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Introduction
Linear regression: Ordinary Least Squares

X

Y  Requires XTX to be invertible.
 If we have a lot of observations, we can be

we sure that the model reflects the
relationship between X and Y.

 If predictors are correlated (multicollinearity),
the matrix XTX becomes near-singular:
 inflating coefficient variance
 making estimates unreliable

𝛽̂𝛽 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑦𝑦 



Introduction
But what if we only have two points?

X

Y  If we have few points, the
minimum sum of the residuals will
be close to 0 because it is easier
to find a model that fits well.

= 0
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Y

Introduction
Here are the original data and the original model for comparison.

 In machine learning techniques
we need to divide the dataset into
two subsets: training and testing.

 Let’s call the red dots
the training data, and the
remaining green dots the
testing data.
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Introduction
The sum of the squared residuals for the training data is small (0 in this case),
but for the testing data is large.

 The red model has high variance.
 In machine learning, we’d say that

the red model is Over-Fit to the
training data.

 What if we introduce a small
amount of bias into the red model?



Ridge regression
Hoerl and Kennard (1970)
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Ridge regression
The idea behind Ridge Regression is to find a new model that doesn’t fit the
training data as well…

 …we introduce a small amount
of bias in the way the model fits
the data.

 But for that small amount of bias,
we get a significant reduction in
variance.

 That is, by starting with a worse
fit, Ridge regression can provide
better long-term predictions.



Ridge regression
Ridge adds a L2 penalty (sum of squared slopes βj) to the OLS loss function:

 λ ≥ 0, the regularization parameter (controls penalty strength).
 ∑𝛽𝛽𝑗𝑗2: L2 norm of coefficients (excluding intercept β0).
 Stabilizes XTX by adding λI (identity matrix) to OLS solution.

This ensures invertibility even with multicollinearity.

is equivalent to

or



Ridge regression
 Ridge regression pulls β’s toward zero to minimize the new loss function.

• OLS: Finds coefficients where the residual sum of squares
(RSS) is minimized (unconstrained).
• Ridge: Constrains coefficients to lie within a
hypersphere (L2 ball) centered at zero.

• The solution is the point where the RSS contours touch
the L2 ball tangentially.

• The larger λ, the smaller the L2 ball, forcing coefficients
(slopes) toward zero (but never zero).

𝛽𝛽1

𝛽𝛽2



Ridge regression
 Bias-Variance tradeoff:

Bias: how much your model's
predictions deviate from training data.
Bias ↑ as λ increases.

 Variance: how much your model's
predictions from the test data.
Variance ↓ as λ increases.

 Predictors X must be standardized because penalization is scale-sensitive.
 λ is estimated using cross-validation.



X

Y

Ridge regression
The effect of λ → Example, let λ = 1.

Y = 0.5 + 1.4 · X Y = 1.2 + 0.7 · X

Model SSR λ x slope2 Loss

Least Squares line 02 + 02 = 0 1 x 1.42 1.96

Ridge line 0.12+1.12 = 1.22 1 x 0,72 1.71

Thus, if we wanted to minimize the SSR plus the
Ridge Penalty, we would choose the Ridge line
over the Least Squares line.
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Ridge regression
The effect of λ → If we increase λ, the slope gets smaller to minimize the
total loss function.

λ=1
λ=0

λ=3

λ=100

The larger is λ:
 slope tends asymptotically to 0.
 Y becomes less sensitive to X.

 Cross Validation (typically 10-fold)
is used to determine the value of
λ giving the best bias-variance



Lasso regression
Tibshirani R (1996)



Lasso regression
Lasso adds a L1 penalty (sum of absolutes values of slopes βj) to the OLS
loss function. It works similarly to Ridge by changing the L2 norm to L1 norm.

 λ ≥ 0, the regularization parameter, controls penalty
strength as in Ridge.

 Sum of L1 norm of coefficients ∑ 𝛽𝛽𝑗𝑗 forces some 𝛽𝛽𝑗𝑗 to be
exactly 0.

is equivalent to



Lasso regression
 Effect on coefficients: Ridge Regression produces a smooth shrinkage

(no exact zeros), but Lasso selects variables (exact zeros).

• Lasso: Constrains coefficients to lie within a diamond (2D)
or a high-dimensional polytope centered at zero.

• The solution is the point where the RSS contours touch
the L1 diamond tangentially.

• The larger λ, the smaller the L1 diamond, forcing
coefficients (slopes) toward 0 or even to take the value 0.

𝛽𝛽1

𝛽𝛽2
L1



Lasso regression
 Standardization required and choosing λ

through cross-validation.

When to use Lasso?
 Variable selection: when you suspect

that many characteristics are
irrelevant.

 Interpretable models: to obtain
models with fewer predictors.

 High dimensional data: if the number
of predictors (p) is much larger than
the number of samples (n).

~ 0

Ridge

~ 0

Lasso

= 0

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘 + 𝛽𝛽𝑘𝑘+1𝑋𝑋𝑘𝑘+1 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝

idea: when λ increases:

relevant predictors     non-relevant predictors



Ridge vs Lasso
Ridge Regression Lasso Regression

Penalty type 𝜆𝜆∑𝑗𝑗 𝛽𝛽𝑗𝑗2 𝜆𝜆 ∑𝑗𝑗 𝛽𝛽𝑗𝑗

Correlated Predictors Similar weights to correlated predictors. Selects one predictor and discards others.

Advantages &
Disadvantages

Stable with multicollinearity.

Good performance when p>n.

No dimensionality reduction.

Less interpretable for large p.

Automatic predictor selection.

Interpretability (simpler models).

Unstable with highly correlated predictors.

May select only n predictors if p>n.

Typical Use Case
High multicollinearity.

All predictors are relevant.

Removing irrelevant predictors.

Interpretable models.



Elastic-net regression
Zou & Hastie (2005)



Elastic-net regression
Elastic-net is a regularized regression method that combines the Lasso and
Ridge penalties to overcome limitations when there are more predictors than
observations or when there are highly correlated variables.

 λ ≥ 0 →  controls penalty strength.
 0 ≤ α ≤ 1 → determines the mix between L1 y L2.
 α = 1 → Lasso    ,   α = 0 → Ridge.

is equivalent to



Regularization regression methods

𝛽𝛽1

𝛽𝛽2

𝛽𝛽1

𝛽𝛽2

𝛽𝛽1

𝛽𝛽2

Lasso Ridge Elastic-Net

Variable selection Yes No Yes (less aggressive)

Correlated predictors Randomly selects one                                Assigns similar weights                                  Group and select                         



Survival analysis
The branch of statistics focused on analyzing the time
until an event occur (death, recurrence, failure…)

Goals:
1) Estimate survival function over time.
2) Compare survival between different groups of individuals.
3) Identify risk factors associated with survival and quantify their influence.

Start Event

Time = T

 Survival function: probability
that the event occurs beyond a
time t.

𝑆𝑆 𝑡𝑡 = 𝑃𝑃(𝑇𝑇 > 𝑡𝑡)

 Hazard function: the probability that if
you survive to t, you will experiment the
event in the next instant.

ℎ 𝑡𝑡 = lim
Δ𝑡𝑡→0

𝑃𝑃 𝑡𝑡 < 𝑇𝑇 ≤ 𝑡𝑡 + ∆𝑡𝑡 𝑇𝑇 ≥ 𝑡𝑡)
∆𝑡𝑡

=
𝑓𝑓 𝑡𝑡
𝑆𝑆 𝑡𝑡



Survival analysis
 (1) Survival function estimation:

Kaplan-Meier method (Kaplan, Meier 1958)

o 𝑡𝑡𝑖𝑖: distinct event times (ordered, 𝑡𝑡1 < 𝑡𝑡2 < ⋯𝑡𝑡𝑛𝑛 ​)
o 𝑑𝑑𝑖𝑖 : number of events in 𝑡𝑡𝑖𝑖
o 𝑛𝑛𝑖𝑖 : number of individuals at risk just before 𝑡𝑡𝑖𝑖
o ℎ𝑖𝑖 = 𝑑𝑑𝑖𝑖

𝑛𝑛𝑖𝑖
: risk of the event in [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1)

𝑆̂𝑆 𝑡𝑡 = �
𝑡𝑡𝑖𝑖<𝑡𝑡

1 − ℎ𝑖𝑖 = �
𝑡𝑡𝑖𝑖<𝑡𝑡

1 −
𝑑𝑑𝑖𝑖
𝑛𝑛𝑖𝑖



Survival analysis
 (2) Survival comparation: Log-rank test (Mantel-Cox test) (Mantel 1966)

H0: All groups have the same survival function: S1 ​(t) = S2 ​(t) =… = Sk ​(t)
H1: At least one group differs in survival: Si(t) ≠ Sj ​(t) , for some i≠j

Test statistic is based on observed and expected 
events (χ2 Pearson or Mantel-Haenszel)

Oi: vector of observed events for each group
Ei: vector of expected events under H0

𝑼𝑼 = �
𝒊𝒊

(𝑶𝑶𝒊𝒊 − 𝑬𝑬𝒊𝒊) ; 𝐕𝐕 = �
𝒊𝒊

𝑽𝑽𝒊𝒊

𝝌𝝌𝒌𝒌−𝟏𝟏𝟐𝟐 ~ 𝑼𝑼∗𝑽𝑽∗−𝟏𝟏𝑼𝑼∗ (𝑈𝑈∗ and 𝑉𝑉∗ exclude the kth group)
p = 0.000256



Survival analysis
 (3) Influence of risk factors: Cox proportional hazards model (Cox 1972)

ℎ 𝑡𝑡|𝑥𝑥 = ℎ0 𝑡𝑡 · 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝 ℎ0 𝑡𝑡 : baseline risk
𝛽𝛽𝑘𝑘: effect of factor k

It estimates the influence of p factors (covariates) in the event happening.

Coefficients 𝛽𝛽𝑗𝑗 are estimated by maximizing the partial likelihood:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸:𝑋𝑋 = 0,1 ⟶
ℎ 𝑡𝑡|𝑥𝑥 = 1
ℎ 𝑡𝑡|𝑥𝑥 = 0

=
ℎ0 𝑡𝑡 · 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽 · 1
ℎ0 𝑡𝑡 · 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽 · 0

= 𝑒𝑒𝛽𝛽



What are you getting at?
Regression

Survival
Genomics



Applications
Analysis of disease SUrvival and patient RIsk prediction based on gene signatures

Bueno-Fortes S. et al.
(2022): A Gene Signature
Derived from the Loss of
CDKN1A (p21) Is
Associated with CMS4
Colorectal Cancer.

10.3390/CANCERS14010136

Bueno-Fortes S. et al. (2023):
Identification of a gene
expression signature associated
with breast cancer survival and
risk that improves clinical
genomic platforms.

10.1093/BIOADV/VBAD037

Alfonsín, G. et al. (2024): Stratification
of Colorectal Patients Based on
Survival Analysis Shows the Value of
Consensus Molecular Subtypes and
Reveals the CBLL1 Gene as a
Biomarker of CMS2 Tumours.

10.3390/IJMS25031919

Package ASURI

(december 2024)



Applications: gene-phenotype
 Target: discovery of gene markers by identification of the significant

association of gene expression (or another gene-related activity signal) with
clinical variables or phenotypic characteristics (G = {0, 1})

 Fit a classifier to the dataset based on
bootstrapping and ensemble Elastic-Net
models, (Friedman, 2010).

(optimal regularized parameters using 10-fold CV)

List of genes ordered by stability for the BRCA
training dataset from Bueno-Fortes et al., 2023.



Applications: gene-survival
 Target: Discovery of robust and reproducible gene lists associated with

disease survival based on gene expression (or another gene-related activity
signal).

 Evaluate each gene as a
prognostic marker by
dividing patients into two
groups (low/high expr.) with
a threshold that we
estimated by minimizing
the p-value of the log-rank
statistic.

 Strategy that determines
the optimal p-value of the
log-rank test that
maximizes the separation
of the Kaplan-Meier curves.



10th perc

Applications: patient-risk
 Target: Construction of robust patient risk predictors based on gene signatures

using univariate and multivariate Cox regression model approaches.

 We rank patients according
to their risk score and look
for the one that maximizes
the separation between the
KM survival curves (lowest
p-value of the log-rank
test).

 Estimate patient risk with the Cox
proportional hazards regression model but…

 …the βj coefficients are estimated by
maximizing the partial log-likelihood with a
L1 (lasso) norm penalty. (Tibshirani, 2009).

(optimal regularized parameters using 10-fold CV)

ℎ 𝑡𝑡|𝑥𝑥 = ℎ0 𝑡𝑡 · 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝



Applications: patient-risk
 The threshold allow us to separate the patients into two risk groups, low/high

(or three, in case we want to consider intermediate risk).



Application to Breast cancer (BRCA)
The predictive IHC (immunohistochemistry) markers in breast pathology include two cell
proliferation markers and three hormone receptor positive factors (and their genes):
Chromosome segregation mitosis: AURKA / DNA damage: MKI67
Estrogen receptors: ER (ESR1 gene) / Progesterone receptors: PR (PGR gene)
Human epidermal growth factor receptor-2: HER2 (ERBB2 gene)

 Two of the most widely used
commercial platforms (Oncotype
and Prosigna) use their own gene
signatures to predict risk and
stratify patients.

Oncotype

16 genes 50 genes

 Our goal is to identify survival markers related with that improve
risk prediction and patient stratification better than these two



Application to Breast cancer (BRCA)
 We follow the approach described before and apply it to two independent BRCA datasets

that integrate multiple primary tumor samples (curated, Bueno-Fortes, 2023)

GEO dataset
6 GSE series
1024 samples

Test dataset
644 patients

ER → 16 genes
PR → 10 genes
HER2 → 14 genes
Clinic → AURKA, MKI67

8 common 34 genes
signature

IHC clinic
Train dataset
380 patients

Validate the 34-g list and
evaluate the risk prediction

 We validated the prognostic power in a
second dataset of 879 tumor samples and
performed risk assignments for each sample.



Application to Breast cancer (BRCA)

Signature Log-rank p-value Hazar ratio HR 95%CI of HR

34-g signature 0.00038 2.20 1.41 – 3.43

Oncotype 16-g 0.066 1.61 0.96 – 2.69

Prosigna 50-g 0.035 1.60 1.03 – 2.49

5 shared 
genes
ESR1
PGR
ERBB2
MKI67
GRB7



Some conclusions
 Techniques such as Elastic-net or Lasso ensure diversity and reliability to

obtain robust survival and risk markers.

 The use of univariate or multivariate Cox regression and cross-validation leads
to better selection of stable risk markers and better stratification of patients.

We have applied a survival analysis methods for large human cancer datasets
to validate previously established biomarkers and discover new ones with
potential clinical relevance.



References
 Alfonsín, G., Berral-González, A., … (2024). Stratification of colorectal… IJMS, 25, 1919. 

10.3390/IJMS25031919

 Berral-González, A. PhD thesis (2024). Exploration and development of bioinformatics methods for survival
analysis… 10.14201/gredos.163622

 Bueno-Fortes, S., …, Berral-Gonzalez, A., … (2022). A gene signature... Cancers, 14, 136.
10.3390/CANCERS14010136/S1

 Bueno-Fortes, S., Berral-Gonzalez, A., …(2023). Identification of a gene ... Bioinformatics Advances, 3.
10.1093/BIOADV/VBAD037

 D. R. Cox (1972), Regression Models and Life-Tables, JRSS-2, 187–202, 10.1111/j.2517-6161.1972.tb00899.x

 Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for... Journal of Statistical Software, 33, 1.
10.18637/jss.v033.i01

 Guinney, J., … (2015). The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21, 1350–
1356. 10.1038/nm.3967

 Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased … Technometrics, 12(1), 55–67.
10.1080/00401706.1970.10488634

 Kaplan, E. L., & Meier, P. (1958). Nonparametric… JASA 53(282), 457–481. 10.1080/01621459.1958.10501452

 Mantel N (1966). Evaluation of survival data and two new rank…Cancer Chemotherapy Reports, 50, 163–170

 Quiroga, M.,…(2022). Protein degradation by e3 ubiquitin ligases in cancer stem cells. Cancers, 14, 990.
10.3390/CANCERS14040990

 Rodríguez-Alonso, A., … (2020). Regulation of epithelial–mesenchymal … Cancers, 12, 3093.
10.3390/CANCERS12113093

 Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso, JRSS, 58, I-1,1996, 267–288,
10.1111/j.2517-6161.1996.tb02080.x

 Tibshirani, R. J. (2009). Univariate shrinkage in the cox model for high dimensional data. SAGMB, 8.
10.2202/1544-6115.1438

 Zou H, Hastie T, (2005). Regularization and Variable Selection Via the Elastic Net, JRSS, B67, I-2, 301–320,
10.1111/j.1467-9868.2005.00503.x

 StatQuest. Starmer, J. (2022). StatQuest Youtube channel. Available online at:
https://www.youtube.com/c/joshstarmer.

 Lifelines (https://lifelines.readthedocs.io/en/latest/Survival%20analysis%20with%20lifelines.html)

Thanks for
your attention
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Functional Genomics
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