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Two major motivating sources for this
presentation

Sequential Estimation of Quantal Response Curves

By G. B. WETHERILL
Birkbeck College, University of London

[Read at a RESEARCH METHODS MEETING of the SocieEry, October 10th, 1962,
Professor D. R. Cox in the Chair]

Wetherill G. Sequential estimation of quantal response curves. Royal Statistical Society B 1963; 25:1-48

Adaptive design in regression and control

(iterated least squares/adaptive stochastic approximation/nonlinear regression/control theory/optimal dosage estimation)

T. L. LAI AND HERBERT ROBBINS
Department of Mathematical Statistics, Columbia University, New York, New York 10027

Contributed by Herbert Robbins, November 18, 1977 ABSTRACT When y = M(x) + ¢, where M may be nonlin-
ear, adaptive regression designs of the levels x), x, . . . at which
¥1, ¥ - - . are observed lead to asymptotically efficient estimates
of the value 0 of x for which M(f) is equal to any desired value
y*. More importantly, these designs also make the “cost” of the
observations, defined at the nth stage to be Z (x; — 6)2, to be
of the order of log n instead of n, an obvious advantage in
medical and other applications.

Lai TL, Robbins H. Adaptive design in regression and control. Proceedings of the National Academy of Sciences of the U.S.A. 1978; 75:586-587



Outline

« Dose-finding clinical studies: major players and basic models
 Setting two types of statistical problems in dose-finding
* BIDs in Type | problems and ARM

* BIDs in Type Il problems, self-tuning optimizers, and model based
designs

* Conclusion



Major players in the design of clinical studies
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Probit dose-response model

Toxicity Z

Efficacy Y
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Dragalin V, Fedorov V. Adaptive designs for dose-finding based on efficacy—toxicity response. Journal of Statistical Planning and Inference 2006;

136:1800-1823.

Dragalin V, Fedorov V, Wu Y. Two-stage design for dose—finding that accounts for both efficacy and safety. Statistics in Medicine 2008; 27:5156-5176




An interesting remark was made by Dr. C.C. Spicer
during the vote of thanks at the JRSS meeting after
Wetherill's presentation

A point that seems to me a sign of the times is that Dr Wetherill goes fairly strongly
for the logit curve rather than the probit curve. The widespread introduction of com-
puters has put another nail in the coffin of the probit curve, as the logit is very much
quicker and simpler to calculate than the existing approximations for the cumulative
normal curve,



Probability

Example of a dose-response curves - |
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Example of a dose-response model — ||

Combination of two drugs

Best dose combination
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Let:

Type I

Type Il

Two problems in dose finding

Y r< F(@/‘Tl) and E[H|-~"] = n(x,0)

;((—)) — Arg[;;[.r;ﬁ) = C]

2" () = Argmaxn(x,0)
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Best intention vs most informative design

 Best intention designs:

Allocate every new patient to the BEST (accordingly to the current knowledge) dose

-

Ln4+1 = " {Hﬂ--l—l )

* Most informative designs:

Allocate every new patient to the dose that is most informative (accordingly to the current knowledge)

Tni1 = Arg max {Increment of Information (x,6;)}

For D-criterion: | 1,1 = Arg max {Var[n(z,0p)]}
xeX '




Adaptive Robbins-Monro (ARM) procedure

y =n(w.0) +e. nw.0) =01+, ~N00%)

The (n+1)-th design point = the MLE/LSE of the “best/target” dose after n observation

One can verify that if the slope is known then:

1 : 1 | Y
Tn4+1 = Tn — 9—2(% — C) and In+]l = Tn — %(I n — )

If the slope is unknown replace it with estimator

Robbins H, Monro S. A stochastic approximation method. Ann. Math. Statistics 1951; 22:400-407
T. Lai and H. Robbins (1978) Adaptive design in regression and control. Proc. Natl. Acad. Sci. 75 (2), pp.586-587
H. Kushner and G. Yin (1997) Stochastic approximation algorithms and applications. Springer, pp. i-xii, 1-417, Ch.1



ARM procedure

0,=0.0,6,=1.0,02=1.0,C=0.0, i.e., x*= 0.0; doses were restricted to lie in [-1, 1].
Dose Dose

10| 177 10

-1.0 -1.0
0O 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Subject Subject
Type | ARM predicted the best dose sequences under the Type | ARM predicted the best dose sequences under the probit

continuous linear model 8, + 6,x. model with F (8, + 6,X).



ARM and penalized D-adaptive; M-C simulations for Type |
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Predicted best doses from the naive ARM and PAD (with cost(x) =0.1) designs. Columns show frequencies of
X100 @Nd X409, respectively.
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Plots of 8°2n by 8°1n under the continuous linear model with 81 = 0.0 and 82 = 1.0; x x = 0.0.
The top and bottom rows had initial cohorts of size 2 and 8, equally allocated to +1



Risks for different customers

Locally
Customers Risk Tuned ARM % —optimal
Targeted Population E (2%, — z*)° ~ (6/65)° N~1  (0/65)* N~!
Patient Sample E [Zf\il (zf — m*)Q] ~(0/62)> InN N
nth Patient E (z* — z*)° ~ (c/02)°nt 1
Sponsor N Q@+ gN Q@+ gN

Character “~” denotes "asymptotically”, or more loosely, for large N.
Q is the cost of a trial initiation; q is the cost of patient enroliment, patient treatment, administrative expenses, etc.
Recall that >, n" 1/i ~ 0.577 + In N.
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Summary |

 ARM works for type | problems (almost always — some tuning is needed).
 Start with a reasonable pilot sample.
 ARM is good for estimating x* but the slope cannot be separately estimated.

 ARM inspired the development of a few methods like CRM, 3+3 (more generally
A+B), and the Bayesian dose escalation are rather popular in clinical studies.

« ARM is a logistic challenge.
* Extension to multivariate x is not obvious.

» Penalized adaptive D-optimal is a competitive alternative to ARM and allows
estimating x*, and the slope.

» Two-three stage PD-optimal designs often outperform the fully adaptive and
logistically are more attractive.

V. Fedorov, N. Flournoy, Y. Wu, R. Zhang. Best Intention Designs in Dose-Finding Studies, TR of Isaac Newton Institute for
Mathematical Sciences, 2011 pp. 1-37, http.//www.newton.ac.uk/preprints/NI11065.pdf

* P. Thall, J. Cook (2004), Dose-Finding Based on Efficacy-Toxicity Trade-offs, Biometrics, 60,684-693

* Berry, D. A., Mueller, P., Grieve, A. P., Smith, M. K., Parke, T., Krams, M. (2002). Bayesian designs for dose-ranging drug trials.
In: Gatsonis, C., Kass, R. E., Carlin, B., Carriquiry, A., Gelman, A., Verdinelli, |., West, M., eds. Case Studies in Bayesian
Statistics. Vol. 5. New York: Springer-Verlag, pp. 99—181.




Response optimization: self-tuning optimizer

y=n(z,0)+e

n(x,0) =01+ 0oz + 93;';*:2

e ~ N(0,02)

Best intention design: allocate the next patient to the “best” dose
9‘2,7 )
2 93 5l

Ln+l =

Pronzato L. Optimal experimental design and some related control problems. Automatica 2008; 44:303—-325



ARM procedure

Dc:sz Dose
) 1.0
|
05 Ik i‘ 05
e SESREseeeee e eeeeec 0.0- - -
[ ——
e
-05
\“
-1.0 |
0O 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Subject Subject
Bl predicted the “best” dose sequences under the Bl predicted the “best” dose sequences under the probit model

continuous quadratic model with F (8, + B,x + 0;x?)



ARM and penalized D-adaptive; M-C simulations for Type Il
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Predicted best doses from the naive ARM and PAD (with cost(x) =0.1) designs. Columns show frequencies of x,q, and X,q,, respectively.
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Plots of 6°2n by 8”1n under the continuous quadratic model with 81 = 1.0, 862 = 0.0 and 83 = -1.0; x x = 0.0.
Plots in the top and bottom rows had initial cohort sizes of 3 and 12, equally allocated at -1, 0, 1.




Why do the best intention designs perform poorly for Type |l problems?

 Let BID perform at least as well as any regular design, i.e. an estimator x for x*=0 is at least consistent and
TN ~ 1/\/ N

» Foor the MLE or LSE consistency can be achieved when the moment matrix

N
Mas(N) =Y ap ™=
n=1

is regular and its diagonal elements tend to infinity.

N N
MQQ(N):Z.T%N 1/n~0.577+In N = oo

n=1 n=1
N N
M33(N) = Z zh ~ Z 1/n* = 72/6 < o0
n=1 n=1

We may conclude that BID may lead to reasonable estimators of x* only for Type | problems and for Type |l

problems more sophisticated designs are needed, for instance, K-W adaptive procedure* and its numerous
modifications.

*Kiefer, J.; Wolfowitz, J. (1952). "Stochastic Estimation of the Maximum of a Regression Function". The Annals of Mathematical
Statistics. 23 (3): 462-466
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Adaptive D-optimal designs that maximize information
gained per unit of penalty/cost

Model: y(z) = n(z,0) +ec=6"f(x)+¢, Elg] =0, Varle = o]
Popular penalty/loss functions

6(z,0) = Aly(a*,0) —n(z,0)] +C  and  ¢(x,0) = A(z* — )"+ C

Adaptive procedure

Tpil = Arg max Varln(z, 6,) — m—qb(aj’ On)
Ln+1l g ;rréX 2 (Dn

n

@, = Z ¢($ia én) - cumulative penalty
i=1

X e 2
x; = argmaxn(x, 6,)
reX

*Pronzato L. (2000) Adaptive optimization and D-optimum experimental design, The Annals of Statistics, 28, pp. 1743-1761
*V. Fedorov, N. Flournoy, Y. Wu, R. Zhang. Best Intention Designs in Dose-Finding Studies, TR of Isaac Newton Institute for 25
Mathematical Sciences, 2011 pp. 1-37, http.//www.newton.ac.uk/preprints/NI11065.pdf




Summary |

» There is a serious problem with the convergence BID.

» BIDs converge but to the wrong doses.

 BIDs fail for simple models. Will they work for more complicated ones?
» Apply penalized adaptive designs.

» Use penalized locally optimal designs as benchmarks for more “practical”
designs and the MC simulations to explore their properties

» Use the Kiefer-Wolfowitz procedure and its numerous modifications,
including cases when the response functions are unknown.



Conclusion

* The road to bad doses is paved with good intention designs
* The road to good doses is paved with good adaptive designs
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