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Introduction

y = Xﬂ -+ £ | Linear regression: Ordinary Least Squares
OLS: min Y (y; — X;B)°

= (XTx)1xTy

> Requires X"X to be invertible.

> |If we have a lot of observations, we can be

we sure that the model reflects the
relationship between X and Y.

> If predictors are correlated (multicollinearity),
the matrix XX becomes near-singular:

= inflating coefficient variance
X » making estimates unreliable




Introduction

But what if we only have two points?

/ méan(y@ — X__iﬁ)E =0

Y > If we have few points, the
minimum sum of the residuals will
be close to O because it is easier

/] to find a model that fits well.




Introduction

Here are the original data and the original model for comparison.

» In machine learning techniques
we need to divide the dataset into
two subsets: training and testing.

» Let's call the red dots
the training data, and the
remaining green dots the
testing data.

-—




Introduction

The sum of the squared residuals for the training data is small (O in this case),
but for the IS large.

» The red model has high variance.

» In machine learning, we’'d say that
/) the red model is Over-Fit to the
% training data.

> What if we introduce a small
/| amount of bias into the red model?




Ridge regression

Hoerl and Kennard (1970)

Ridge Regression: Biased Estimation for Nonorthogonal Problems
Author(s): Arthur E. Hoer] and Robert W. Kennard
Source: Technometrics, Feb., 1970, Vol. 12, No. 1 (Feb., 1970), pp. 55-67

Published by: Taylor & Francis, Ltd. on behalf of American Statistical Association and
American Society for Quality

Stable URL: https://www jstor.org/stable/1267351
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Ridge regression

The idea behind Ridge Regression is to find a new model that doesn't fit the
training data as well...

/ > ...we introduce a small amount
/ of bias in the way the model fits
® the data.
® @ » But for that small amount of bias,
/Q we get a significant reduction in

Y variance.

» That is, by starting with a worse
@ fit, Ridge regression can provide
better long-term predictions.




Ridge regression
Ridge adds a L2 penalty (sum of squared slopes () to the OLS loss function:

. Ridge : r
O = arggnin {lly = XB|l5+ MB35} | is equivalent to

( h

.

~ Ridge ‘ ‘ SRido — '

1G] & = arg min < Z(yz — X?ﬁ)z + )\Z 3;3 or 6Rldne — (XTX —+ )\I) 1_XTy
j=1

B i—1

)

» A 2 0, the regularization parameter (controls penalty strength).
> Z,sz: L2 norm of coefficients (excluding intercept ;).

> Stabilizes X"X by adding Al (identity matrix) to OLS solution.
This ensures invertibility even with multicollinearity.



Ridge regression

» Ridge regression pulls §’s toward zero to minimize the new loss function.

n

d wi—xB+A>_ B
j=1

1=1
A ~ > \ ’
OLS ].OSS L2 penalty

* OLS: Finds coefficients where the residual sum of squares
(RSS) is minimized (unconstrained).

* Ridge: Constrains coefficients to lie within a
hypersphere (L2 ball) centered at zero.

» The solution is the point where the RSS contours touch
the L2 ball tangentially.

» The larger A, the smaller the L2 ball, forcing coefficients
(slopes) toward zero (but never zero).

LZ Nom




Ridge regression

» Bias-Variance tradeoff: |

= Bias: how much your model's
predictions deviate from training data.
Bias 1 as A increases.

= Variance: how much your model's
predictions from the test data. |
Variance | as A increases. |

Mean Squared Error

Least squares regression

coefficie
(A=0)

nt estimates Test MISE

Bias?

Ridge regression
coefficient estimates
(A=some value > 0)

Variance

» N is estimated using cross-validation.

» Predictors X must be standardized because penalization is scale-sensitive.




Ridge regression
The effect of A — Example, let A = 1.

7
Y=05+14-X Y=12+0.7 X

Model | SSR__|axslope?| Loss

) Least Squares line 0°+0%°=0 1x1.42 1.96
Ridge line 0.12+1.12=1.22 1x0,72 1.71

Thus, if we wanted to minimize the SSR plus the
Ridge Penalty, we would choose the Ridge line
over the Least Squares line.




Ridge regression

The effect of A — If we increase A, the slope gets smaller to minimize the
total loss function.

The larger is A:

» slope tends asymptotically to O.

> Y becomes less sensitive to X.

 Cross Validation (typically 10-fold)
iIs used to determine the value of
A giving the best bias-variance




Lasso regression

Tibshirani R (1996)

JOURMAL ARTICLE

Regression Shrinkage and Selection Via the Lasso

Robert Tibshirani 2

Journal of the Royal Statistical Society: Series B (Methodological), Volume 58, Issue 1,
January 1996, Pages 267-288, https://doi.org/10.1111/].2517  sow S D.x
Published: 05 December 2018




Lasso regression

Lasso adds a L1 penalty (sum of absolutes values of slopes () to the OLS
loss function. It works similarly to Ridge by changing the L2 norm to L1 norm.

~ Lasso

B = argmin {||y — X85+ A|B|1} is equivalent to
p

n

D

~ Lasso .

5 —amsmin {303 2313 |
j=1

1=1

» A 2 0, the reqgularization parameter, controls penalty
strength as in Ridge.

» Sum of L1 norm of coefficients }|B;| forces some ; to be
exactly 0.




Lasso regression

» Effect on coefficients: Ridge Regression produces a smooth shrinkage
(no exact zeros), but [.asso selects variables (exact zeros).

n P -
Z(yt o xgﬁ)z + AZ ‘18_}‘
i=1 j=1
- _— P ,
OLS loss - LI penalty

» Lasso: Constrains coefficients to lie within a diamond (2D) |
or a high-dimensional polytope centered at zero.

» The solution is the point where the RSS contours touch |
the L1 diamond tangentially. l

« The larger A, the smaller the L1 diamond, forcing
coefficients (slopes) toward 0 or even to take the value 0. L1 Norm




Lasso regression

» Standardization required and choosing A
through cross-validation.

» When to use Lasso?

» Variable selection: when you suspect
that many  characteristics are
irrelevant.

» Interpretable models: to obtain
models with fewer predictors.

» High dimensional data: if the number
of predictors (p) is much larger than
the number of samples (n).

idea: when A increases:

relevant predictors

Y'=[Bo T BiX T S b

Ridge

Lasso



Ridge vs Lasso

Ridge Regression

Penalty type A Zj ’sz

Correlated Predictors | Similar weights to correlated predictors.

Stable with multicollinearity.
Advantages & Good performance when p>n.
Disadvantages No dimensionality reduction.

Less interpretable for large p.

High multicollinearity.
Typical Use Case

All predictors are relevant.

Lasso Regression
1%;1B)]
Selects one predictor and discards others.

Automatic predictor selection.
Interpretability (simpler models).
Unstable with highly correlated predictors.

May select only n predictors if p>n.

Removing irrelevant predictors.

Interpretable models.



Elastic-net regression

Zou & Hastie (2005)

JOURNAL ARTICLE

Regularization and Variable Selection Via the Elastic A

Net

Hui Zou , Trevor Hastie &

Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 67, Issue
2, April 2005, Pages 301-320, https://doi.org/10.1111/].1467-98
Published: 09 March 2005  Article history »




Elastic-net regression

Elastic-net Is a regularized regression method that combines the Lasso and
Ridge penalties to overcome limitations when there are more predictors than
observations or when there are highly correlated variables.

1l —«

(Elastic-Net _ 5.0 mm{\ y — XdH + A (a\ Bl + |ng) } IS equivalent to

n p D
A . 1l -« :
aElastic-Net s T g2 a 22
B — mgngn {Z(y? z; B)°+ A (a Zl 85| + 5 Z dj) }

j=1

» A 20 — controls penalty strength.
» 0 <a=<1-— determines the mix between L1y L2.
» a=1—>lasso , a=0-— Ridge.




Regularization regression methods

L1 Norm L2 Norm L1 + L2 Norm
Lasso Ridge Elastic-Net
Variable selection Yes No Yes (less aggressive)

Correlated predictors | Randomly selects one Assigns similar weights Group and select




Survival analysis

The branch of statistics focused on analyzing the time g E\',?;t
until an event occur (death, recurrence, failure...) S ——

b Time = T

» Survival function: probability| » Hazard function: the probability that if

that the event occurs beyond a you survive to t, you will experiment the
time t. event in the next instant.
S(t) =P(T >t) . P<T<=st+At|T=t) f(O)
AE) = i, At 50

Goals:

1) Estimate survival function over time.

2) Compare survival between different groups of individuals.

3) ldentify risk factors associated with survival and quantify their influence.



Survival analysis

> (1) Survival function estimation: 122_*&1
(Kaplan, Meier 1958) ol H\L
o t;: distinct event times (ordered, t; <t, <---t,) | " \
o d; : number of events in t; o HL
o n;: number of individuals at risk just before t; wf- | .'_Lj =
o h; = —:risk of the eventin [t;, t;11) 22 Lﬁ_
S(t)—l_[(1—h)—1_[(1——> i

i<t i<t | 0 1 2

Time(yeas) |



Survival analysis

> (2) Survival comparation: Log-rank test (Mantel-Cox test) (Mantel 1966)

H,: All groups have the same survival function: S,(f) = Sy(f) =... = S,({)
H,: At least one group differs in survival: Si(t) # Sj(t) , for some i#j

100

80— _|_|_

Test statistic is based on observed and expected
events (y? Pearson or Mantel-Haenszel)
O;: vector of observed events for each group

E;: vector of expected events under H,

U=Z(oi—Ei) ; v=2vi | _L\_

Group 1

F‘

Survival rate (%)
N
T

Group 2

p = 0.000256

Xe_ 4 ~UV~IU* (U and V* exclude the ki group)

20—
L
0
0 10 20 30 40 50 60 70

Time




Survival analysis

> (3) Influence of risk factors: Cox proportional hazards model (Cox 1972)
h(t]|x) = ho(t) - exp{B1 Xy + B Xy + - + ,Bpo} ho(t): baseline risk
B . effect of factor k

It estimates the influence of p factors (covariates) in the event happening.

Coefficients p; are estimated by maximizing the partial likelihood:

L) = 11 exp(B_x)
i:evento ZjCR(t.;;) eXp(ﬁTXj)

Ch(tlx =1) _ ho(t) -expif -1} = 5

Example: X = {0,1} — Rl =0) o) - explB 0} e’ |




What are you getting at?

Regression
Survival
Genomics




Applications

Analysis of disease SUrvival and patient RIsk prediction based on gene signatures

o000 |

Doctoral Thesis

Exploration and development of
bioinformatics methods for survival
analysis and drug targeting in cancer

Alberto Berral Gc-nzé,lez (december 2024)

S

O oS

Package ASURI

Bloconducto

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS




Applications: gene-phenotype

» Target: discovery of gene markers by identification of the significant
association of gene expression (or another gene-related activity signal) with

clinical variables or phenotypic characteristics (G = {0, 1})

 Fit a classifier to the dataset based on
bootstrapping and ensemble Elastic-Net
models, (Friedman, 2010).

Pr(G=1|zr) T ) £ [1 , " }
lc ' =G+ 5 x| FulB) = —(1—a)-8;+a-|B;
I a0~ TP B) ; 5(1—a)- B +a-|Bj

N l
max l% ; (I[gf =1)-logp; + I(g; =0) - log(1 — p?-)) —A- PQ.[,;'}’)] ‘

{L?[]._{ﬂ]E:Jij'_] Al

(optimal reqularized parameters using 10-fold CV)

Symbol stability

ESR1 0.89
NAT1 0.87
AGR3 0.74
SUSD3 0.72
USPG6NL 0.70
PREX1 0.61

CA12 0.60
DNALI1 0.59
HPN 0.50

KDM4B 0.50

0.13404022
0.11227456
0.03428295
0.07884203
-0.26426252
0.10581937
0.06944143
0.06659477
0.06901693
0.09876130

betasMedian betasMean

0.14776460
0.11600153
0.03739961
0.03739961

-0.30745744

0.11813321
0.07564508

0.08676957
0.11851605

List of genes ordered by stability for the BRCA
training dataset from Bueno-Fortes et al., 2023.




Applications: gene-survival

» Target: Discovery of robust and reproducible gene lists associated with
disease survival based on gene expression (or another gene-related activity
signal).

* Evaluate each gene as a

Kaplan-Meier plot (ESR1)

1.0

1.0

prognostic  marker by
dividing patients into two
groups (low/high expr.) with |
a threshold that we
estimated by minimizing
the p-value of the log-rank
statistic.

» Strategy that determines

)
4

0.8
0.6

Class Probability

0.7
Survival Probability

Hazard Ratio: 1.863786 (0.319275, 3.132096 )

0.4

06

0.2
g
o

L)

L)

= high.exp

0.0

0.5

the optimal p-value of the

log-rank test that . - - - — Surdvallyears) and pvalus: 001695087
maximizes the Separation Patients ordered by expression (coloured by groups) ohem = 111 108 102 8 73 5 a4 2 8 7 @8
of the Kaplan-Meier curves.




Applications: patient-risk

» Target: Construction of robust patient risk predictors based on gene signatures
- using univariate and multivariate Cox regression model approaches.

< Estimate patient risk with the Cox |

I

proportional hazards regression model but... = We rank patients according \
to their risk score and look \|

_ . | for the one that maximizes l

h(t]x) = ho(t) exp{,Ble o 'BPXP} } the separation between the |

KM survival curves (lowest \ 1

.the B; coefficients are estimated by | p-value of the log-rank | |
maX|m|zmg the partial log-likelihood with a | test). "| ‘
L1 (lasso) norm penalty. (Tibshirani, 2009). | g° \I "
8 {E!
ZZ (IA; l()“ Z (\D fm; ) A Z| o | E‘O o bore QIT lﬂ.f‘
j=1 k=1 meRy §j§_ X
(optimal reqularized parameters using 10-fold CV) ’ > I 1

Patients ordered by Risk




Risk Score

Applications: patient-risk

* The threshold allow us to separate the patients into two risk groups, low/high

(or three, in case we want to consider intermediate risk).

8
- low.risk @
high.risk a .
&
o | <P
@ &
]
..r,mg‘w:g:
,,«f,:fﬁﬂw
o |
[(s]
.e‘.‘lﬂw
&
o~
o i g
< o
o -
aY] 0
o -
I | | 1 |
0 50 100 150 200

Patients ordered by Risk

AKR1B10

TBC1DS

5U5D3

SLC39A6

ADIRF

GFRA1

S0X11

CLICE

CPB1

CALMLS

NAT1

5CGB1D2

] 2 2
o o oF
Absolute Beta Values (Genes Risk Influence)

Beta Sign
® Increases risk

» Decreases risk

-log10(p.value)
® 00
@ o

p.value <0.05
o FALSE
o THUE

1.0

0.8
1

0.6

0.4

1

Survival Probability
Hazard Ratio: 2.793091 ( 1.619935, 4.815845)

0.2

1

0.0

T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Overall Survival (years) and p.value: 0.0001163224

lowrsk e 104 99 97 85 73 54 42 21 9 7 6
highrsk e 96 87 72 56 49 27 19 10 8 4 2




Application to Breast cancer (BRCA)

The predictive IHC (immunohistochemistry) markers in breast pathology include two cell
proliferation markers and three hormone receptor positive factors (and their genes):

Chromosome segregation mitosis: AURKA / DNA damage: MKI67
Estrogen receptors: ER (ESR1 gene) | Progesterone receptors: PR (PGR gene)
Human epidermal growth factor receptor-2: HER2 (ERBBZ2 gene)

dTwo of the most widely used 3o,
commercial platforms (Oncotype | i
and Prosigna) use their own gene
signatures to predict risk and| prOSIQna
stratify patients. | 50 genes

» Our goal is to identify survival markers related with that improve
risk prediction and patient stratification better than these two




Application to Breast cancer (BRCA)

» We follow the approach described before and apply it to two independent BRCA datasets
- that integrate muItipIq primary tumor samples (curated, Bueno-Fortes, 2023)

3 IHC clinic
] Train dataset =) | ER — 16 genes
J 380 patients PR B genes]' 8
GEO dataset || Test dataset HERZ T R
6 GSE series ) 644 patients " ¢ Clinic — AURKA, MKI67

~—
1024 samples Validate the 34-g list and

evaluate the risk prediction |

/

performed risk assignments for each sample.

v We validated the prognostic power in a B
second dataset of 879 tumor samples and‘

¥ 34 genes
signature

— Cancer Genome

Atlas GDC
879 samples

|




Application to Breast cancer (BRCA)

LIRN
Qo

@ .'“\
.
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[ 2z AN
a3 E%’ T
EE ]
22 3® y
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2 2 _ p
8 —  low.risk g — low.risk 2 — low.risk
2 o | — nighrisk @ g | — highrisk € o | — high.risk
- o = S 7
o T T T T T T T T T T T £ T I T I T I T T T T T % T T T T T T 1 T T T T
k| 0 1 2 3 4 5 6 7 8 9 10 & 6 1 2 3 4 5 6 7 8 9 10 N 0 1 2 3 4 5 6 7 8 9 10
T Overall survival(years) and pvalug: 0.06681149 B Overall survival(years) and p.value: 0.03598569 T Overall survival(years) and p.value: 0.0003854994
b low.risk —279 236 144 107 78 52 37 25 18 6 3 b low.risk ——599 502 305 227 163 118 84 61 36 14 8 low.risk —519 432 260 189 135 94 65 46 29 10 7
I B
high.risk ——600 490 294 209 155 116 8 59 37 12 & ) high.risk ——280 224 133 89 70 50 39 23 19 4 1 high.risk ——360 294 178 127 98 74 58 38 26 8 2

5 shared
Log-rank p-value 95%C1 of R[S 2

34-g signature 0.00038 2.20 1.41-3.43 ESR1 2

PGR 5
Oncotype 16-g 0.066 1.61 0.96 - 2.69 e 1
37
Prosigna 50-g 0.035 1.60 1.03-2.49 MKI67 Y o -
GRB7 Oncotype

34g signature




Some conclusions

* Techniques such as Elastic-net or Lasso ensure diversity and reliability to
obtain robust survival and risk markers.

“ The use of univariate or multivariate Cox regression and cross-validation leads
to better selection of stable risk markers and better stratification of patients.

(% We have applied a survival analysis methods for large human cancer datasets’

to validate previously established biomarkers and discover new ones with
_potential clinical relevance. -
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