
Aggregation and pre-aggregation functions. Extensions
of fuzzy integrals and their applications to the

computational brain, fuzzy rule systems and decision
making

H. Bustince
Public University of Navarra

Pamplona 22 June 2022

DATAI 22 JUNIO 2022 1 / 83



Convolutional Neural Network: CNN
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Convolutional Neural Network: CNN

LeCun, Bengio, and Hinton, “Deep learning”
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Pooling

It aggregates the features extracted by
the convolution layers:
x = (x1, . . . , xn) ∈ Rn;
A(x) : Rn → R

• Summary of relevant information in a
local way.

• Max pooling: A(x) = maxni=1 xi

• Avg pooling: A(x) = 1
n

∑n
i=1 xi

Yu et al., “Mixed pooling for convolutional neural networks”
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Some relevant aggregation functions: Choquet integrals

Data fusion functions using numbers in [0, 1]
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Fusion functions

Definition

Let n ≥ 2. An (n-ary) fusion function is an arbitrary function
F : [0, 1]n → [0, 1].

• The choice of the unit interval is not relevant. Any other interval of
real numbers would do.

• No conditions are imposed at all to F .
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Monotonicity and related notions

Definition

A function F : [a, b]n → [a, b] is increasing if for every x1, . . . , xn,
y1, . . . , yn ∈ [a, b] such that xi ≤ yi for every i = 1, . . . , n the inequality

F (x1, . . . , xn) ≤ F (y1, . . . , yn)

holds.
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Aggregation functions

Definition

An aggregation function is a function M : [0, 1]n → [0, 1] such that:

1 M is increasing;

2 M(0, . . . , 0) = 0

3 M(1, . . . , 1) = 1.

Definition

An aggregation function M is called idempotent if for every t ∈ [0, 1],
M(t, · · · , t) = t

Definition

An aggregation function M is called averaging if
min(x) ≤ M(x) ≤ max(x)
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Some relevant aggregation functions: triangular norms

Definition

An aggregation function T : [0, 1]2 → [0, 1] is a triangular norm (t-norm) if
it satisfies the following conditions:

T1 T is commutative;

T2 T is associative.

T3 T (x, 1) = x for every x ∈ [0, 1].
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Some relevant aggregation functions: overlap functions

Definition

A function O : [0, 1]2 → [0, 1] is an overlap function if it satisfies the
following conditions:

O1 O is commutative;

O2 O(x, y) = 0 if and only if xy = 0;

O3 O(x, y) = 1 if and only if xy = 1;

O4 O is increasing;

O5 O is continuous.

Every continuous t-norm without divisor of zero is an overlap function
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Some relevant aggregation functions: copulas

Definition

A function C : [0, 1]2 → [0, 1] is a copula if, for all x, x′, y, y′ ∈ [0, 1] such
that x ≤ ‘x′ and y ≤ y′, it satisfies the following conditions:

C1 C(x, y) + C(x′, y′) ≥ C(x, y′) + C(x′y);

C2 C(x, 0) = C(0, x) = 0;

C3 C(x, 1) = C(1, x) = x .
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Some relevant aggregation functions: Choquet integrals

Choquet and Sugeno Integrals
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Fuzzy measures: the idea

• Fuzzy measures are used for evaluating the relationship between the
elements to be aggregated.

• They allow to represent the importance of the different coalitions that
may be constructed with the different inputs.
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Fuzzy measures

Definition

Let N = {1, · · · , n}. A function m : 2N → [0, 1] is a discrete fuzzy
measure if, for all X,Y ⊆ N , it satisfies the following properties:

(m1) Increasingness: if X ⊆ Y , then m(X) ≤ m(Y );

(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

• Power measure:

mPM (A) =

( |A|
n

)q

, with q > 0.
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Utility of fuzzy measures: The Choquet integral

Definition

Let m : 2N → [0, 1] be a fuzzy measure. The discrete Choquet integral of
x = (x1, . . . , xn) ∈ [0, 1]n with respect to m is defined as a function
Cm : [0, 1]n → [0, 1], given by

Cm(x) =

n∑

i=1

(
x(i) − x(i−1)

)
·m

(
A(i)

)
,

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the input x, that is,

0 ≤ x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0, and
A(i) = {(i), . . . , (n)} is the subset of indices of the n− i+ 1 largest
components of x.

The Choquet integral is a continuous piecewise linear idempotent
aggregation function
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Utility of fuzzy measures: The Sugeno integral

Definition

Let m : 2N → [0, 1] be a fuzzy measure. The discrete Sugeno integral of
x = (x1, . . . , xn) ∈ [0, 1]n with respect to m is defined as a function
Sm : [0, 1]n → [0, 1], given by

Sm(x) =

n∨

i=1

min
{
x(i),m

(
A(i)

)}
.

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the input x, that is,

0 ≤ x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0, and
A(i) = {(i), . . . , (n)} is the subset of indices of the n− i+ 1 largest
components of x.
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Some relevant aggregation functions: Choquet integrals

The problem of choosing the best fusion function
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Image processing. Reduction
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Image processing. Reduction
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What have we done

P (x1, . . . , xn, y) =

n∑

i=1

(xi − y)4
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Penalty functions

Definition

A penalty function is a mapping

P : [a, b]n+1 → R+ = [0,∞]

such that:

1 P (x, y) = 0 if xi = y for every i = 1, · · · , n;
2 P (x, y) is quasi-convex in y for every x; that is,

P (x, λ · y1 + (1− λ) · y2) ≤ max(P (x, y1), P (x, y2))

Aggregation functions based on penalties. Tomasa Calvo, Gleb Beliakov, Fuzzy Sets and
Systems, 161 (10), 1420-1436 (2010)

On the definition of penalty functions in data aggregation. Humberto Bustince, Gleb
Beliakov, Gracaliz Pereira Dimuro, Benjamin Bedregal, Radko Mesiar, Fuzzy Sets and
Systems, 323 (15), 1-18 (2017)
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Image processing. Reduction

.

Construction of image reduction operators using averaging aggregation functions. D.
Paternain, J. Fernandez, H. Bustince, R. Mesiar, G. Beliakov Fuzzy Sets and Systems, 261,
87-111 (2015)

Consensus in multi-expert decision making problems using penalty functions defined over
a Cartesian product of lattices. H. Bustince, E. Barrenechea, T. Calvo, S. James, G.
Beliakov Information Fusion 17, 56–64 (2014)
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Some relevant aggregation functions: Choquet integrals

Pre-aggregation functions
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A different problem
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The monotonicity problem

We are asking for monotonicity

But some fusion methods are not monotone:

• Statistical operators (the mode)

• Implication functions

• Similarity measures

• Distances

So then?
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One step ahead: directional monotonicity

• Weak monotonicity along the direction (1, . . . , 1) (2015, T. Wilkin, G.
Beliakov)

• Generalization: Let’s consider any direction r⃗ ∈ Rn
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The formal definition

Definition

Let r⃗ be a real vector (r⃗ ̸= 0). A fusion function F : [0, 1]n → [0, 1] is
r⃗-increasing if for every x ∈ [0, 1]n and for every c > 0 such that
x+ cr⃗ ∈ [0, 1]n it holds that:

F (x+ cr⃗) ≥ F (x)

Some examples:

• Every implication function I : [0, 1]2 → [0, 1] is (−1, 1)-increasing.

• F (x, y) = x−max(0, (x− y)2) is (1, 1)-increasing and
(0, 1)-decreasing, but it is not (1, 0)-increasing nor (1, 0)-decreasing.

Directional monotonicity of fusion functions, H. Bustince, J. Fernandez, A. Kolesárová, R.
Mesiar, European Journal of Operational Research 244 (1), 300-308 (2015).
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Even further: ordered directionally monotone functions

Definition

Let F : [0, 1]n → [0, 1] be a fusion function and let r⃗ ̸= 0⃗ be an
n-dimensional vector. F is said to be ordered directionally (OD) r⃗-
increasing if for any x ∈ [0, 1]n, for any c > 0 and for any permutation
σ : {1, . . . , n} → {1, . . . , n} with xσ(1) ≥ · · · ≥ xσ(n) and such that

1 ≥ xσ(1) + cr1 ≥ · · · ≥ xσ(n) + crn ≥ 0

it holds that
F (x+ cr⃗σ−1) ≥ F (x)

where r⃗σ−1 = (rσ−1(1), . . . , rσ−1(n))

Ordered Directionally Monotone Functions: Justification and Application, H. Bustince, E.
Barrenechea, M. Sesma-Sara, J. Lafuente, G. P. Dimuro, R. Mesiar, A. Kolesárová, IEEE
Transactions on Fuzzy Systems 26 (4), 2237–2250 (2017).
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Generalizing aggregation functions

Definition

An aggregation function is a function M : [0, 1]n → [0, 1] such that:

1 M is increasing;

2 M(0, . . . , 0) = 0

3 M(1, . . . , 1) = 1.
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Pre-aggregation functions

Definition

A function F : [0, 1]n → [0, 1] is said to be an n-ary pre-aggregation
function if the following conditions hold:

(PA1) There exists a real vector r⃗ ∈ [0, 1]n (r⃗ ̸= 0⃗) such that F is
r⃗-increasing.

(PA2) F satisfies the boundary conditions: F (0, . . . , 0) = 0 and
F (1, . . . , 1) = 1.

If F is a pre-aggregation function with respect to a vector r⃗ we just say
that F is an r⃗-pre-aggregation function.

Preaggregation Functions: Construction and an Application. Giancarlo Lucca; José
Antonio Sanz; Gracaliz Pereira Dimuro; Benjaḿın Bedregal; Radko Mesiar; Anna
Kolesárová; Humberto Bustince, IEEE Transactions on Fuzzy Systems, 24(2), 260 -
272 (2016).
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Some relevant aggregation functions: Choquet integrals

The generalized Choquet integral
and the classification problem
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A classification problem

Rj : If xp1 is Aj1 and . . . and xpn is Ajnthen Class = Cj with RWj

• Fuzzy Reasoning Method:

1 Matching degree:
µAj

(xp) = T (µAj1
(xp1), . . . , µAjn

(xpn))

2 Association degree:

bkj = h(µAj
(xp), RWk

j )

3 Association degree by classes:

Yk = f(bkj , bkj > 0)

4 Classification:

Cbest = arg max
k=1,··· ,M

(Yk)

• k = 1, . . . , M (n. classes).

• j = 1,. . . , L (n. rules).

Fuzzy Reasoning Method

Input
Fuzzification

interface

Inference

system
Output 

class

Rule BaseData Base

Knowledge Base

Fuzzy Rule-Based Classification System

O. Cordón, M. J. del Jesús, F. Herrera: A proposal on reasoning methods in fuzzy rule-based classification systems. Int.

J. Approx. Reason., 20:1 (1999) 21–45.
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Generalized Choquet integral

The state-of-art of the generalizations of the Choquet integral: From aggregation and
pre-aggregation to ordered directionally monotone functions. G. P. Dimuro, J. Fernández,
B. Bedregal, R. Mesiar, J. A. Sanz, G. Lucca, H. Bustince Information Fusion, 57, 27–43
(2020)

We are going to use the Choquet integral... with a “small” change:

The first idea

Cm(x) =

n∑

i=1

(
x(i) − x(i−1)

)
·m

(
A(i)

)

⇓ ⇓

CM
m (x) =

n∑

i=1

M
(
x(i) − x(i−1),m

(
A(i)

))
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But...

• Testing results

1063-6706 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TFUZZ.2015.2453020, IEEE Transactions on Fuzzy Systems

In order to support the previous findings, we carry out a
statistical test to compare, for each fuzzy measure, the product,
minimum and Hamacher t-norms. To do so, we have used the
Aligned Friedman test as well as the Holm’s post-hoc test. The
results of these statistical techniques are reported in Table V,
where in each column we find the different fuzzy measures
whereas the three t-norms are shown in rows. The number
in each cell is the average rank computed with the aligned
Friedman test and the number in brackets is the APV computed
with the Holm’s test. The best t-norm for each fuzzy measure
is the one with the less rank, which stressed inbold-face,
whereas the APV is underlinedin case of statistical differences
in favour to the best t-norm.

TABLE V: Aligned Friedman and Holm tests to compare the
different pre-aggregation functions.

Uniform Dirac WMean OWA PowerGA

Product 42.94 (0.21) 38.13 51.09 (0.002) 53.91 (0.003) 50.78 (0.004)
Minimum 45.13 (0.21) 43.38 (0.771) 42.13 (0.054) 35.24 (0.828) 41.20 (0.112)
Hamacher 50.22 41.18 (0.771) 29.78 33.85 31.02

From the results in Table V, we can observe that the usage
of the Hamacher t-norm provides the best behaviour for all
the fuzzy measures, with the exception of the one defined
by Dirac due to the previous mentioned behaviour. In fact,
we find statistical differences with respect to the product
when using the additive (WMean), symmetric (OWA) and
Power GA fuzzy measures and a low APV when using the
uniform measure. Therefore, we can conclude that the usage
of the Hamacher t-norm allows us to enhance the results of
the product.

Furthermore, we also want to analyse if the minimum is also
appropriate when compared with the usage of the product.
To do so, we compare, for each fuzzy measure, the results
provided by the product versus the ones of the minimum. To
perform these comparisons, we have applied the Wilcoxon’s
test to conduct such pair-wise comparisons. The obtained
results are introduced in Table VI, where we can observe
that when using the additive (WMean), symmetric (OWA) and
Power GA fuzzy measures there is a trend in favour to the
minimum whereas in the two remainder fuzzy measures the
behaviour of these two t-norms is similar.

TABLE VI: Wilcoxon Test to compare the product (R+)
versus the minimum (R−).

Comparison R+ R− p-value

Uniform+Prod vs. Uniform+Min 195.5 182.5 0.925
Dirac+Prod vs. Dirac+Min 214 164 0.625
WMean+Prod vs. WMean+Min 135.5 242.5 0.200
OWA+Prod vs. OWA+Min 107.5 270.5 0.004
Power GA+Prod vs. PowerGA+Min 132 249 0.148

Finally, we want to study whether the results obtained by
the best pre-aggregation function are able to improve those
provided by the well-known FRM of the WR, that is, the usage
of the maximum to aggregate the information. According to
Table IV, we select the pre-aggregation function resultingof
the combination among the PowerGA fuzzy measure and
the Hamacher t-norm (PowerGA+Ham), since it provides

the best average result. The results provided by this pre-
aggregation function as well as those obtained with the WR are
reported in Table VII, where the best result for each datasetis
highlighted inbold-face. From these results, it can be observed
that the global behaviour of PowerGA+Ham is better than
that of the WR. This is due to the fact that PowerGA+Ham
provides the best result in 17 out of the 27 datasets considered
in the study. We also apply the Wilcoxon’s test to support
these findings, whose obtained results are shown in Table VIII.
According to the statistical results, we can confirm with a high
level of confidence that the usage of PowerGA+Ham is better
than that of the WR.

TABLE VII: Results in testing provided by CardGA+Ham
and WR.

Dataset WR PowerGA+Ham

App 84.89 82.99
Bal 82.08 82.72
Ban 84.30 85.96
Bnd 68.56 72.13
Bup 61.16 65.80
Cle 55.23 55.58
Eco 75.61 80.07
Gal 63.11 63.10
Hab 71.22 72.21
Hay 79.46 79.49
Iri 94.67 93.33

Led 69.80 68.60
Mag 79.60 79.76
New 94.42 95.35
Pag 94.52 94.34
Pho 82.01 83.83
Pim 75.38 73.44
Rin 90.00 88.79
Sah 67.31 70.77
Sat 80.40 80.40
Seg 92.99 93.33
Tit 78.87 78.87

Two 84.32 85.27
Veh 67.62 68.20
Win 94.36 96.63
Wis 96.49 96.78
Yea 56.54 56.53

Mean 78.70 79.42

TABLE VIII: Wilcoxon Test to compare the power measure
genetically adjusted method with the Hamacher t-norm (R+)
versus the classical FRM of the Winning Rule (R−).

Comparison R+ R− p-value

Power GA+Ham vs. WR 267.5 110.5 0.06

VII. C ONCLUSION

In this paper, based on the notion of an aggregation func-
tion, we have introduced the concept of a pre-aggregation
function. We have described three construction methods for
such functions. In particular, one of them derives from the
Choquet integral by using other t-norms in the place of the
product t-norm considered in the standard definition of the
Choquet integral. Furthermore, we have proposed to apply this
specific instance of pre-aggregation in the FRM of FRBCSs

If we take CM
m (x):

n∑

i=1

M
(
x(i) − x(i−1),m

(
A(i)

))
,

we overcome the winning rule (the
maximum).

We want more: let’s go for
FURIA and FARC!!!

WHAT ELSE CAN WE DO??
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One step more

Cm(x) =

n∑

i=1

(
x(i) − x(i−1)

)
·m

(
A(i)

)

⇓ ⇓

CM
m (x) =

n∑

i=1

M
(
x(i) − x(i−1),m

(
A(i)

))

The second idea

Cm(x) =

n∑

i=1

(
x(i) ·m(A(i))− x(i−1) ·m

(
A(i)

))

⇓ ⇓

CF1,F2
m (x) =

n∑

i=1

F1(x(i),m(A(i)))− F2(x(i−1),m(A(i)))
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F1-F2based Choquet-like integrals

To get a value smaller than 1 we do:

C
(F1,F2)
m (x) = min

{
1,

n∑

i=1

F1

(
x(i),m

(
A(i)

))
− F2

(
x(i−1),m

(
A(i)

))
}
,

Conditions for F1 and F2?
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F1-F2based Choquet-like integrals

Proposition *

Let F1, F2 : [0, 1]
2 → [0, 1] be two bivariate functions such that, for every

x, y ∈ [0, 1], it holds that:

1 F1 is (1, 0)-increasing;

2 F1(0, x) = F2(0, x);

3 F1(0, 1) = F2(0, 1) = 0;

4 F1(1, 1) = 1;

5 F1(x, y) ≥ F2(x, y).

Then, for any fuzzy measure m, the function C
(F1,F2)
m is well-defined and

satisfies:
0 ≤ C

(F1,F2)
m (x) ≤ 1

for every x ∈ [0, 1]n.
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Does it work?

Proposition

If we take:

• F1(x, y) =
√
xy

• F2(x, y) = max(x+ y − 1, 0),

then

C
(F1,F2)
m (x) = min

{
1,

n∑

i=1

F1

(
x(i),m

(
A(i)

))
− F2

(
x(i−1),m

(
A(i)

))
}

is a non-averaging pre-aggregation function.
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Results Table 1: Results achieved in testing considering the F1F2 approach

Dataset FURIA AC ProbSum GM LK
appendicitis 87.71 83.03 85.84 84.89
balance 83.68 85.92 87.20 89.76
banana 88.57 85.30 84.85 85.23
bands 69.40 68.28 68.82 70.49
bupa 70.14 67.25 61.74 66.67
cleveland 56.57 56.21 59.25 58.57
contraceptive 54.17 53.16 52.21 53.50
ecoli 80.06 82.15 80.95 84.53
glass 72.91 65.44 64.04 64.99
haberman 72.55 73.18 69.26 73.18
hayes-roth 81.00 77.95 77.95 79.43
ion 89.75 88.90 88.32 89.75
iris 94.00 94.00 95.33 94.67
led7digit 71.80 69.60 69.20 69.60
magic 80.65 80.76 80.39 80.18
newthyroid 94.88 94.88 94.42 96.28
pageblocks 95.25 95.07 94.52 95.98
penbased 92.45 92.55 93.27 92.64
phoneme 85.90 81.70 82.51 82.44
pima 76.17 74.74 75.91 75.26
ring 85.54 90.95 90.00 90.41
saheart 70.33 68.39 69.69 70.56
satimage 82.27 79.47 80.40 79.47
segment 97.32 93.12 92.94 92.86
shuttle 99.68 95.59 94.85 97.33
sonar 78.90 78.36 82.24 83.23
spectfheart 77.88 77.88 77.90 80.12
titanic 78.51 78.87 78.87 78.87
twonorm 88.11 90.95 90.00 91.76
vehicle 70.21 68.56 68.09 68.67
wine 93.78 96.03 94.92 96.03
wisconsin 96.63 96.63 97.22 96.34
yeast 58.22 58.96 59.03 58.96
Mean 81.06 80.12 80.07 80.99

1
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Some relevant aggregation functions: Sugeno integrals

The generalized Sugeno integral
and the computational brain
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The case of the computational brain

Consider the problem of determining whether a subject is thinking of
moving the left or the right hand.
EEG nowadays are not able to determine this

⇒
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The case of the computational brain

Consider the problem of determining whether a subject is thinking of
moving the left or the right hand.

Classification problem with two classes

Not appropriate for deep learning!
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Computational brain
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The algorithm

STRUCTURE OF THE ALGORITHM:

Multimodal Fuzzy Fusion for Enhancing the Motor-Imagery-based Brain Computer
Interface, Li-Wei Ko, Yi-Chen Lu, Humberto Bustince, Yu-Cheng Chang, Yang Chang,
Javier Fernandez, Yu-Kai Wang, Jose Antonio Sanz, Gracaliz Pereira Dimuro, Chin-Teng
Lin, IEEE Computational Intelligence Magazine,14 (1), 96–106 (2019)
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Sugeno-based construction method

Discrete Sugeno integral Sm : [0, 1]n → [0, 1] can be written as

Sm(x) =

n∨

i=1

min
{
x(i),m

(
A(i)

)}
.

What happens if we replace the minimum by another aggregation
function?

SM
m (x) =

n∨

i=1

M
(
x(i),m

(
A(i)

))
. (1)
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Sm(x) =

n∨

i=1

min
{
x(i),m

(
A(i)

)}
.

What happens if we replace the minimum by another aggregation
function?

SM
m (x) =

n∨

i=1

M
(
x(i),m

(
A(i)

))
. (1)
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Sugeno-based construction method

Proposition

Let M : [0, 1]2 → [0, 1] be a function increasing in the first variable and let
for each y ∈ [0, 1], M(0, y) = 0 and M(1, 1) = 1. Then SM

m is a
pre-aggregation function for any fuzzy measure m.
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Sugeno-like construction method of pre-aggregation
functions

• Let M : [0, 1]2 → [0, 1] be any aggregation function. Then
SM
m : [0, 1]n → [0, 1] is also an aggregation function, independently of

m.

• Consider the function F , F (x, y) = x|2y − 1|. Note that F is a
proper pre-aggregation function which satisfies our constraints, and
thus, for any m, the function SF

m : [0, 1]n → [0, 1],

SF
m (x) =

n∨
i=1

F
(
x(i),m

(
A(i)

))
is a pre-aggregation function (even an

aggregation function thought F is not).
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The algorithm

STRUCTURE OF THE ALGORITHM:

We make two steps:

1 Fuse the results for each band and each classifier.

2 Fuse the global result of each classifier.
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Pre-aggregations vs. BCI

We use aggregation and pre-aggregation functions to fuse the results of
each classifier

• M-S1: Sugeno.

• M-S2: SM integral with M the Hamacher t-norm:

F (x, y) =

{
0 if x = y = 0

xy
x+y−xy otherwise.

• M-S3: SM integral with M given by:

M(x, y) = x|2y − 1|
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Computational brain

• Multimodal Fuzzy Fusion for Enhancing the Motor-Imagery-based Brain
Computer Interface, Li-Wei Ko, Yi-Chen Lu, Humberto Bustince,
Yu-Cheng Chang, Yang Chang, Javier Fernandez, Yu-Kai Wang, Jose
Antonio Sanz, Gracaliz Pereira Dimuro, Chin-Teng Lin, IEEE
Computational Intelligence Magazine,14 (1), 96–106 (2019)
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The BCI experiment
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One video

CT Lin’s BCI Lab in Taiwan/Australia
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Some relevant aggregation functions: Choquet integrals

d-Choquet integrals
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d-integrals

We can modify the Choquet integral in a different way:

The idea of d-integrals

Cm(x) =

n∑

i=1

(
x(i) − x(i−1)

)
·m

(
A(i)

)

⇓ ⇓

CM
m (x) =

n∑

i=1

d
(
x(i), x(i−1)

)
·m

(
A(i)

)

where d is a dissimilarity.

DATAI 22 JUNIO 2022 54 / 83



Dissimilarity functions

Definition

A function δ : [0, 1]2 → [0, 1] is called a restricted dissimilarity function on
[0, 1] if it satisfies, for all x, y, z ∈ [0, 1], the following conditions:

1 δ(x, y) = δ(y, x);

2 δ(x, y) = 1 if and only if {x, y} = {0, 1};
3 δ(x, y) = 0 if and only if x = y;

4 if x ≤ y ≤ z, then δ(x, y) ≤ δ(x, z) and δ(y, z) ≤ δ(x, z).

H. Bustince, E. Barrenechea, M. Pagola, Relationship between restricted dissimilarity
functions, restricted equivalence functions and normal en-functions: Image thresholding
invariant, Pattern Recognition Letters 29 (4) (2008) 525 – 536.
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d-integrals

d-Choquet integrals: Choquet integrals based on dissimilarities. H. Bustince, R. Mesiar, J.
Fernandez, M. Galar, D. Paternain, A. Altalhi, G.P. Dimuro, B. Bedregal, Z Takáč Fuzzy
Sets and Systems, available online

Definition

Let N = {1, . . . , n} be a positive integer and m : 2N → [0, 1] be a fuzzy
measure on N . Let δ : [0, 1]2 → [0, 1] be a restricted dissimilarity function.
An n-ary discrete d-Choquet integral on [0, 1] with respect to m and δ is
defined as a mapping Cm,δ : [0, 1]

n → [0, n] such that

Cm,δ(x1, . . . , xn) =

n∑

i=1

δ(xσ(i), xσ(i−1))m
(
Aσ(i)

)
(2)

where σ is a permutation on N satisfying xσ(1) ≤ . . . ≤ xσ(n), with the
convention xσ(0) = 0 and Aσ(i) = {σ(i), . . . , σ(n)}.
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d-integrals

Observe that, in general, the range of Cµ,δ is a subset of [0, n]. Since, for
some applications, it may be desired that the range of Cµ,δ would be [0, 1],
we often impose the following condition:

(P1) δ(0, x1) + δ(x1, x2) + . . .+ δ(xn−1, xn) ≤ 1 for all x1, . . . , xn ∈ [0, 1]
where x1 ≤ . . . ≤ xn.

Proposition

Let Cµ,δ : [0, 1]
n → [0, n] be an n-ary discrete d-Choquet integral on [0, 1]

with respect to µ and δ. If δ satisfies the condition (P1), then

Cµ,δ(x1, . . . , xn) ∈ [0, 1]

for all x1, . . . , xn ∈ [0, 1] and for any measure µ.
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d-integrals

Theorem

Let δ : [0, 1]2 → [0, 1] be a restricted dissimilarity function. Consider
fδ : [0, 1] → [0, 1], defined, for each x ∈ [0, 1], by

fδ(x) = δ(x, 0)

and δ∗ : [0, 1]2 → [0, 1], defined, for each x, y ∈ [0, 1], by

δ∗(x, y) = |fδ(x)− fδ(y)|.

Then δ∗ is a restricted dissimilarity function which satisfies (P1) if and
only if fδ is injective.
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Relation with the standard Choquet integral

Theorem

Let n be a positive integer, N = {1, . . . , n}, m : 2N → [0, 1] be a fuzzy
measure on N , δ : [0, 1]2 → [0, 1] be the function δ(x, y) = |x− y|,
Cm,δ : [0, 1]

n → [0, 1] be an n-ary discrete d-Choquet integral on [0, 1]
with respect to m and δ and Cm : [0, 1]n → [0, 1] be an n-ary discrete
Choquet integral on [0, 1] with respect to m. Then

Cm,δ(x1, . . . , xn) = Cm(x1, . . . , xn)

for all x1, . . . , xn ∈ [0, 1].
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An application: Decision making

Decision making with d-integrals
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Motivation and objectives: Functions in R

Data fusion functions using real numbers
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Motivation and objectives: Functions in R

Objective: To replace subsampling mechanisms in Convolutional Neural
Networks (CNNs).

• The features extracted by convolution layers are usually aggregated
using the mean or the maximum.

• The chosen pooling function ignores possible coalitions among data.

• The choice of the pooling function acts as an hyperparameter for the
model.
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Convolutional Neural Network: CNN

LeCun, Bengio, and Hinton, “Deep learning”
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Pooling

It aggregates the features extracted by
the convolution layers:
x = (x1, . . . , xn) ∈ Rn;
A(x) : Rn → R

• Summary of relevant information in a
local way.

• Max pooling: A(x) = maxni=1 xi

• Avg pooling: A(x) = 1
n

∑n
i=1 xi

Yu et al., “Mixed pooling for convolutional neural networks”
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Increasing functions (I)

From now on, we assume that 2 ≤ n ∈ N, 1 ≤ r ∈ N.

Notation

We denote by xσ = (xσ(1), . . . , xσ(n)) a permutation of x.
Si xσ(1) ≤ · · · ≤ xσ(n), decimos que xσ = x(↗).

A function A : Rn → R is increasing if x,y ∈ Rn,x ≤ y implies that
A(x) ≤ A(y)

Example

Let r ∈ 1, . . . , n. Denote by OSr the r-th order statistics, that is, the
function OSr : Rn → R given, if x = (x1, . . . , xn) ∈ Rn : OSr(x) = xσ(r),
by xσ = x(↗).
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Increasing functions (II)

Example

Denote by AM the arithmetic mean, that is, the function AM : Rn → R,
given by AM(x) = 1

n

∑n
i=1 xi, if x = (x1, . . . , xn) ∈ Rn.

A fuuzy measure in N is a mapping ν : 2N → [0,+∞) such that

1 ν(∅) = 0

2 S ⊆ T ⊆ N implies ν(S) ≤ ν(T )

Example

The Sugeno integral associated to the fuzzy measure ν is the function
Sν : Rn → R give, for x = (x1, . . . , xn) ∈ Rn

Sν(x) = max(min(xσ(1), ν(σ(1), . . . , σ(n)), . . . ,min(xσ(n), ν(σ(n))),
donde xσ = x(↗)
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Generalized Sugeno integral (I)

Let U be a connected subset of R such that 0 ∈ U. A U-fuzzy measure N
is a function ν : 2N → U such that

1 ν(∅) = 0

2 S ⊆ T ⊆ N implies ν(S) ≤ ν(T )

From the expression of Sugeno integral, we propose a generalization given
by:

Definition

Let U and I be two connected subsets of R such that 0 ∈ U ⊆ I. Let
ν : 2N → U be a U-fuzzy measure. The functions F : I× U → I and
G : In → U will be called ν-admissible if the function A : In → I given by
A(x) = G(F(xσ(1), ν(σ(1), . . . , σ(n)), . . . ,F(xσ(n), ν(σ(n))), donde
xσ = x(↗), is well defined.
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Generalized Sugeno integral (II)

A(x) = G(F(xσ(1), ν(σ(1), . . . , σ(n)), . . . ,F(xσ(n), ν(σ(n)))

,

In our case, we fix:

• G(x) =
∑n

i=1 xi

• F (x, y) = xy

And we refer to this version of the generalized Sugeno integral as:

Dν(x) =
n∑

i=1

((xσ(1)ν(σ(1), . . . , σ(n)), . . . , (xσ(n)ν(σ(n)))

,
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Combination of increasing functions (I)

Our goal is to build increasing functions A : Rn → R as follows:

A(x) = α1A1(x) + · · ·+ αnAn(x)

where A1, . . . ,An : Rn → R are increasing functions and x ∈ Rn

Notation

Let A1, . . . ,Ar : Rn → R be increasing functions. We denote:
I(A1, . . . ,Ar) = (α1, . . . , αr) ∈ Rn such that α1A1 + · · ·+ αnAn is
increasing.
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Combination of increasing functions (II)

• Combination of order statistics:

Proposition

Take i1, . . . , ir ∈ N , i1 < · · · < ir. Then
I(OSi1 , . . . ,OSir) = {(α1, . . . , αr)|α1, . . . , αr ≥ 0}

• Combination with the arithmetic mean:

Proposition

Take i1, . . . , ir ∈ N , i1 < · · · < ir, r < n. Then
I(AM,OSi1 , . . . ,OSir) = {(α, β1, . . . , βr)|α, α+ nβ1, . . . , α+ nβr ≥ 0}
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Combination of increasing functions (III)

• Combination with Sugeno integral:

Definition

A fuzzy measure ν : 2N → [0,+∞) is strict in k ∈ N if, either k = n or
there is a permutation σ such that νσk > νσk+1. A fuzzy measure is strict if
it is strict for every k ∈ N

Proposition

Take i1, . . . , ir ∈ N , i1 < · · · < ir, r < n. If there is k ∈ N \ {i1, . . . , ir}
such that ν : 2N → [0,+∞) is strict in k, then
I(OSi1 , . . . ,OSir ,Sν) = {(α1, . . . , αr, β)|α1, . . . , αr, β ≥ 0}

Proposition

Let ν : 2N → [0,+∞) be a fuzzy measure. Then
I(AM,Sν) = {(α, β)|α, α+ nβ ≥ 0}

DATAI 22 JUNIO 2022 71 / 83



Combination of increasing functions (IV)

• Combination with the integral Dν :

Proposition

Take M ⊆ N and M ′ = N \M . Take i1, . . . , ir ∈ N , i1 < · · · < ir.
I(OSi1 , . . . ,OSir ,Dν) = {(α1, . . . , αr, β)|αi + βν(i, . . . , n) ≥ 0 if i ∈ M
y βν(i, . . . , n) ≥ 0 if i ∈ M ′}

Proposition

I(AM,Dν) = {(α, β)|β ≥ 0, α+ nβν(n) ≥ 0, o
β ≤ 0, α+ nβν(1, . . . , n)}

Proposition

Let ν : 2N → [0,+∞) be a strict fuzzy measure. Then
I(Dν ,Sν) = {(α, β)|α, αν(n) + β ≥ 0}
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CombPool layer

Given r increasing functions A1, . . . ,Ar such that Ai : Rn → R for every
i = 1, . . . , r:

y =
∑r

i=1 α
2
i ·Ai(x)

• The contribution of each function
is learnt.

• The resulting combinations are
always increasing.

• Each function provides different
information.

x41

x31

x21

x11

x42

x32

x22

x12

x43

x33

x23

x13

x44

x34

x24

x14

X11

y21

y11

y22

y12

X11 =




x11 x12

x21 x22


 ⇒

A1(X
11) = y111

A2(X
11) = y112

Ar(X
11) = y11r

∑r
i=1 α

2
i y

11
i = y11
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Architectures

LeNet-51

Network in Network23

DenseNet4

1LeCun, Bottou, et al., “Gradient-based learning applied to document recognition”.
2Lin, Chen, and Yan, “Network in network”.
3Lee, Gallagher, and Tu, “Generalizing pooling functions in convolutional neural

networks: Mixed, gated, and tree”.
4Huang et al., “Densely connected convolutional networks”.
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Dataset: CIFAR-10a

aKrizhevsky, Hinton, et al., “Learning multiple layers of features from tiny
images”.

• Real color images (32× 32 pixels)

• 50000 training images

• 10000 test images

• 10 classes
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Experiments

• Experiment 1: Individual functions
• Arithmetic mean
• Maximum
• Minimum
• Median
• Sν : Sugeno integral
• Dν : Generalized Sugeno integral

• Experiment 2: CombPools layers
• Combinations of increasing functions
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Results: Experiment 1

Table: Accuracy rate for individual functions.

A1 A2 A3

AM 77.08 87.65 89.25
Max 77.39 87.85 87.99
Min 70.24 87.61 88.28
Median 70.62 87.07 88.76
Sν 72.47 86.79 88.97
Dν 73.42 88.70 87.20
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Results: Experiment 2 (I)

Table: Accuracy rates for models using CombPool layers.

A1 A2 A3

Min + Max 77.02 87.42 88.55
Min + Max + Median 76.91 87.43 89.77

AM + Min 75.04 87.23 89.48
AM + Max 77.23 87.78 86.99
AM + Min + Max 77.17 87.25 88.52
AM + Min + Max + Median 77.04 87.57 89.83
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Results: Experiment 2 (II)

Table: Accuracy rates for models using CombPool layers.

A1 A2 A3

Sν + Min 72.41 87.46 88.58
Sν + Max 77.09 87.60 89.48
Sν + Min + Max 77.30 87.01 89.42
Sν + Min + Max + Median 77.03 87.29 89.66
Sν + AM 76.93 88.23 86.99

Dν + Min 72.19 88.51 89.03
Dν + Max 76.80 88.20 89.58
Dν + Min + Max 77.81 88.61 89.83
Dν + Min + Max + Median 76.15 88.30 89.75
Dν + AM 76.39 88.40 89.87
Dν + Sν 74.92 88.03 89.68
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Conclusions

• More parameterized models get more benefits using CombPool layers

• Individually poor functions are good candidates for combinations.

• Combinations with the generalization Dν of Sugeno integral usually
provide the best results.
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Future lines

• To study again pooling functions for CombPool layers

• To consider other aggregation functions, such as Choquet integrals
and their generalizations.

• To use increasing combinations in other layers of the network (GAP,
activation functions...)

DATAI 22 JUNIO 2022 81 / 83



Choquet integrals

The case of Choquet Integrals in CNNs
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Thanks for your attention
Questions?

bustince@unavarra.es
Departamento de Estad́ıstica, Informática y Matemáticas (UPNA)

Grupo de Inteligencia Artificial y Razonamiento Aproximado (GIARA)
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