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In 1947, a study of yellow fever yielded the first isolation of a new 
virus, from the blood of a sentinel rhesus macaque that had been placed in the 
Zika Forest of Uganda.1 Zika virus remained in relative obscurity for nearly 

70 years; then, within the span of just 1 year, Zika virus was introduced into Brazil 
from the Pacific Islands and spread rapidly throughout the Americas.2 It became 
the first major infectious disease linked to human birth defects to be discovered 
in more than half a century and created such global alarm that the World Health 
Organization (WHO) would declare a Public Health Emergency of International 
Concern.3 This review describes the current understanding of the epidemiology, 
transmission, clinical characteristics, and diagnosis of Zika virus infection, as well 
as the future outlook with regard to this disease.

Epidemiol o gy

Zika virus is a flavivirus, in the family Flaviviridae. Although Zika virus was iso-
lated on several occasions from Aedes africanus mosquitoes after its discovery in 
1947,4 there initially was no indication that the virus caused human disease. Nev-
ertheless, a serosurvey involving residents of multiple areas of Uganda revealed a 
6.1% seroprevalence of antibodies against Zika virus, which suggested that human 
infection was frequent.5 Additional serosurveys indicated a much broader geo-
graphic distribution of human infection, including Egypt,6 East Africa,7 Nigeria,8 
India,9 Thailand,10 Vietnam,10 the Philippines,11 and Malaysia (near Kuala Lumpur 
and in East Malaysia [Sabah and Federal Territory of Labuan]).12

Human illness caused by Zika virus was first recognized in Nigeria in 1953, 
when viral infection was confirmed in three ill persons.8 Despite recognition that 
Zika virus infection could produce a mild, febrile illness, only 13 naturally ac-
quired cases were reported during the next 57 years.13-16 Thus, it came as a great 
surprise when a 2007 outbreak on several islands in the State of Yap, Federated 
States of Micronesia, resulted in an estimated 5000 infections among the total 
population of 6700.17

Subsequently, an outbreak in French Polynesia in 2013 and 2014 is estimated to 
have involved 32,000 persons who underwent evaluation for suspected Zika virus 
infection.18-20 Although most of the illnesses appeared similar to those seen in Yap, 
cases of Guillain–Barré syndrome were also noted.19,21 Subsequent outbreaks oc-
curred on other Pacific islands, including New Caledonia (in 2014),22 Easter Island 
(2014),23 Cook Islands (2014),24 Samoa (2015), and American Samoa (2016) (Fig. 1). 
In stark contrast to these outbreaks, in the past 6 years, only sporadic cases of 
Zika virus infection have been reported in Thailand,25,26 East Malaysia (Sabah),27 
Cambodia,28 the Philippines,29 and Indonesia.30,31

Zika virus was first identified in the Americas in March 2015, when an outbreak 
of an exanthematous illness occurred in Bahia, Brazil.32,33 Epidemiologic data in-

From the Division of Vector-Borne Dis-
eases, National Center for Emerging and 
Zoonotic Infectious Diseases, Centers 
for Disease Control and Prevention, Fort 
Collins, CO (L.R.P., A.M.P.); and the Divi-
sion of Reproductive Health, National 
Center for Chronic Disease Prevention 
and Health Promotion (D.J.J), and the Di-
vision of Congenital and Developmental 
Disorders, National Center on Birth De-
fects and Developmental Disabilities 
(M.A.H), Centers for Disease Control and 
Prevention, Atlanta. Address reprint re-
quests to Dr. Petersen at the Division of 
Vector-Borne Diseases, Centers for Dis-
ease Control and Prevention, 3156 Ram-
part Rd., Fort Collins, CO 80521, or at 
 lxp2@  cdc . gov.

This article was published on March 30, 
2016, at NEJM.org.

DOI: 10.1056/NEJMra1602113
Copyright © 2016 Massachusetts Medical Society.

Lindsey R. Baden, M.D., editor

Zika Virus
Lyle R. Petersen, M.D., M.P.H., Denise J. Jamieson, M.D., M.P.H., 

Ann M. Powers, Ph.D., and Margaret A. Honein, Ph.D., M.P.H.  

The New England Journal of Medicine 
Downloaded from nejm.org at UNA BIBLIOTECA HUMANIDADES on April 4, 2016. For personal use only. No other uses without permission. 

 Copyright © 2016 Massachusetts Medical Society. All rights reserved. 

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado

familiarc
Resaltado



n engl j med   nejm.org 2

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

M
ex

ic
o

Pa
na

m
a

El
 S

al
va

do
r

Sa
m

oa

To
ng

a

Fr
en

ch
 P

ol
yn

es
ia

C
oo

k 
Is

la
nd

s
Ea

st
er

 Is
la

nd
,

C
hi

le

G
ua

te
m

al
aH

on
du

ra
s

N
ic

ar
ag

ua

C
ur

aç
aoB
on

ai
re

C
os

ta
 R

ic
aJa

m
ai

ca

H
ai

ti
C

ub
a

D
om

in
ic

an
 R

ep
ub

lic

B
ol

iv
ia

C
ol

om
bi

a

B
ra

zi
lFr

en
ch

 G
ui

an
a

Su
ri

na
m

e

Tr
in

id
ad

 a
nd

 T
ob

ag
o

G
uy

an
a

Ec
ua

do
r

Pa
ra

gu
ay

N
ig

er
ia

U
ga

nd
a

G
ab

on

C
ap

e 
V

er
de

Th
ai

la
nd

La
os

C
am

bo
di

a

M
al

ay
si

a

Ph
ili

pp
in

es
M

ic
ro

ne
si

a So
lo

m
onM

ar
sh

al
l 

Is
la

nd
s

V
an

ua
tu

In
do

ne
si

a

N
ew

 C
al

ed
on

iaFi
ji

M
ar

tin
iq

ue
D

om
in

ic
a

Pu
er

to
 R

ic
o

U
.S

. V
ir

gi
n 

Is
la

nd
s

Sa
in

t M
ar

tin
 a

nd
 S

in
t M

aa
rt

en

B
ar

ba
do

s

St
. V

in
ce

nt
 a

nd
 

th
e 

G
re

na
di

ne
s

G
ua

de
lo

up
e

M
al

di
ve

s

Fe
br

ua
ry

M
ar

ch
20

07
–2

00
9

20
12

–2
01

4

St
at

e 
of

 Y
ap

,
M

ic
ro

ne
si

a
G

ab
on

20
15

20
15

Fr
en

ch
 G

ui
an

a
H

on
du

ra
s

M
ar

tin
iq

ue
Pa

na
m

a
Pu

er
to

 R
ic

o

La
os

N
ew

 C
al

ed
on

ia
St

. M
aa

rt
en

C
ub

a
D

om
in

ic
a

20
16

20
16

20
16

To
ng

a
B

on
ai

re
M

ar
sh

al
l I

sl
an

ds
St

. V
in

ce
nt

 a
nd

 
   

 th
e 

G
re

na
di

ne
s

Tr
in

id
ad

 a
nd

 
   

 T
ob

ag
o

Ja
nu

ar
y–

O
ct

ob
er

N
ov

em
be

r
D

ec
em

be
r

Ja
nu

ar
y

20
15

Fr
en

ch
 P

ol
yn

es
ia

N
ew

 C
al

ed
on

ia
Ea

st
er

 Is
la

nd
, C

hi
le

C
oo

k 
Is

la
nd

s

M
al

ay
si

a
Ph

ili
pp

in
es

C
am

bo
di

a
In

do
ne

si
a

Th
ai

la
nd

B
ra

zi
l

V
an

ua
tu

Fi
ji

C
ol

om
bi

a

C
ap

e 
V

er
de

Sa
m

oa
So

lo
m

on
 Is

la
nd

s 

El
 S

al
va

do
r

G
ua

te
m

al
a

M
ex

ic
o

Pa
ra

gu
ay

Su
ri

na
m

e
V

en
ez

ue
la

B
ol

iv
ia

U
.S

. V
ir

gi
n 

   
 Is

la
nd

s
D

om
in

ic
an

R
ep

ub
lic

Ec
ua

do
r

G
uy

an
a

Ja
m

ai
ca

C
ur

aç
ao

M
al

di
ve

s

H
ai

ti
A

m
er

ic
an

Sa
m

oa

C
os

ta
 R

ic
a

G
ua

de
lo

up
e

St
. M

ar
tin

N
ic

ar
ag

ua
B

ar
ba

do
s

Fi
gu

re
 1

. A
re

as
 in

 W
hi

ch
 Z

ik
a 

V
ir

us
 I

nf
ec

ti
on

s 
in

 H
um

an
s 

H
av

e 
B

ee
n 

N
ot

ed
 in

 t
he

 P
as

t 
D

ec
ad

e 
(a

s 
of

 M
ar

ch
 2

01
6)

.

O
nl

y 
sp

or
ad

ic
 in

fe
ct

io
ns

 h
av

e 
oc

cu
rr

ed
 in

 S
ou

th
ea

st
 A

si
a,

 t
he

 P
hi

lip
pi

ne
s,

 a
nd

 I
nd

on
es

ia
.

The New England Journal of Medicine 
Downloaded from nejm.org at UNA BIBLIOTECA HUMANIDADES on April 4, 2016. For personal use only. No other uses without permission. 

 Copyright © 2016 Massachusetts Medical Society. All rights reserved. 



n engl j med   nejm.org 3

Zik a Virus

dicate that in Salvador, the capital of Bahia, the 
outbreak had begun in February and extended to 
June 2015.34 By October, the virus had spread to 
at least 14 Brazilian states,35 and in December 
2015, the Brazil Ministry of Health estimated that 
up to 1.3 million suspected cases had occurred.36

In October 2015, Colombia reported the first au-
tochthonous transmission of Zika virus outside 
Brazil,35 and by March 3, 2016, a total of 51,473 
suspected cases of Zika virus had been reported 
in that country.37 By March 2016, the virus had 
spread to at least 33 countries and territories in 
the Americas (Fig. 1).36,37

By September 2015, investigators in Brazil 
noted an increase in the number of infants born 
with microcephaly in the same areas in which 
Zika virus was first reported,38 and by mid-Febru-
ary 2016, more than 4300 cases of microcephaly 
had been recorded, although overreporting and 
misdiagnosis probably inflated this number.39

Subsequently, French Polynesian investigators ret-
rospectively identified an increased number of fetal 
abnormalities, including microcephaly, after the 
Zika virus outbreak in that country.40,41

 Zik a V irus Tr a nsmission

 Mosquito-borne Transmission

In Africa, Zika virus exists in a sylvatic transmis-
sion cycle involving nonhuman primates and for-
est-dwelling species of aedes mosquitoes (Fig. 2). 
In Asia, a sylvatic transmission cycle has not yet 
been identified. Several mosquito species, primar-
ily belonging to the stegomyia and diceromyia 
subgenera of aedes, including A. africanus, A. luteo-
cephalus, A. furcifer, and A. taylori, are likely enzootic 
vectors in Africa and Asia.42,43

In urban and suburban environments, Zika vi-
rus is transmitted in a human–mosquito–human 
transmission cycle (Fig. 2). Two species in the 
stegomyia subgenus of aedes — A. aegypti and, 
to a lesser extent, A. albopictus44 — have been linked 
with nearly all known Zika virus outbreaks, al-
though two other species, A. hensilli and A. poly-
nesiensis, were thought to be vectors in the Yap45

and French Polynesia46 outbreaks, respectively. 
A. aegypti and A. albopictus are the only known aedes 
(stegomyia) species in the Americas. Despite the 
association of A. aegypti and A. albopictus with out-
breaks, both were found to have unexpectedly low 
but similar vector competence (i.e., the intrinsic 
ability of a vector to biologically transmit a disease 

agent) for the Asian genotype Zika virus strain, 
as determined by a low proportion of infected 
mosquitoes with infectious saliva after ingestion 
of an infected blood meal.47 However, A. aegypti is 
thought to have high vectorial capacity (i.e., the 
overall ability of a vector species to transmit a 
pathogen in a given location and at a specific 
time) because it feeds primarily on humans, often 
bites multiple humans in a single blood meal, has 
an almost imperceptible bite, and lives in close 
association with human habitation.48

Figure 2. Zika Virus Transmission Cycle.

In Africa, Zika virus circulates in a sylvatic transmission cycle between non-
human primates and certain forest-dwelling species of aedes mosquitoes. 
In this setting, sporadic human infections may occur. In suburban and ur-
ban settings, Zika virus is transmitted in a human–mosquito–human trans-
mission cycle, mostly involving A. aegypti mosquitoes.
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Both A. aegypti and A. albopictus bite primarily 
during the daytime and are widely distributed 
throughout the tropical and subtropical world. 
A. albopictus can exist in more temperate areas than 
A. aegypti, thus extending the potential range 
where outbreaks may occur. In the United States, 
A. aegypti is endemic throughout Puerto Rico and 
the U.S. Virgin Islands and in parts of the contigu-
ous United States and Hawaii (Fig. 3).49 A. albopictus
is widely distributed in the eastern United States 
and Hawaii. Nevertheless, in the contiguous Unit-
ed States, contemporary outbreaks of dengue, 
which has a transmission cycle similar to that of 
Zika virus, have occurred only in areas in which 
A. aegypti is endemic, which suggests that the 
potential for the transmission of Zika virus else-
where is limited. In contrast, Hawaii has experi-
enced contemporary dengue outbreaks in which 
A. albopictus was the vector.50,51

Zika virus has infrequently been identified in 
other mosquito species, such as A. unilineatus, 
Anopheles coustani, and Mansonia uniformis; howev-
er, vector-competence studies have indicated 
that these species have a low potential for trans-
mission of the virus. It is notable that Zika virus 
has been reported only once in any culex species, 

which suggests that mosquitoes in this genus 
have a low vectorial capacity.42

 Nonmosquito Transmission

Substantial evidence now indicates that Zika vi-
rus can be transmitted from the mother to the 
fetus during pregnancy. Zika virus RNA has been 
identified in the amniotic fluid of mothers whose 
fetuses had cerebral abnormalities detected by 
ultrasonography,40,52-54 and viral antigen and RNA 
have been identified in the brain tissue and pla-
centas of children who were born with micro-
cephaly and died soon after birth,55 as well as in 
tissues from miscarriages.54,55 The frequency of 
and risk factors for transmission are unknown.

Two cases of peripartum transmission of Zika 
virus have been reported among mother–infant 
pairs.56 Zika virus RNA was detected in both 
infants; one infant had a mild rash illness and 
thrombocytopenia, whereas the other was asymp-
tomatic.

Sexual transmission to partners of returning 
male travelers who acquired Zika virus infection 
abroad has been reported.57-59 In one instance, 
sexual intercourse occurred only before the on-
set of symptoms, whereas in other cases sexual 

Figure 3. Approximate Ranges of A. aegypti and A. albopictus in the United States (as of March 2016).

These mosquitoes may not be present in all areas, and vector density may vary considerably within these ranges.
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intercourse occurred during the development of 
symptoms and shortly thereafter. The risk factors 
for and the duration of the risk of sexual trans-
mission have not been determined. Replicative 
viral particles, as well as viral RNA — often in 
high copy numbers — have been identified in 
sperm, and viral RNA has been detected up to 
62 days after the onset of symptoms.60-62

Although the transmission of Zika virus 
through a blood transfusion has yet to be reported, 
it is likely to occur, given the transmission of other, 
related flaviviruses through this route.63 During 
the Zika virus outbreak in French Polynesia, 3% of 
donated blood samples tested positive for Zika vi-
rus by reverse-transcriptase polymerase chain reac-
tion (RT-PCR).64

One case of Zika virus transmission occurred 
after a monkey bite in Indonesia, although mos-
quito-borne transmission could not be ruled out.65 
Two infections in laboratories have been report-
ed.16,66 A volunteer became infected after subcu-
taneous injection of infected mouse brain sus-
pension.67 Transmission through breast milk has 
not been documented, although the breast milk 
of a woman who became symptomatic with Zika 
virus infection on the day of delivery contained 
infective Zika viral particles in high titer.68

Clinic a l A spec t s

Acute Febrile Illness

The incubation period for Zika virus is unknown, 
but if it is similar to that of other mosquito-borne 
flaviviruses, it is expected to be generally less 
than 1 week. In one volunteer, a febrile illness of 
4 days’ duration developed 82 hours after subcu-
taneous inoculation of Zika virus.67 Viremia was 
detected when symptoms were present, but not 
afterward. Among French Polynesian blood do-
nors who tested positive for Zika virus by RT-PCR, 
11 (26%) reported conjunctivitis, rash, arthralgia, 
or a combination of these symptoms 3 to 10 days 
after donation.64 Serosurvey results from Yap 
indicated that only 19% of persons who were 
infected had symptoms that were attributable to 
Zika virus.17 Common symptoms were macular 
or papular rash (90% of patients), fever (65%), 
arthritis or arthralgia (65%), nonpurulent con-
junctivitis (55%), myalgia (48%), headache (45%), 
retro-orbital pain (39%), edema (19%), and vom-
iting (10%). No patient was hospitalized during 
the outbreak in Yap. These common symptoms 

occurred at frequencies similar to those in the 
Yap outbreak in a cohort of pregnant women 
with Zika virus infection in Brazil.69 The rash is 
generally maculopapular and pruritic,69 and fever, 
when present, is generally short-term and low-
grade.69 Other symptoms that have been noted in 
association with acute infection include hemato-
spermia,57,60 transient dull and metallic hearing,27 
swelling of the hands and ankles,27,70 and subcu-
taneous bleeding.71

Neurologic Complications

A temporal and geographic relationship has been 
observed between Guillain–Barré syndrome and 
Zika virus outbreaks in the Pacific and the 
Americas.19,21,72-74 In the outbreak in French Poly-
nesia, 38 cases of Guillain–Barré syndrome oc-
curred among an estimated 28,000 persons who 
sought medical care.19 A case–control study in 
French Polynesia revealed a strong association 
(odds ratio, >34) between Guillain–Barré syn-
drome and previous Zika virus infection; the find-
ings from electrophysiological studies were com-
patible with the acute motor axonal neuropathy 
subtype of Guillain–Barré syndrome.75 Meningo-
encephalitis76 and acute myelitis77 complicating 
Zika virus infection also have been reported.

Adverse Fetal Outcomes

The full spectrum of fetal outcomes resulting 
from fetal Zika virus infection in humans is yet 
to be determined; however, the well-character-
ized effects of maternal infection with rubella 
virus and cytomegalovirus (CMV) may be in-
structive.78,79 Maternal rubella infections in the 
first 10 weeks of pregnancy can result in adverse 
fetal effects in up to 90% of infants and de-
crease thereafter, with a much lower risk after 
gestational week 18.80,81 The congenital anoma-
lies associated with maternal rubella infection 
during pregnancy include sensorineural hearing 
loss, cataracts and other eye anomalies, cardiac 
anomalies, and neurologic effects, including in-
tellectual disability, ischemic brain damage, and 
microcephaly.80,82 Similarly, maternal CMV infec-
tion can produce profound effects on the fetus, 
including sensorineural hearing loss, chorioreti-
nitis, and neurologic effects, such as micro-
cephaly, intellectual disability, and cerebral pal-
sy.83 For primary infections with CMV, the risk 
of adverse fetal effects is highest during the first 
trimester, but the risk persists in the second and 
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third trimester, with some adverse fetal out-
comes noted in mothers who had seroconversion 
after gestational week 27.84 It is of particular 
concern that some infants without obvious ad-
verse effects of congenital CMV infection at birth 
can have late-onset or progressive hearing loss 
that cannot be identified through screening of 
newborns.85 Other causes of microcephaly in-
clude some genetic syndromes, vascular disrup-
tion during brain development, nutritional defi-
ciencies, and exposure to certain toxins, such as 
mercury.86

Microcephaly is a clinical finding of a small 
head size for gestational age and sex and is in-
dicative of an underlying problem with the 
growth of the brain.87 The lack of consistent and 
standardized case definitions has challenged the 
accurate monitoring of microcephaly during the 
current Zika virus outbreak.39 Centers for Dis-
ease Control and Prevention (CDC) guidance has 
recommended that microcephaly be defined as 
an occipitofrontal circumference below the third 
percentile for gestational age and sex.88 The 
prevalence of microcephaly in the United States 
averages approximately 6 cases per 10,000 live 
births, with a range of about 2 to 12 cases per 
10,000 live births.89 Because similar prevalences 
are expected in other countries, these figures 
may be suitable benchmarks for regions lacking 
accurate historical data.

Microcephaly can occur as a result of fetal 
brain disruption sequence, a process in which, 

after relatively normal brain development in 
early pregnancy, collapse of the fetal skull fol-
lows the destruction of fetal brain tissue.90-92

Although previous case reports of maternal in-
fection leading to fetal brain disruption sequence 
do not include information on the timing of ma-
ternal infection, some evidence indicates that this 
damage can occur late during the second trimes-
ter or even early in the third trimester.93 Initial 
case reports from Brazil have suggested that 
some of the infants with microcephaly related to 
Zika virus infection have a phenotype consistent 
with fetal brain disruption (Fig. 4).38,94,95

The findings of Zika virus RNA in the amni-
otic fluid of fetuses with microcephaly40,52,54 and 
in the brain tissue of fetuses and infants with 
microcephaly,55,94,95 as well as the high rates of 
microcephaly among infants born to mothers 
with proven antecedent acute Zika virus infec-
tion,69 provide strong evidence linking micro-
cephaly to maternal Zika virus infection. The 
timing of the Zika virus and microcephaly epi-
demics in Brazil96,97 and French Polynesia41 indi-
cate that the greatest risk of microcephaly is in 
the first trimester. In case reports of micro-
cephaly, documented maternal Zika virus infec-
tion most often occurred between 7 and 13 weeks 
of gestation, but in some cases it occurred as 
late as at 18 weeks of gestation.40,52,54,69,94

A preliminary report from Brazil indicated 
that fetal abnormalities detected by ultrasonog-
raphy were present in 29% of women with Zika 

Figure 4. Infants with Moderate or Severe Microcephaly Associated with Maternal Zika Virus Infection, as Compared 
with a Typical Newborn.
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virus infection during pregnancy.69 Early fetal 
loss and fetal death have been noted in associa-
tion with maternal infection that occurred be-
tween 6 and 32 weeks of gestation.54,69 Ocular 
anomalies have been reported among infants 
with microcephaly in Brazil.69,98-100 In the largest 
study with comprehensive ophthalmologic ex-
aminations of infants with microcephaly, ocular 
abnormalities were found in 10 of 29 patients 
(35%).100 The most common ocular abnormali-
ties were focal pigment mottling, chorioretinal 
atrophy, and optic-nerve abnormalities (hypopla-
sia and severe cupping of the optic disk). Other 
ocular manifestations in this and other case 
studies have included foveal reflex loss, macular 
neuroretinal atrophy, lens subluxation, and iris 
coloboma. Whether ocular manifestations occur 
after congenital Zika virus infection in infants 
without microcephaly remains unknown.

Di agnosis

The mainstays of the routine diagnosis of Zika 
virus infection are the detection of viral nucleic 
acid by RT-PCR and the detection of IgM anti-
bodies by IgM-capture enzyme-linked immuno-
sorbent assay (MAC-ELISA). The detection of vi-
ral nucleic acid in serum provides a definitive 
diagnosis; however, in most instances viremia is 
transient, and diagnosis by RT-PCR has been 
most successful within 1 week after the onset of 
clinical illness.67,101 In contrast, viral RNA was 
detected in serum approximately 10 weeks after 
infection in a pregnant woman whose fetus had 
evidence of congenital infection.95 In addition, 
viremia is generally low level, which makes viral 
isolation from clinical samples difficult.101 Al-
though the precise timing of the onset and the 
duration of the IgM antibody response to Zika 
virus that is detectable by MAC-ELISA have not 
yet been defined, extensive experience with other, 
related flaviviruses suggests that IgM will ap-
pear as viremia wanes within the first week after 
symptom onset and will persist for several 
months.102 Thus, RT-PCR testing of serum sam-
ples obtained within the first week of clinical 
illness and MAC-ELISA testing of samples that 
are not tested by RT-PCR or that are found to be 
negative by RT-PCR are likely to have the highest 
diagnostic yield.103

The considerable cross-reactivity of flavivirus 
antibodies presents major challenges for the in-

terpretation of serologic test results. For exam-
ple, recent Zika virus infection may also evoke a 
positive MAC-ELISA result for dengue. The plaque 
reduction neutralization test (PRNT), the most 
specific test used to differentiate antibodies of 
closely related viruses, can be used to help verify 
MAC-ELISA results.104 However, this test is labor-
intensive and costly, involves handling of live vi-
rus, takes up to a week to perform, requires 
standardized reagents that often are not available, 
and is not widely performed. In settings where 
PRNT is not available or the volume of testing 
makes PRNT impractical, specimens that are 
found positive by Zika virus MAC-ELISA and 
negative by dengue MAC-ELISA may be inter-
preted as a presumptive recent Zika virus infec-
tion. However, the diagnostic accuracy of this 
approach has not been established.

The greatest challenge with serologic cross-
reactivity arises from the “original antigenic sin” 
phenomenon105: for patients who have previously 
been exposed to a heterologous flavivirus by natu-
ral infection or vaccination, the antibody response 
to the previous infecting flavivirus will be more 
vigorous than the response to the current one.101,106 
Even the PRNT cannot reliably establish a diagno-
sis in such patients. This is particularly problem-
atic in areas in which dengue is endemic, where 
more than 90% of the population may have had 
previous exposure to dengue virus107 and dengue 
and Zika viruses may be cocirculating.

Limited data suggest that Zika virus RNA can 
be detected longer in urine than in serum; if 
verified, this would extend the period during 
which a definitive diagnosis of Zika virus infec-
tion can be established by RT-PCR.74,108-110 Another 
large study that compared RT-PCR results in se-
rum and saliva samples indicated that RT-PCR 
had higher sensitivity in saliva than in serum, 
although samples from some patients were posi-
tive in serum but not saliva, and testing of saliva 
did not extend the duration of detectability of 
viral nucleic acid after the onset of illness.111

Reliable testing regimens for the diagnosis of 
prenatal and antenatal Zika virus infection have 
not been established. Amniotic fluid has tested 
positive by RT-PCR in instances of congenital 
Zika virus infection; however, the sensitivity of 
RT-PCR in this context is unknown.40,53,54,94,95 At 
the time of delivery, cord blood can be tested by 
RT-PCR and MAC-ELISA, but the sensitivities of 
these tests for detecting prenatal Zika virus in-
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fection are unknown. RT-PCR and immunohis-
tochemical testing have been useful in establish-
ing Zika virus infection in tissues of fetal 
losses and full-term infants who died shortly 
after birth.55,94

Although microcephaly and other fetal abnor-
malities may be detected as early as 18 to 20 weeks 
of gestation,40,54,69,112 they are often not detected 
until later in pregnancy, in part because some 
cases do not occur earlier in pregnancy.69,113 Fur-
thermore, the use of ultrasonography to detect 
microcephaly is dependent on clinical and tech-
nical factors,114 and ultrasonography is not a 
highly sensitive means of detecting microcepha-
ly.115 Findings associated with Zika virus infec-
tion that have been noted on ultrasound have 
included, in addition to microcephaly, an absent 
corpus callosum, hydranencephaly, cerebral cal-
cifications, ventricular dilatation, brain atrophy, 
abnormal gyration, hydrops fetalis, anhydram-
nios, and intrauterine growth retardation.40,69,94,116

V irol o gy

Despite a limited number of available full-length 
Zika virus sequences, the molecular data are suf-
ficient to reveal patterns of viral evolution and 
movement. The virus is likely to have originated 
in East Africa and subsequently spread to West 
Africa and then to Asia, resulting in distinct 
lineages (Nigerian Cluster, MR766 Cluster, and 
the Asian genotype).101,117 All strains currently 
associated with the outbreak in the Americas are 
of the Asian genotype and are most closely re-
lated to strains from Yap, Cambodia, Thailand, 
and French Polynesia.118 The strains from the 
Americas that have been examined to date are 
genetically very similar to each other, with ap-
proximately 99% nucleotide homology. Further-
more, there is strong conservation among all 
Zika virus strains overall, with less than 12% 
divergence at the nucleotide level.119 This is im-
portant for diagnostic assays, which rely on 
precise sequences and epitopes, as well as for 
the development of therapeutics and vaccines. 
The current similarity data suggest that any vac-
cine product developed against any strain of Zika 
virus should be protective against all strains. 
The very nature of the close relatedness among 
the flaviviruses is responsible for the challenges 
in developing diagnostic algorithms for distin-
guishing among these viruses.

Tr e atmen t,  Pr e v en tion,  
a nd Con trol

As with the other mosquito-borne flaviviruses, 
treatment for uncomplicated Zika virus infection 
focuses on symptoms. No Zika virus vaccine ex-
ists; thus, prevention and control measures cen-
ter on avoiding mosquito bites, reducing sexual 
transmission, and controlling the mosquito vec-
tor. Potentially effective methods of prevention 
that are focused on reducing infections among 
pregnant women include avoiding unnecessary 
travel to areas of ongoing Zika virus transmis-
sion, avoiding unprotected sexual contact with 
partners who are at risk for Zika virus infection,103 
and using mosquito repellent, permethrin treat-
ment for clothing,120 bed nets,121 window 
screens,122,123 and air conditioning.124,125 The 
most effective A. aegypti vector control relies on 
an integrated approach that involves elimination 
of A. aegypti mosquito breeding sites, application 
of larvicides, and application of insecticides to 
kill adult mosquitoes. However, each of these 
approaches has substantial limitations. Com-
munities are often mobilized to reduce A. aegypti 
breeding sites, but this strategy often fails, in 
part because of inconsistent participation among 
households and the presence of cryptic breeding 
sites in modern urban settings.126,127 Dengue 
control programs make extensive use of perido-
mestic insecticide spraying during outbreaks, 
but little evidence supports its efficacy as a sin-
gle control intervention.128 The application of 
larvicides129 and indoor residual spraying129,130 
have been effective in some settings. Given these 
limitations, an integrated prevention and vector-
control approach combined with timely detec-
tion of illness, communication of up-to-date and 
correct information, and development of a rapid 
response that involves the community are rec-
ommended.131

Fu t ur e Ou tl o ok a nd Dir ec tions

The current incidence of Zika virus infection in 
the Americas is difficult to gauge because the 
symptoms are nonspecific and generally mild, 
laboratory diagnosis is not uniformly available, 
and flavivirus antibody cross-reactivity compli-
cates serologic assessment in areas in which 
dengue is endemic. Nevertheless, given the his-
torically high incidence of dengue in the region 
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and the recent experience with the chikungunya 
virus in the Americas, millions of Zika virus 
infections should be expected as the virus con-
tinues to spread.132-135 If Brazil serves as a bell-
wether for the rest of Latin America and the 
Caribbean, substantial numbers of infants with 
microcephaly and other adverse pregnancy out-
comes could be identified in the upcoming 
months. The potential burden of illness from 
Guillain–Barré syndrome is hard to assess, given 
the difficulties with serologic diagnosis in areas 
where dengue is endemic and the paucity of 
published data on current incidence.

The underlying reasons for the emergence of 
Zika virus in the past decade are unknown. Re-
cent global increases in the incidence and spread 
of dengue, chikungunya, and now Zika virus — 
all with A. aegypti as the primary vector — sug-
gest common underlying mechanisms for their 
emergence, such as globalization and urbaniza-
tion.132,136 Other possible explanations include vi-
ral mutations affecting transmission or virulence 
and viral introduction to previously unexposed 
populations leading to epidemic spread. Further 
research will be required to determine whether 
the recently observed associations with adverse 
birth outcomes and Guillain–Barré syndrome 
simply reflect an increased incidence of infec-
tion or whether they result from a change in vi-
ral virulence. In areas of Africa and Asia where 
Zika virus is endemic, the incidence of infection, 
whether outbreaks will occur, and the reason for 
the previous lack of recorded cases of adverse 
pregnancy outcomes or Guillain–Barré syndrome 

are unknown. It is possible that many exposures 
occur in children, in whom Guillain–Barré syn-
drome may be less likely to develop and who 
would later be immune to infections during 
pregnancy.

The long-term outlook with regard to the cur-
rent Zika virus outbreak in the Americas is un-
certain. Herd immunity sufficient to slow further 
transmission will undoubtedly occur, although 
this will not obviate the need for immediate and 
long-term prevention and control strategies. 
Whether and where the virus becomes endemic 
and whether an enzootic transmission cycle will 
develop somewhere in the Americas are matters 
of conjecture, but they are of considerable im-
portance for the long-term development and sus-
tainability of countermeasures, such as a Zika 
virus vaccine.

What is clear is the need to rapidly and sys-
tematically address identified research gaps. 
These include a complete understanding of the 
frequency and full spectrum of clinical out-
comes resulting from fetal Zika virus infection 
and of the environmental factors that influence 
emergence, as well as the development of dis-
criminating diagnostic tools for flaviviruses, ani-
mal models for fetal developmental effects due to 
viral infection, new vector control products and 
strategies, effective therapeutics, and vaccines to 
protect humans against the disease.

The findings and conclusions in this review are those of the 
authors and do not necessarily represent the official position of 
the Centers for Disease Control and Prevention.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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