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COVID-19 incidence in Flanders dataset
Fitted models and results

4 Current work and future extensions

Mabel Morales Otero (UPV) Spatial Overdispersion Models 2 / 44



Overdispersion

Generalized Linear Models (GLM) assume that the response variables Yi ,
for i = 1, . . . , n, follow a distribution which can be normal, Poisson,
binomial or any other

Poisson regression model

Let Yi ∼ Poi(µi ), i = 1, . . . , n, then we assume that µi follows the
regression model:

log(µi ) = X′iβ,

where Xi is the k × 1 vector of explanatory variables for the i-th
observation and β is the k × 1 vector of unknown regression parameters

=⇒ Property known as equidispersion: E(Yi ) = Var(Yi ) = µi

=⇒ Overdispersion would occur when Var(Yi ) > µi
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Causes of overdispersion

Among the main causes of overdispersion we have:

Omission of relevant variable or term in the model

Nonconstant variance of the response variable

When the independence assumption does not hold =⇒ Very common
in spatial data

=⇒ Standard errors may be underestimated and the inferential processes
may be incorrect

=⇒ This issue must be taken into account in order to obtain reliable
inference processes for the estimated parameters in the proposed model
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Overdispersion models for Poisson responses

Normal Poisson model

Given a random effect νi ∼ N(0, τ), we assume that (Yi |νi ) ∼ Poi(µi ),
where the mean follows the regression model:

log(µi ) = X′iβ + νi

The variance can be approximated so that Var(Yi ) ≈ µi + τµ2i . Since the
dispersion parameter is positive, that is, τ > 0, then Var(Yi ) > µi =⇒
Larger than the one specified by the Poisson model =⇒ Overdispersion

Negative binomial (NB2) model

Assume that Yi ∼ NB(τ/(τ + µi ), τ), i = 1, . . . , n, with mean E(Yi ) = µi
following the regression model: log(µi ) = X′iβ
The variance, Var(Yi ) = µi + τ−1µ2i is larger than the one that would
have been specified with the Poisson model, since the dispersion parameter
is positive, τ > 0
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Spatial count data

(a) Infant mortality in
Colombia for the year
2005, by department

(b) COVID-19 incidence in Flanders’ municipalities from
September 2020 to January 2021

=⇒ Spatial autocorrelation: observations in locations that are closer in
space tend to show similar values
=⇒ Could be one of the causes of overdispersion
=⇒ Must also be taken into account
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Spatial conditional overdispersion models

Spatial conditional overdispersion models (Cepeda-Cuervo et al., 2018)

Let Yi , for i = 1, . . . , n represent counts for n regions =⇒The spatial
conditional overdispersion models assume that (Yi |Y∼i ) follows a
conditional overdispersed distribution: f (yi |y∼i ), for i = 1, . . . , n

Y∼i is defined as the set of values in all of the neighbors of the i-th region,
except for the i-th region itself

The conditional mean follows a given regression structure that includes
covariates and the spatial lag of the response variable, with a spatial
parameter that allows to account for the intensity of the spatial
dependence that may be present in the data
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Spatial neighborhood structure

Normally specified for a set of n regions, by the n × n spatial weights
matrix W = [wij ], where the wij ’s are the weights that represent the
strength of the dependence between regions i and j

W = [wij ] is usually standardized by rows =⇒ w∗ij =
wij∑n
j=1 wij

, so

that
∑n

j=1 w
∗
ij = 1

For region i , Wiy is the spatial lag of the response variable Y, defined
as the product of the 1× n vector corresponding to the ith row of the
weights matrix W, Wi , and the n × 1 vector of observations, y =⇒
Wiy =

∑n
j=1 w

∗
ij yj is a weighted average of the values at neighboring

regions

There are two main ways of specifying the wij ’s: Adjacency (based on
boundaries) and distance
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Spatial neighborhood structure: Contiguity

Specifications for W = [wij ] based on adjacency or contiguity:

Contiguity of order 1: wij = 1 if region j is adjacent or a neighbor to
region i , and 0 otherwise

=⇒ One way of defining adjacency is by assuming that regions i and
j are be neighbors if they share at least one point in their boundaries

Contiguity of order 2: wij = 1 if regions i and j share a common
neighbor, and 0 otherwise =⇒ Higher order can be specified and can
be cumulative if we include lower order neighbors.

Mabel Morales Otero (UPV) Spatial Overdispersion Models 9 / 44



Spatial neighborhood structure: Distance

Let si be the center point (or centroid) of region i , with coordinates
(xi , yi ) =⇒ We could define the distance between regions i and j , for
example, as the Euclidean distance between their centroids:

dij = ‖si − sj‖ =
√

(xi − xj)2 + (yi − yj)2

Specifications for W = [wij ] based on distance:

Inverse distance: wij = d−1ij

Negative exponential: wij = exp (−dij)

Distance band: wij = 1 if dij < h for a chosen threshold h, and 0
otherwise
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Spatial conditional overdispersion models for Poisson
responses

Spatial conditional normal Poisson model

Assume that (Yi |Y∼i , νi ) ∼ Poi(µi ), with conditional mean
E(Yi |Y∼i , νi ) = µi following the regression model:

log(µi ) = X′iβ + ρWiy + νi , where νi ∼ N(0, τ)

Spatial conditional negative binomial model

Assume that (Yi |Y∼i ) ∼ NB(τ/(τ + µi ), τ), with conditional mean
E(Yi |Y∼i ) = µi following the regression model:

log(µi ) = X′iβ + ρWiy

=⇒ These models assume a constant overdispersion, and there are cases
where the dispersion in the data can vary among groups or observations
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Generalized spatial conditional overdispersion models
(Cepeda-Cuervo et al., 2018)

(Yi |Y∼i ), i = 1, . . . , n, follows a conditional overdispersed distribution
denoted by f (yi |y∼i ), for i = 1, . . . , n, and regression models both for the
mean and the dispersion parameters are specified, including covariates and
spatial lags of the response variable

Generalized spatial conditional normal Poisson

It assumes that (Yi |Y∼i , νi ) ∼ Poi(µi ), then regression models both for
the mean and the dispersion parameters are specified, so that:

log(µi ) =X′iβ + ρ1Wiy + νi with νi ∼ N(0, τi ) and

log(τi ) =Z′iγ + ρ2Wiy,

where the parameters ρ1 and ρ2 explain the strength of the spatial
association in the mean and the dispersion respectively
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Bayesian framework

Data: n independent observations, yi , for i = 1, . . . , n from the
variable Y

Parameters of interest: θ =⇒ Express our belief via a prior
distribution p(θ)

Aim: Make inference about θ using the information available in the
data with the likelihood L(y|θ)

How? Update our knowledge about θ using the Bayes theorem =⇒
Obtain a posterior distribution for θ: p(θ|y) ∝ L(y|θ)p(θ)

Very often the posterior is intractable =⇒ Use computational
methods such as Markov chain Monte Carlo (MCMC) and Integrated
Nested Laplace Approximation (INLA) (Software: JAGS, WinBUGS,
R-INLA, Stan, NIMBLE and a variety of R packages)

No prior information available =⇒ Vague or non informative priors
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Study of infant mortality rates in Colombia (2005)
Variables available for each of the n = 32 departments (regions) are:

ND: Number of children under one year of age who died in 2005

NB: Total number of births =⇒ Ratesi = NDi
NBi
× 1000, i = 1, . . . , n

IBN: Index representing the percentage of the population with basic
needs not satisfactorily attended.

Rec: Resources (in thousands of dollars) provided by the government
per household for academic achievement or education and integral
attention for children and young people

Viol: Percentage of women over the age of 18 who had suffered
physical violence from their current partners

HE: Percentage of people between 18 and 24 years who had access to
a higher educational level

Vac: Percentage of children under one year of age who received the
third dose of the polio vaccine in the year 2004
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Variable under study

Aim: Study mortality rates, capturing and being able to explain
overdispersion and spatial association

Figure: Spatial distribution of the variable Rates

(a) Observed mortality
rates

(b) Moran’s scatterplot of the variable
Rates
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Fitted models

• Poisson: NDi ∼ Poi(µi ), with mean following the regression model:

log(µi ) = log(NBi ) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci

• Spatial conditional Poisson: (NDi |ND∼i ) ∼ Poi(µi ), with mean
following the regression model:

log(µi ) = log(NBi ) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci

+ ρWiRates

• Normal Poisson: (NDi |νi ) ∼ Poi(µi ), with mean following the
regression model:

log(µi ) = log(NBi ) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci

+ νi , where νi ∼ N(0, τ)
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Fitted models
• Spatial conditional normal Poisson: (NDi |ND∼i , νi ) ∼ Poi(µi ), with
mean following the regression model:

log(µi ) = log(NBi ) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci

+ ρWiRates + νi , where νi ∼ N(0, τ)

• Negative binomial: NDi ∼ NB(τ/(τ + µi ), τ) with mean following
the regression model:

log(µi ) = log(NBi ) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci

• Spatial conditional negative binomial:
(NDi |ND∼i ) ∼ NB(τ/(τ + µi ), τ) with mean following the regression
model:

log(µi ) = log(NBi ) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci

+ ρWiRates
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Bayesian estimation

Specified noninformative prior distributions for all the regression
parameters:

I βj ∼ N(0, 1× 105), j = 1, . . . , k and ρ ∼ N(0, 1× 105)
I 1

τ ∼ G (1× 10−4, 1× 10−4) =⇒ Performed a sensitivity analysis,
considering different possible values G (α, α) from α = 0.1 to
α = 1× 10−8, to make sure that the prior would not affect posterior
inference

We have used OpenBUGS, JAGS (Markov chain Monte Carlo -
MCMC approach) and Integrated Nested Laplace Approximation
(INLA)

Model comparison and selection was carried out by:

I Deviance Information Criterion (DIC)

I Watanabe-Akaike Information Criterion (WAIC)

}
Lowest values in-
dicate better fit

I Performing posterior predictive checks
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Variable under study: Overdispersion

• Poisson: NDi ∼ Poi(µi ), with mean following the regression model:

log(µi ) = log(NBi ) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci

Mean SD 95% CI

Intercept -4.2960 (0.0902) (-4.4710,-4.1210)
Viol 0.0066 (0.0015) (0.0036,0.0096)
IBN 0.0155 (6.0763E-04) (0.0143,0.0167)
Rec -4.9534E-04 (1.2787E-04) (-7.4542E-04,-2.4597E-04)
HE -0.0013 (9.2185E-04) (-0.0031,4.5622E-04)
Vac -0.0036 (9.4170E-04) (-0.0054,-0.0017)

DIC = 491.7, WAIC = 524.0
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Variable under study: Overdispersion

No overdispersion =⇒ µ̂i should be approximately equal to the estimated
variance (yi − µ̂i )2.

Figure: Plot of the estimated variance against the mean

=⇒ Most points are above the red line =⇒ Suggests overdispersion
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Variable under study: Overdispersion

• Normal Poisson: (NDi |νi ) ∼ Poi(µi ), with mean following the
regression model:

log(µi ) = log(NBi ) + β0 + β1Violi + β2IBNi + β3Reci + β4HEi + β5Vaci

+ νi , where νi ∼ N(0, τ)

Mean SD 95% CI

Intercept -4.4246 (0.3235) (-5.0640,-3.7730)
Viol 0.0108 (0.0061) (-0.0012,0.0230)
IBN 0.0154 (0.0025) (0.0105,0.0202)
Rec -0.0010 (6.0308E-04) (-0.0022,1.5423E-04)
HE -0.0057 (0.0044) (-0.0143,0.0031)
Vac -0.0014 (0.0031) (-0.0075,0.0047)
τ 0.0276 (0.0096) (0.0133,0.0517)

DIC = 308.0, WAIC = 302.3
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Fitted models: results

Model DIC WAIC

Poisson 491.7 524.0
Spatial conditional Poisson 480.4 519.6
Normal Poisson 308.0 302.3
Negative Binomial 362.2 361.8
Spatial conditional Negative Binomial 360.1 360.3
Spatial conditional normal Poisson 307.3 301.3

=⇒ Model with lowest information criteria values: Spatial conditional
normal Poisson

=⇒ Variable selection taking into account information criteria values and
posterior predictive checks
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Spatial conditional normal Poisson reduced

• (NDi |ND∼i , νi ) ∼ Poi(µi ), with mean following the regression model:

log(µi ) = log(NBi ) + β0 + β1IBNi + β2Reci

+ ρWiRates + νi , where νi ∼ N(0, τ)

Mean SD 95% CI

Intercept -4.6479 (0.1660) (-4.9660,-4.3240)
IBN 0.0167 (0.0018) (0.0132,0.0202)
Rec -0.0011 (4.9818E-04) (-0.0021,-1.8238E-04)
ρ 0.0151 (0.0061) (0.0033,0.0272)
τ 0.0233 (0.0080) (0.0119,0.0430)

DIC = 307.4, WAIC = 302.3

• Nonconstant dispersion?
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Generalized spatial conditional normal Poisson reduced

Performed variable selection process =⇒ Best model:

(NDi |ND∼i , νi ) ∼ Poi(µi ) with mean following the regression model:

log(µi ) = log(NBi ) + β + ρWiRates + νi , where νi ∼ N(0, τi )

log(τi ) =γ0 + γ1IBNi

Mean SD 95% CI

µ Intercept (β) -4.9262 (0.2275) (-5.3620,-4.4780)
ρ 0.0431 (0.0093) (0.0249,0.0608)
τ Intercept (γ0) -4.2186 (0.6165) (-5.4200,-2.9998)
IBN 0.0430 (0.0145) (0.0161,0.0727)

DIC = 308.0, WAIC = 299.1
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Posterior predictive checks

Figure: Scatterplots for the observed versus the predicted rates obtained from
some of the fitted models to the Colombia infant mortality rates data set

(a) Spatial conditional normal Poisson
with variables NBI and Rec

(b) Generalized spatial conditional
normal Poisson
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Posterior predictive checks

Figure: Maps of the observed and estimated mortality rates obtained from some
of the fitted models to the Colombian infant mortality rates data set

(a) Observed rates (b) Spatial conditional
normal Poisson with
variable IBN and Rec

(c) Generalized spatial
conditional normal Poisson
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Comparison to the Besag–York–Mollié (BYM) models

BYM model

Assume that (Yi |νi , ηi ) ∼ Poi(µi ), with conditional mean E(Yi |νi , ηi ) = µi
following the regression model:

log(µi ) = X′iβ + νi + ηi ,

where νi ∼ N(0, τ) is an unstructured random effect, and ηi is a spatially
structured effect that follows an intrinsic conditional autoregressive (CAR)
distribution. =⇒ Problem: Identifiability

BYM2 model

Extension of the BYM model that scales the spatial component and the
unstructured component, so that the mean regression structure can be
written as:

log(µi ) = X′iβ +
1
√
τs

(√
1− φsνi +

√
φsηi

)
,
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Comparison to the Besag–York–Mollié (BYM) models

We have fitted the BYM and BYM2 models to the same dataset

Do not offer improvements in terms of DIC and WAIC when
compared to the spatial conditional models

Do not offer improvements in terms of posterior predictive accuracy

Figure: Scatterplots for the observed versus the predicted rates obtained from
some of the fitted BYM and BYM2 models to the Colombia infant mortality rates
data set

(a) BYM model with
variables IBN and Rec

(b) BYM2 model with
variables IBN and Rec
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Study of COVID-19 incidence rates in Flanders, Belgium
(Joint work with Prof. Christel Faes from Hasselt University)

Variables available for each of the n = 300 municipalities are:

Ncases: Number of COVID-19 in each municipality from September
2020 to January 2021

P: Population in each municipality

=⇒ Incidencei =
Ncasesi

Pi
× 100000

=⇒ Standardized Incidence Ratio (SIR): SIRi =
Ncasesi

Ei

Ei : expected counts if the population in the specific region behaved
as the standard or overall population does =⇒ Using indirect
standardization: Ei = r (s)Pi (Could also use age and/or gender)

r (s): rate for the entire population, so that r (s) =

∑n
i=1 Ncasesi∑n

i=1 Pi
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Study of COVID-19 incidence in Flanders, Belgium

Figure: Map of the Standardized Incidence Ratio (SIR)

=⇒ SIRi > 1 indicates larger incidence than expected in region i and
SIRi < 1 indicates lower
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Fitted models
The SIRs do not take into account spatial association and are sensible to
extreme values given by small areas =⇒ Estimate relative risks of the
disease for each region via a spatial regression model

Spatial conditional normal Poisson for relative risks θi

(Ncasesi |Ncases∼i ,Ei , νi ) ∼ Poi(Eiθi ), with mean following the regression
model:

log(θi ) = β + ρWi Incidence + νi , where νi ∼ N(0, τ)

Different specifications for W = [wij ]:

Contiguity of order 1

Contiguity of order 3

Inverse distance

Negative exponential

Distance band: Minimum
distance that ensures all
regions have at least one
neighbor
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Fitted models

Another connectivity structure =⇒ Mobility matrix: M = [mij ]

mij : mean proportion of time people from municipality i have spent in
municipality j from September to December 2020

Standardized by rows =⇒ Mi Incidence, can be considered as an
average of the incidence in the municipalities where people moved
into, weighted by the mean proportion of time they spent there.

Spatial conditional normal Poisson for relative risks θi

(Ncasesi |Ncases∼i ,Ei , νi ) ∼ Poi(Eiθi ), with mean following the regression
model:

log(θi ) = β + ρMi Incidence + νi , where νi ∼ N(0, τ)
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Fitted models: results

Model DIC WAIC

Contiguity of order 1 3015.6 2947.7
Contiguity of order 3 3019.1 2942.7
Inverse distance 3017.9 2941.2
Negative exponential 3022.1 2941.4
Distance band 3013.5 2938.4
Mobility 3029.9 2972.7

=⇒ Model with the lowest information criteria values: W following the
distance band specification
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Fitted models: results

Contig. of order 1 Distance band Mobility

β Mean -1.0609 -1.1969 -0.9528
SD (0.0414) (0.0505) (0.0445)

95% CI (-1.1423,-0.9797) (-1.2963,-1.0979) (-1.0401,-0.8654)

ρ Mean 27.9277 31.4797 25.1133
SD (1.1205) (1.3702) (1.2129)

95% CI (25.7278,30.1286) (28.7900,34.1715) (22.7264,27.4908)

τ Mean 0.0362 0.0409 0.0458
SD (0.0032) (0.0036) (0.0041)

95% CI (0.0304 0.0430) (0.0344 0.0484) (0.0383,0.0546)

DIC 3015.6 3013.5 3029.9
WAIC 2947.7 2938.4 2972.7
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Fitted models: results

Figure: Estimated relative risks obtained from the model with spatial weights
following contiguity of order 1
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Fitted models: results

Figure: Estimated relative risks obtained from the model with spatial weights
following distance band
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Fitted models: results

Figure: Estimated relative risks obtained from the model with spatial weights
following the mobility connectivity structure

Mabel Morales Otero (UPV) Spatial Overdispersion Models 37 / 44



Fitted models: results

Exceedance probabilities

P(θi > c) = 1− P(θi ≤ c): Probability of the estimated relative risk of a
region being greater than a given value c

=⇒ Indicate how likely the risk is to exceed the value c

=⇒ Identify areas with an unusual elevated risk

=⇒ Which regions should be examined more closely

=⇒ Where should public health policies be applied
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Fitted models: results

Figure: Exceedance probabilities for c = 1 (P(θi > 1)), obtained from the model
with spatial weights following contiguity of order 1

=⇒ In darker regions, the risk is very likely to exceed 1
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Fitted models: results

Figure: Exceedance probabilities for c = 1 (P(θi > 1)), obtained from the model
with spatial weights following distance band

=⇒ In darker regions, the risk is very likely to exceed 1
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Fitted models: results

Figure: Exceedance probabilities for c = 1 (P(θi > 1)), obtained from the model
with spatial weights following the mobility connectivity structure

=⇒ In darker regions, the risk is very likely to exceed 1
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Currently working on:

Spatial conditional overdispersion models for Binomial distributed
responses =⇒ Generalized extensions

Temporal extensions of the spatial conditional overdispersion models
for spatio-temporal count data =⇒ Following the same idea of
Cepeda-Cuervo et al. (2018), but for temporal autocorrelation

With Prof. Maŕıa Durbán (University Carlos III of Madrid):
Semiparametric extensions that allow for nonlinear relations among
the response and covariates =⇒ Using P-splines as mixed models
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Currently working on:

With Prof. Christel Faes: In the context of spatial modelling,
constructing weights matrices that are not based on contiguity or
distance, but instead, reflect socio-economic characteristics of
similar regions
=⇒ Based on differences among the values of covariates
=⇒ Interactions with the standard spatial weights matrix
=⇒ Application to COVID-19 incidence data in Flanders
municipalities

With Prof. Virgilio Gómez-Rubio (University of Castilla La
Mancha): Generalized overdispersion models cannot be fitted in INLA
=⇒ Fitting Double Hierarchical Generalized Linear models in INLA
with the Importance Sampling algorithm
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Thank you very much for your attention!

mabel.morales@ehu.eus
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