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INTRODUCTION.

Decisions based on machine learning have a substantial impact on our everyday lives.

GARG, A., ADHIKARI, N., MCDONALD, H., ROSAS ARELLANO, M., DEVEREAUX, P., BEYENE, J., SAN, J., AND HAYNES, R. Effects of computerized clinical decision support systems on practitioner 
performance and patient outcomes: a systematic review. JAMA 293, 10 (2005).

CHEN, C., SEFF, A., KORNHAUSER, A., AND XIAO, J.  Deepdriving: Learning affordance for direct perception in autonomous driving. In Proceedings of the IEEE International Conference on Computer 
Vision (Santiago, Chile, 2015).

KOU, Y., LU, C.-T., SIRWONWATTANA, S., AND HUANG, Y. P. Survey of fraud detection techniques. In Proceedings of the IEEE International Conference on Networking, Sensing and Control (Taipei, 
Taiwan, 2004)

LISBOA, P., IFEACHOR, E., AND SZCZEPANIAK, P. Artificial Neural Networks in Biomedicine.  Springer Science & Business Media, Berlin, Germany (2000)

SRIVASTAVA, A., KUNDU, A., SURAL, S., AND MAJUMDAR, A. Credit card fraud detection using hidden markov models. IEEE Transactions on Dependable and Secure Computing 5, 1 (2008)
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BAROCAS, S.,AND BOYD, D. Engaging the ethics of data science in practice. Communications of the ACM 60, 11 (2017).

KROLL, J. The fallacy of inscrutability. Philosophical Transactions of the Royal Society 376 (2018).
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INTRODUCTION.

Decisions based on machine learning have a substantial impact on our everyday lives.

However, deploying machine learning in practice remains a challenge for most companies.

As a result, industrial machine learning today is far from being sustainable.

AMODEI, D., OLAH, C., STEINHARDT, J., CHRISTIANO, P., SCHULMAN,J., AND MANÉ, D. Concrete problems in AI safety. arXiv:1606.06565 (2016).

BERK, R., HEIDARI, H., JABBARI, S., KEARNS, M., AND ROTH, A. Fairness in criminal justice risk assessments: The state of the art. Sociological Methods & Research (2018).
BOLUKBASI, T., CHANG, K. W., ZOU, J., SALIGRAMA, V., AND KALAI,A. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In Proceedings of the 29th 
International Conference on Neural Information Processing Systems (Barcelona, Spain, 2016).

BAROCAS, S., AND SELBST, A. D. Big data’s disparate impact. California Law Review 104, 3 (2016).

BOSTROM, N. Ethical issues in advanced artificial intelligence. In Science Fiction and Philosophy: From Time Travel to Superintelligence, Wiley-Blackwell, New Jersey, NJ, USA (2009).

PODESTA, J, PRITZKER, P., MONIZ, E., HOLDREN, J., AND ZIENTS,J. Big data:  Seizing opportunities, preserving values. Tech.rep., Executive Office of the President. The White House (2014).
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INTRODUCTION.

Which are the constraints that 
prevent a sustainable machine 
learning deployment?

How can we adapt trained 
machine learning models to 
changes in their environment?

How is this problem 
formalized?

Which tools do we have at our 
disposal to solve it?

How can we modify models 
which display several 
shortcomings but which have 
already been served into 
production?

Which control mechanisms 
can be enforced to prevent 
undesired negative impacts of 
machine learning?



005

CONTENTS.

INTRODUCTION



005

CONTENTS.

INTRODUCTION

MACHINE LEARNING

ACCOUNTABILITY

01



005

CONTENTS.

INTRODUCTION

ENVIRONMENTAL ADAPTATION 
AND DIFFERENTIAL REPLICATION


02

MACHINE LEARNING

ACCOUNTABILITY

01



INHERITANCE BY COPYING

03
005

CONTENTS.

INTRODUCTION

ENVIRONMENTAL ADAPTATION 
AND DIFFERENTIAL REPLICATION


02

MACHINE LEARNING

ACCOUNTABILITY

01



INHERITANCE BY COPYING

03
005

CONTENTS.

INTRODUCTION

ENVIRONMENTAL ADAPTATION 
AND DIFFERENTIAL REPLICATION


02
USE CASE

04

MACHINE LEARNING

ACCOUNTABILITY

01



CONCLUSIONS

INHERITANCE BY COPYING

03
005

CONTENTS.

INTRODUCTION

ENVIRONMENTAL ADAPTATION 
AND DIFFERENTIAL REPLICATION


02
USE CASE

04

MACHINE LEARNING

ACCOUNTABILITY

01



ENVIRONMENTAL ADAPTATION 
AND DIFFERENTIAL REPLICATION


02

INHERITANCE BY COPYING

03

USE CASE

04
INTRODUCTION

CONCLUSIONS

CONTENTS.

MACHINE LEARNING

ACCOUNTABILITY

01



MACHINE LEARNING

ACCOUNTABILITY

01

INTRODUCTION

CONTENTS.

ENVIRONMENTAL ADAPTATION 
AND DIFFERENTIAL REPLICATION


02

INHERITANCE BY COPYING

03

USE CASE

04

CONCLUSIONS



MACHINE LEARNING

ACCOUNTABILITY

01



09

SURVIVAL OF THE FITTEST.

The level of adaptation to their environment plays a key role in ensuring preservation of living 
creatures. The same can be said for machine learning models.

DARWIN, C. On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. John Murray, London, UK (1859).

BAROCAS, S. AND BOYD, D. Engaging the ethics of data science in practice. Communications of the ACM 60, 11 (2017).

KROLL, J. The fallacy of inscrutability. Philosophical Transactions of the Royal Society 376 (2018).

VEALE, M. AND BINNS, R. Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data. Big Data & Society 4, 2 (2017).
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SURVIVAL OF THE FITTEST.

The level of adaptation to their environment plays a key role in ensuring preservation of living 
creatures. The same can be said for machine learning models.

Business alignment

Third party providers

Ethics and business rules
Market trends and globalization

Regulatory framework

Technological infrastructure
Data governance

Machine learning models interact which a large number of elements that tend to change in time.
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THE NEED FOR ACCOUNTABILITY.

BOSTROM, N. Ethical issues in advanced artificial intelligence. In Science Fiction and Philosophy: From Time Travel to Superintelligence. Wiley-Blackwell, New Jersey, NJ, USA (2009)

AMODEI, D., OLAH, C., STEINHARDT, J., CHRISTIANO, P., SCHULMAN,J., AND MANÉ, D. Concrete problems in AI safety. arXiv:1606.06565 (2016).

PODESTA, J, PRITZKER, P., MONIZ, E., HOLDREN, J., AND ZIENTS, J. Big data:  Seizing opportunities, preserving values. Tech.rep., Executive Office of the President. The White House (2014)

In recent years, an increasing number of voices have publicly denounced the shortcomings of 
machine learning and their potential negative impact.

GLOBAL FUTURE COUNCIL ON HUMAN RIGHTS. How to prevent discriminatory out-comes in machine learning.  Tech. rep., World Economic Forum (2016).

BAROCAS, S., AND SELBST, A. D. Big data’s disparate impact. California Law Review 104, 3 (2016).
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THE NEED FOR ACCOUNTABILITY.

In recent years, an increasing number of voices have publicly denounced the shortcomings of 
machine learning and their potential negative impact.

As a result, there is a growing demand for accountability.

GOODMAN, B. W. A step towards accountable algorithms?: Algorithmic discrimination and the European Union general data protection. In Proceedings of the 29th International Conference on 
Neural Information Processing Systems (Barcelona, Spain, 2016)

ANGWIN, J. Make algorithms accountable. The New York Times (2016).

EXECUTIVE OFFICE OF THE PRESIDENT. The national artificial intelligence research and development strategic plan. Tech. rep., National Science and Technology Council (2016).

EUROPEAN PARLIAMENT. Civil law rules on robotics. European Parliament resolution of 16 February 2017 with recommendations to the Commission on civil law rules on robotics 
2015/2103(INL). No.: P8TA-PROV(2017)00 51. (2017).
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THE NEED FOR ACCOUNTABILITY.

In recent years, an increasing number of voices have publicly denounced the shortcomings of 
machine learning and their potential negative impact.

As a result, there is a growing demand for accountability.

GOODMAN, B. W. A step towards accountable algorithms?: Algorithmic discrimination and the European Union general data protection. In Proceedings of the 29th International Conference on 
Neural Information Processing Systems (Barcelona, Spain, 2016)

ANGWIN, J. Make algorithms accountable. The New York Times (2016).

EXECUTIVE OFFICE OF THE PRESIDENT. The national artificial intelligence research and development strategic plan. Tech. rep., National Science and Technology Council (2016).

EUROPEAN PARLIAMENT. Civil law rules on robotics. European Parliament resolution of 16 February 2017 with recommendations to the Commission on civil law rules on robotics 
2015/2103(INL). No.: P8TA-PROV(2017)00 51. (2017).

Instrument through which agents can be 
held accountable of  the potential negative 
consequences of  automatic decisions
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ACCOUNTABILITY

Explainability

Privacy

Fairness
Accuracy

Risk-based 

auditing

Risk mitigation

LUCA, M., KLEINBERG, J., AND MULLAINATHAN, S. Algorithms need managers, too. Harvard Business Review (2016).

SCULLEY, D., HOLT, G., GOLOVIN, D., DAVYDOV, E., PHILLIPS, T.,EBNER, D., CHAUDHARY, V., AND YOUNG, M. Machine learning: The high interest credit card of technical debt. In SE4ML: Software 
Engineering for Machine Learning (Montreal, Canada, 2014).
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DIFFERENTIAL REPLICATION.

The need for adaptation can be understood as a need to transform one form of knowledge 
representation to another, which we can control and which is therefore more suitable under certain 
circumstances.

BUCILUĂ, C., CARUANA, R., AND NICULESCU-MIZIL, A. Model compression. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (PA, USA, 2006).

BREIMAN, L. Statistical modeling: The two cultures. Statistical Science 16, 3 (2001).

DOMINGOS, P. Knowledge acquisition from examples via multiple models. In Proceedings of the 14th International Conference on Machine Learning (Miami, FL, USA, 1997).
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Inheritance of  the decision behavior

The need for adaptation can be understood as a need to transform one form of knowledge 
representation to another, which we can control and which is therefore more suitable under certain 
circumstances.

BUCILUĂ, C., CARUANA, R., AND NICULESCU-MIZIL, A. Model compression. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (PA, USA, 2006).
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DIFFERENTIAL REPLICATION.

Differential replication allows us to reuse the knowledge acquired by an existing model to train 
a second generation that can better adapt to the new environmental conditions.

Inheritance of  the decision behavior

New traits and characteristics

The need for adaptation can be understood as a need to transform one form of knowledge 
representation to another, which we can control and which is therefore more suitable under certain 
circumstances.

BUCILUĂ, C., CARUANA, R., AND NICULESCU-MIZIL, A. Model compression. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (PA, USA, 2006).

BREIMAN, L. Statistical modeling: The two cultures. Statistical Science 16, 3 (2001).

DOMINGOS, P. Knowledge acquisition from examples via multiple models. In Proceedings of the 14th International Conference on Machine Learning (Miami, FL, USA, 1997).
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THE NEED FOR UNLABELLED DATA.

Copying problem

Unlabelled set

Generating probability distribution

We envisage a scenario where model 
internals are not open for inspection and 
the training data are unknown or lost 
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VAPNIK, V.N. The Nature of Statistical Learning Theory. Springer, Berlin, Heidelberg (2000).

Optimal set of  synthetic samples

Empirical fidelity error Regularization

Synthetic dataset
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SOLVING THE COPYING PROBLEM.

The problem is always separable

We can potentially generate infinite samples
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Finding the optimal set of synthetic samples

Optimizing the copy parameters
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THE CONTEXT.

Credit default has significant cost implications for financial institutions.

Increasing efforts are devoted to develop complex models able to learn this problem.

However, credit scoring models are required by law to be interpretable.

These models requires a sophisticated pre-processing to account for non-linear effects in the data.

Non-decomposability
Increased time-to-market delivery

Credit default prediction for non-client mortgage loans

In this context, logistic regression models are widely established.
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THE DATA.

Non-client mortgage loan applications

No previous active contract with the 
bank at the time of  loan application
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THE DATA.
Attribute
 Description

age Age
studies Level of  studies
n_family_unit Members of  the family unit
zip_code Municipality
municipality ZIP code
indebtedness Level of  indebtedness
p_default Ratio of  defaulted contracts
economy_level Level of  economy
est_income Estimated income
est_soc_income Estimated socio-demographic income
est_mila_income Estimated income based on MILA model
poverty_index Marginalization / poverty index
credit_amount Amount of  credit
property_value Property value
value_m2 Value per square meter
loan_to_value Loan to value
duration Duration of  the loan
installment Monthly installment

Non-paid

Paid

23%

77%
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FROM THEORY TO PRACTICE.

Formalize the problem 
environmental adaptation and 
discuss the mechanisms that allow 
differential replication through 
different forms of  inheritance.

Develop the theory behind 
inheritance by copying to replicate 
the decision behavior of  a model using 
another in scenarios with limited 
knowledge.

Evaluate the feasibility of  this 
technique in practice to ensure 
actionable accountability of  
machine learning  against rapidly 
changing conditions.

Putting the theoretical postulates of machine learning to practice remains a challenge. We need to 
develop new knowledge to ensure a more sustainable use of machine learning in practice.
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FUTURE WORK.

Study the projection onto the space of causal and privacy-preserving models.

Develop the dual-pass approach to solve the copying problem.

Devise additional mechanisms to ensure a sustainable machine learning deployment.
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