is preferable. A spread value equal to 0
represents the most widely and evenly distributed set of non-dominated
solutions.
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Empirical analysis
Results

@ The exact Pareto front could be obtained only for the J30 and J60
instances, although not for all. For 12 out of the 48 instances with 30
activities, the optimal Pareto front could not be obtained. For the
J60 this number raises to 34.

@ For the larger instances, AUGMECON could not find an exact single
Pareto front.

@ The quality of the metaheuristic can be assessed by considering the
instances for which AUGMECON could solve up to proven optimality
all the MILP models called by the algorithm.

@ For these instances we computed all the above metrics.
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Empirical analysis

Heuristic benchmarking

@ For the J30 and J60 instances such that AUGMECON could successfully
solve all the MILP problems the approximate Pareto fronts provided by the
metaheuristic were quite good with respect to cardinality, distribution,
spread and convergence [Alcaraz et al., 2022].

CPU time (hrs) J30 J60
AUGMECON 3.9 20
Metaheuristic 0.6 1.8

155000 1140000
153000 | @ 1120000
151000 | 1120000 | h
.
149000 | @ 1110000 | @
. .
14 7000 1100000 | @
.
g 14 5000 . g 1090000
143000 v 1020000
141000 10 70000 L
133000 \ 1060000 $i..2 4
e ®eon o
137000 Lh v . # 10 50000 (]
135000 1040000
&0 20 100 120 140 160 180 50 110 160 210 260 310 360
Makespan Makeszpan
(a) Instance J3033 1. (b) Instance J6016 1.

® AUGMECON o Metaheuristic
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Empirical analysis

Metrics for the instances such that AUGMECON could solve all the MILP problems

AUGMECON Metaheuristic
OVNG C (Fy, Fa) r Time (hrs) OVNG M*5 r € HVR IGD+ Spread Time (hrs)
49 100% 0.037 1.48 63 1.351 0.074 0.094 95.53% 0.024 0.545 0.57

0.09 0.051 94.08% 0.025 0.502 0.53
AUGMECON 0.132 0.075 91.79% 0.033 0.591 0.85
4 0.097 0.096 88.61% 0.049 0.63 0.51
J305.1 OVNG C (Fq, Fa2) Time (hrs) 0.088 0.045 94.6% 0.028 0.464 0.61
J306_1 0.155 0.061 95.07% 0.027 0.644 0.59
J307.1 49 100% 1.48 0.111 *0.06 95.18% 0.027 0.638 0.65
J308_1 0.124 0.077 92.13% 0.037 0.503 0.55
J3010.1
130121 Metaheuristic
J3015.1
J30161 | OVNG M*5 r € HVR IGD+ Spread Time (hrs)
J3017.1
jgg:g—: 63 1.351 0.074 0.094 95.53% 0.024 0.545 0.57
J3020_1 36 100% 0.113 0.64 29 1.339 0.114 0.113 92.15% 0.048 0.591 0.71
J3021_1 42 100% 0.129 19.62 37 1.392 0.118 0.071 94.6% 0.028 0.553 0.59
J3022.1 35 100% 0.115 2.25 35 1.382 0.115 0.055 96.44% 0.018 0.61 0.46
J3023 1 41 100% 0.092 0.93 33 1.369 0.092 0.078 93.14% 0.03 0.565 0.68
J3024.1 21 100% 0.348 0.19 19 1.229 0.214 0.051 97.46% 0.023 0.783 0.68
J3026.1 26 100% 0.234 16.75 22 1.391 0.213 0.129 84.79% 0.066 0.588 0.54
J3027.1 29 100% 0.48 6.81 29 1.257 0.153 0.102 92.91% 0.042 0.531 0.59
J3028 1 20 100% 0.529 0.63 18 1.193 0.173 0.057 96.49% 0.023 0.582 0.56
J3031.1 22 100% 0.375 8.83 23 1.442 0.375 0.079 94.64% 0.033 0.611 0.44
J3032.1 17 100% 0.489 0.37 20 1.507 0.267 0.069 94.88% 0.031 0.539 0.91
J3033 1 29 100% 0.217 2.79 46 1.41 0.176 0.026 98.31% 0.011 0.547 0.74
J3034.1 20 100% 0.289 0.56 16 1.39 0.289 0.065 91.92% 0.042 0.445 0.75
J3035.1 12 100% 0.412 0.11 11 1.347 0.471 0.103 88.51% 0.057 0.585 0.55
J3036_1 27 84.62% 0.304 0.21 26 1.251 0.417 0.031 99.32% 0.005 0.852 0.73
J3038.1 49 100% 0.103 2.38 42 1.358 0.112 0.1 93.66% 0.034 0.589 0.44
J3039.1 53 100% 0.089 0.99 45 1.368 0.107 0.09 90.58% 0.041 0.647 0.6
J3040_1 62 100% 0.089 1.12 45 1.334 0.109 0.123 87.9% 0.061 0.6 0.68
J3042.1 41 94.44% 0.215 17.03 36 1.406 0.206 0.046 96.36% 0.022 0.624 0.62
J3044.1 29 100% 0.237 0.8 24 1.409 0.495 0.069 95.19% 0.026 0.778 0.54
J3047 1 39 100% 0.126 6.15 36 1.405 0.147 0.061 93.42% 0.03 0.535 0.48
J3048 1 49 100% 0.127 0.71 39 1.352 0.139 0.128 89.76% 0.045 0.596 0.46
Average 39.4 o - 3.9 35.5 s 3 _ = - = 0.6
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Empirical analysis

In search for approximate Pareto fronts. J30 & J60

@ In the cases where AUGMECON could not find the exact Pareto front, the

metaheuristic is the only practical alternative and can find good approximate
fronts in reasonable computation times.

CPU time (hrs) J30 J60
AUGMECON 58.3 88.1
Metaheuristic 0.5 1.8

475000 225000

™ 220000
470000
%
o 215000 | ®
465000 P -
[
E % 210000 —®
O O
460000 [ ] L
e 205000 %
L |
455000 . L
200000
®
™
450000 195000
20 100 110 120 130 140 150 160 170 55 105 155 205 255 305
Makespan Makespan
(a) Instance J3025 1. (b) Instance J6019 1.

® AUGMECON ® Metaheuristic
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Empirical analysis

In search for approximate Pareto fronts. J90 & J120

@ In the cases where AUGMECON could not find the exact Pareto front, the
metaheuristic is the only practical alternative and can find good approximate
fronts in reasonable computation times.

Cost

1340000
1320000

1300000 (@
™

1280000 ‘

[ ]
1260000 —§

1240000

1220000
70

CPU time (hrs) J90 J120
AUGMECON 118.5 180.6
Metaheuristic 3.8 7.6
2200000
2150000
2100000
2030000
2000000
1950000
120 170 220 270 320 370 420 20 110 130 150 170 150 210 230
Makespan Makespan
(c) Instance J9010 1. (d) Instance J12020 1.

® AUGMECON ® Metaheuristic
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An experimental comparison of metaheuristics

An experimental comparison of metaheuristics

B Rodriguez-Ballesteros, S., Alcaraz, J., Anton-Sanchez, L. Metaheuristics for
the Bi-objective Resource-Constrained Project Scheduling Problem with
Time-Dependent Resource Costs: An Experimental Comparison. Computers
& Operations Research. Under review.

@ We implement and assess the performance of several state-of-the-art
multi-objective evolutionary algorithms (MOEAs) when solving the
bi-criteria RCPSP with time-dependent resource costs.

@ A previous calibration step allows the algorithms to be configured in order to
make a comparison on a equal footing.

@ Statistically supported conclusions are derived from the obtained results.
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An experimental comparison of metaheuristics

General framework for MOEAs

Algorithm  Evolutionary Algorithm Template
1: i« 0:
2: P; - create__initial_population(N);
3: P; + evaluate_ population(F;);
1: while not stopping criterion do
5.  R; < selection(F;);
6: R; < crossover(R;);
7. R; «+ mutation(R;);
8: R; « evaluate_ population(R;);
9: Py ¢ replacement(F;, R;);
i fe—it i

11: end while

@ All the metaheuristics share the encoding and the genetic operators
previously described to solve the problem.

@ Differences between metaheuristics should indicate that the basic scheme of
one outperforms the other to solve the problem.
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An experimental comparison of metaheuristics
Classification of MOEAs

MOEAs can be classified into three main categories [Emmerich and Deutz, 2018]:

@ Pareto-based MOEAs: individuals are ranked according to two different
criteria. The first criterion prioritizes the non-dominated solutions. The
second ranking is performed on the groups created using the previous
dominance relation = NSGA-II [Deb et al., 2002], SPEA2
[Zitzler et al., 2001], MOCell [Nebro et al., 2009] and PESA-II
[Corne et al., 2001].

@ Indicator-based MOEAs: indicator functions are used to distinguish when
one approximation set outperforms another. Fitness values obtained by
means of these indicators are assigned to the population members, guiding

the selection procedure towards the set of Pareto optimal solutions = IBEA
[Zitzler and Kiinzli, 2004] and SMS-EMOA [Emmerich et al., 2005].

@ Decomposition-based MOEAs: this approach decomposes the original

problem into several subproblems, through which a specific part of the
Pareto front is addressed = MOEA /D [Zhang and Li, 2007].
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An experimental comparison of metaheuristics
Statistical test

@ We deal with stochastic algorithms, whose mechanism relies on certain
probabilistic operations — performance assessment is attained by using an
appropriate statistical test, which allows for comparing the obtained results
with a certain level of confidence.

@ We use a two-way standard analysis of variance (ANOVA), which considers
two independent categorical variables that can affect the response (Problem
and Configuration) and interact with each other.

@ The response variables are different performance indicators (HV, spread,...)

@ We use the Tukey's Honest Significant Difference (HSD) test to determine if
the means values of the different performance indicators are significantly
different from each other. A 99% confidence level is always used.

Yiik = p+ o + B + vij + €ij,
ied{l,.... 1} je{l,...,J} ke{l,... n;}, €x € N(0,0?%) and independent.

@ . overall mean. «;: main effect of factor A (Problem).

@ [;: main effect of factor B (Configuration). «j;: interaction between the two factors.
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An experimental comparison of metaheuristics

Experimental setup

Calibration Calibration set
Phase (120 instances)

) J120 instances
PSPLIB library | —» (largest projects)

Comparison Evaluation set
Phase (480 instances)

@ Obtaining the optimal Pareto front of the instances considered is not
possible.

@ In each one of the phases, we compute a reference Pareto front by collecting

all the non-dominated solutions generated by all the runs performed over the
Instance.

@ Each algorithm is calibrated separately, considering a full factorial design of
experiments (DOE), with all combinations of factors and levels.
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An experimental comparison of metaheuristics

Comparison criterion

@ To compare the performance of the different algorithms, we need to
determine which of the fronts have the best characteristics.

@ For this, we deal with several performance indicators to test the quality of
the results provided by different configurations of each metaheuristic.

@ A preference order among the metrics must be established in order to rank
the best configurations and moving towards the comparison phase.

@ We adopt a discarded criterion:

© We start off by selecting the best configurations with regard to a
specific metric, i.e., those configurations belonging to the first group
given by Tukey's HSD test.

If there is just one element in the group the process finishes.

Otherwise a second metric is consulted, checking Tukey's HSD test
results and deciding which of the previous best configurations has a
better performance.

© The procedure finishes when a unique best configuration can be chosen.

(2]
(3
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Comparison criterion

@ The selection of the metrics has been carried out taking into account that
they are indicators widely used in the literature and, in addition, they are
easy to Interpret.

@ The metrics are ordered as follows: hypervolume, spread, e-indicator,
modified inverted generational distance (IGD+) and p-indicator.

@ u-indicator [Alcaraz, 2022]: ratio of the I indicator and M3 metric. By
combining both performance indicators, the p-indicator provides a more
dependable measure of how well the points are distributed along the front.
In particular, u is to be minimized.
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Calibration of the algorithms

Shared parameters by all the metaheuristics:
@ Population size, N: 50, 100, 200
@ Crossover probability, p.: 0.7, 0.9

@ Mutation probability, p,: 1.0/n, 2.0/n (n: number of activities in the
project)

Specific parameters:
@ PESA-Il — bi-sections, S: 5, 10
@ IBEA — k: 0.025, 0.05, 0.1
@ MOEA/D — neighborhood selection probability, p,: 0.7, 0.9
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Calibration of the algorithms. SPEA2 example

@ The factorial design for SPEA2 gives a total of 3 x 2 x 2 = 12 possible
configurations.

@ Each configuration is tested in the 120-instance calibration set.

@ We perform 3 independent runs by problem. Hence, the calibration phase
results in 4,320 runs of SPEA2.

@ Stopping criterion: 2 minutes per run (for all the metaheuristics) — to
configure SPEA2 we employ a total of 6 days of CPU time to complete the
calibration phase.

Possible configurations CPU time (days)

NSGA-II 12 6
SPEA2 12 6

MOCell 12 6 —p 06days
PESA-II 24 12 of CPU
IBEA 36 18

SMS-EMOA 12 6

MOEA /D 24 12
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Calibration of the algorithms. Two-way ANOVA example

@ There is one model for each response variable.
@ Let us select one of the performance indicators, e.g., the e-indicator (/).

@ Factor A corresponds to the set of instances, with 120 possible levels
(numbers of problems to carry out the experiments).

@ Factor B corresponds to the set of configurations. For example, for SPEA2
there are a total of 12 different configurations, which are the possible values
for factor B.

@ For each of the 120 x 12 possibilities, we select 3 random samples from the
response variable.

(le)ijk = 1+ o + Bj + vij + €ijk,
where i € {1,...,120}, j € {1,...,12} and k € {1,...,3}.
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Calibration of the algorithms

@ We obtain that both factors and their interaction are statistically significant
for all the metaheuristics and the different response variables.

@ In consequence, the Tukey's HSD test was used to identify the best
configurations found so far, with respect to each metric.

@ All the configurations are classified by groups (observed means in our case);
those belonging to different groups being significantly different.

@ The metrics were used as follows: hypervolume, spread, e-indicator.

Selected configurations from the calibration phase:

Parameter values

NSGA-II 200 09 20/m - - -
SPEA2 100 0.7 20/n - - -
MOCell 50 09 1.0/mn - - -
PESA-II 200 0.7 20/mn 5 - -
IBEA 200 0.7 20/n - 005 -
SMS-EMOA 50 09 20/n - - -
MOEA/D 200 0.7 1.0/n - - 0.7
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Computational comparison among the best configurations

@ We compare the obtained best configurations on the 480-instance evaluation
set.

@ Stopping criteria: CPU time limit of 2 minutes per run.
@ 3 independent runs per instance are performed.
@ 14 days of CPU time to complete the comparison phase.

@ To determine the best metaheuristic, we include two additional metrics: the
modified inverted generational distance (IGD+) and the p-indicator (u).
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Computational comparison among the best configurations

@ Regarding the two-way ANOVA, we now consider one by performance
indicator, yielding a total of five statistical models.

@ Factor A corresponds to the evaluation set, holding a total of 480 possible
levels.

@ Factor B is made up of the 7 best configurations of the metaheuristics
derived from the calibration phase.

@ For each of the 480 x 7 possibilities we select 3 random samples from the
output, obtaining the following model, for example for the e-indicator:

(le)ijk = p =+ aj + Bj + vij + €ijk,
where i € {1,...,480}, j € {1,...,7} and k € {1,...,3}.

@ The main effects and their interaction are statistically significant for all the
performance indicators considered in the study.

Laura Anton-Sanchez, Universidad Miguel Hernandez DATAI Seminars. October 25, 2023



An experimental comparison of metaheuristics

Computational results for the best configurations

HV Spread

1 d i P a 1

a D
SMSEMOA f NSGAIl ; :
a b
NSGAI| - — : SMSEMOA ; :
L D ] i l c I
L C : 1 ( 1
I d 1 1 e .
IBEA - MOEAD -
T T L L5 T T T L5
0.25 0.50 0.75 0.4 0.8 1.2 16

Performance indicators means plots with Tukey's HSD 99% confidence intervals.

@ When HSD groups differ, there are significant differences between the
observed means.
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Computational results for the best configurations

HV A P 4 1GD* m

£

Mean Group Mean Group Mean Group Mean  Group Mean  Group

NSGA-II 0.765 a 0.610 b 0.045 a 0.018 a 0.099 a
SPEA2 0.756 C (.749 e 0.055 b 0.023 c 0.099 a
MOCell 0.761 b 0.540 a 0.046 a 0.020 b 0.102 a
PESA-II 0.765 a 0.6586 C 0.047 a 0.018 a 0.103 a
IBEA 0.339 e 0.725 d 0.502 d 0.313 e 0.353 C
SMS-EMOA 0.765 a 0.611 b 0.046 a 0.018 a 0.112 b
MOEA /D (.558 d 1.170 f 0.293 C 0.132 d ().486 d
NSGAII NSGAII NSGAII NSGAIIL NSGAIL
BEST PESA-II SMS-EMOA SMS-EMOA SMS-EMOA

SMS-EMOA

@ NSGA-II reports a significantly better performance (falls into the first group
in four out of the five statistical models).

@ SMS-EMOA and MOCell algorithms offer competitive results, ranking the
second group in only two metrics.

@ MOEA/D and IBEA occupy bottom positions with respect to the treatment
groups.

Laura Anton-Sanchez, Universidad Miguel Hernandez DATAI Seminars. October 25, 2023



An experimental comparison of metaheuristics

Examples of Pareto front approximations

Cost

540000 4

5200004

500000 4

480000 4

200 300 400 500 600
Makespan
i ®  NSGAI MOCell X IBEA o MOEAD
Algorithm
® SPEA2 V PESA2 SMSEMOA
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Conclusions and future work
Conclusions

We have presented a new variant of the RCPSP with time-dependent
resource costs.

We propose a bi-criteria RCPSP considering as objective functions the
makespan and the total cost associated with resource usage.

Only for small to medium sized instances was it possible to find exact Pareto
solutions. Still, in many cases, the computational effort required is
significant.

The metaheuristics developed for the problem are quite effective in finding
the approximate Pareto front. Furthermore, high-quality approximation sets
are found within a a considerably small amount of time.

Finding a perfect cost-time trade-off for the RCPSP is far from possible
since many compromise solutions can be adopted.

The methodologies proposed make it possible to provide a decision maker
with a rich set of alternative solutions from which a better decision can
certainly be made.
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Future work

The set of objective functions can be extended to consider other
possibilities such as resource leveling to ensure an even use of the
resources throughout the planning horizon.

The use of non-renewable resources is also an interesting research
direction to explore.

The consideration of uncertainty in this problem makes it harder but
adds a very common feature in real-world projects.

The multi-mode variant of the RCPSP could also be studied when
incorporating time-dependent resource costs from a multi-objective
perspective, leading to a much more realistic variant of the problem.

Above all, multicriteria resource-constrained project scheduling
problems define a very challenging area in which much work still
remains to be done.
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Thanks for your attention!!
@ Questions?

@ Remarks?
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