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Teratogenic eff ects of the Zika virus and the role of the 
placenta 
Jennifer J Adibi, Ernesto T A Marques Jr, Abigail Cartus, Richard H Beigi

The mechanism by which the Zika virus can cause fetal microcephaly is not known. Reports indicate that Zika is able 
to evade the normal immunoprotective responses of the placenta. Microcephaly has genetic causes, some associated 
with maternal exposures including radiation, tobacco smoke, alcohol, and viruses. Two hypotheses regarding the role 
of the placenta are possible: one is that the placenta directly conveys the Zika virus to the early embryo or fetus. 
Alternatively, the placenta itself might be mounting a response to the exposure; this response might be contributing 
to or causing the brain defect. This distinction is crucial to the diagnosis of fetuses at risk and the design of therapeutic 
strategies to prevent Zika-induced teratogenesis.

Introduction
Over the last 6 months, thousands of microcephalic 
babies have been delivered in Brazil, the country that is 
experiencing the highest Zika virus infection rates 
worldwide. Given the apparent pronounced eff ects of this 
vector-borne viral pathogen on the developing fetus, there 
is a rush to ascertain whether and how Zika virus might 
be causing microcephaly, as well as the need to address 
concerns regarding potential biases in the reporting of 
cases, or historic under-reporting of cases in Brazil and in 
other Zika virus-aff ected countries. Knowledge of 
mechanism could lead us to early detection methods and 
therapeutic responses to this new apparent teratogen and 
enhance preparedness for the next viral epidemic. We 
make a case for epidemiologists, virologists, pathologists, 
obstetricians, toxicologists, and developmental biologists 
to rigorously consider and test the role of the placenta as a 
mediator of the viral exposure and the cause of the fetal 
brain defects associated with Zika virus infection. 

Direct transfer hypothesis
One possibility is that the virus has neurotropic 
properties and, via the placenta, is directly accessing and 
damaging the developing brain. This hypothesis implies 
the presence of the virus within the embryo at the earliest 
developmental stages of the cerebral cortex. However, in 
this early period, the embryo or fetus is fairly well 
shielded from maternal circulation. Maternal blood fl ow 
into the placenta only begins at 10 weeks gestation 
(fi gure).1 The routes of entry for the virus would be 
uterine gland secretions, leakage through the 
trophoblastic plugs that block maternal blood fl ow, or 
diff usion of preconceptional viral concentrations into the 
amniotic and yolk sacs as they form. Once the virus 
reaches the trophoblast barrier, the virus as part of an 
immunocomplex with non-neutralising antibodies could 
be carried through the placenta with the help of Fc 
gamma receptors.2,3 However, this process is less likely to 
be the case before 16 weeks.4,5 Similar to the dengue 
virus,6,7 Zika virus might work through the endoplasmic 
reticulum of the trophoblast to become a sort of cargo of 
placental exosomes. Those exosomes might then be 
targeting embryonic or fetal neuroepithelium. The virus 

could be causing localised reactions at the interface of 
the placenta that can allow free virus to pass through.8 
Zika virus might also be transmitted through semen, 
potentially giving the virus access to the early embryo.9 

Tissue samples at this stage are not yet available to test 
these assumptions directly. Most of the signs of infection 
in women delivering microcephalic babies in Brazil are 
reported from 8–16 weeks gestation (Marques ETA, 
unpublished),9 which could mean that the virus is 
reaching the fetus at a later stage in brain development, 
and possibly precisely at this point when maternal blood 
fl ow into the placenta begins. A recent case report 
presents novel cross-sectional evidence that the cause of 
microcephaly in a fetus was direct transfer.10 The fetus 
was exposed to maternal Zika virus infection late in the 
fi rst trimester (based on maternal symptoms) and the 
authors measured higher viral titres in the brain tissue at 
autopsy relative to other tissues. In two cases, the viral 
DNA was measured in amniotic fl uid at 28 weeks, but 
not in maternal serum or urine.11 Additional evidence for 
direct transfer and brain damage by Zika virus is the 
detection of IgM against viral antigen (but not the viral 
mRNA) in the cerebral spinal fl uid of 30 of the 31 samples 
analysed of the babies born with microcephaly (Marques 
ETA, unpublished). Although still sparse, these data are 
crucial towards an understanding of the teratogenic 
mechanism of Zika virus. Hopefully, additional data will 
continue to provide answers to questions central to a 
complete understanding of the relationship between 
Zika virus and microcephaly: does the virus reach the 
fetal brain in all cases? Can this process be measured 
within the developmental timeframe that matters most 
for the development of primary microcephaly?

Because these measurements have been made late in 
or at the end of pregnancy, whether the virus is able to 
cross the placenta in the early period, which is most 
relevant to the risk of microcephaly, remains unclear. 
The ultimate proof would be a positively correlated metric 
of virus exposure in maternal and fetal tissues that 
coincides with the timing of the fetal defect. Alternatively, a 
cohort analysis (currently ongoing in Brazil) can 
statistically confi rm the temporal ordering of prenatal 
maternal infection, fetal brain development, and increased 
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risk of delivering a microcephalic infant. In-vitro models 
in which embryonic neuronal cells are directly exposed to 
Zika virus might generate useful information. However, 
these cells might also misrepresent conditions during 
early pregnancy in vivo, in which the virus must traverse 
fl uid and tissue layers to reach the developing brain.

Interestingly, no information to date points to global 
eff ects of Zika virus on placental function such as smaller 
birth size (excluding the head), reduced trophoblast 
invasion (higher incidences of pre-eclampsia or growth 
restriction), or preterm birth—all of which are tightly 
linked to the health and function of the placenta. Again, 

this observation suggests that the virus works through a 
more specifi c molecular pathway instead of outright 
destruction of the placenta and fetus. 

The pathology of placentas infected with cyto-
megalovirus might off er some foresights while data for 
Zika virus placental pathology evolves.12,13 The most 
frequent symptom in placentas infected with cyto-
mega lovirus was chronic villitis, or wide-scale infl am-
mation of the cell layers of the chorionic villi. The 
degree of placental infl ammation has been correlated 
with the severity of the fetal eff ects that include 
microcephaly.12,13 The placenta, through a microRNA-
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Figure: The gestational sac in the fi rst trimester before the onset of maternal–placental blood fl ow
The placenta consists of the chorion and the chorionic villi which encircle the embryo and carry out synthesis and secretion of molecules that can enter into the 
embryo. Diff erent scenarios include: direct transfer of free virus through the trophoblast layers, placental exosome-mediated transfer, or minimal to no transfer.
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mediated response, might be blocking or enhancing 
replication of the Zika virus as has been shown with 
other viruses.14 

Placental mediation hypothesis 
An alternative and potential complement to the previous 
hypothesis of direct viral eff ect is that the placental 
response is the main cause of the brain defect. If the 
infected pregnancy is not spontaneously miscarried, 
then the virus is probably disrupting molecular synthesis 
in the outer layers of the placenta (fi gure). This change 
might happen before 10 weeks, when primary 
microcephaly occurs. Disruption of placental signals to 
the developing brain might cause or contribute to 
microcephaly. A model for this type of eff ect has been 
shown in the case of murine herpesvirus, in which the 
fetal eff ects occurred in the absence of the virus.15 The 
investigators off ered an explanation that the placental 
response invoked a change in the profi le of infl ammatory 
markers within fetal organs. Whether the fetus itself 
expressed the infl ammatory molecules, or if these 
molecules were delivered from the placenta, is not 
yet clear.

Primary microcephaly, which appears to be the 
dominant type of microcephaly described in reports from 
Brazil (Marques ETA, unpublished), originates during 
early neurogenesis. The main features are fewer neurons 
at birth, simpler gyral surfaces, and smaller brains.16–19 
Microcephaly has various biological causes; Zika virus 
might be correlated with a specifi c type but evidence to 
defi nitively know is not yet available. Without or prior to 
making contact with the embryo proper, the virus might 
be able to perturb the synthesis or secretion of molecules 
(ie, proteins, neuropeptides, non-coding RNAs, or 
cytokines) within the placental chorionic villi. The 
chorionic villi have greater exposure to maternal blood 
than the early embryo, which is embedded within two 
fl uid sacs and shielded by two membranes from maternal 
(but not placental) circulation. The perturbation in the 
synthesis and secretion of placental molecules by Zika 
virus itself or by some other process as a result of Zika 
virus infection might be a key component of virally 
induced fetal defects. One theory and modest data suggest 
that the placenta synthesises and secretes molecules that 
are essential for normal fetal brain development.20 
Although largely unexplored, evolutionary hypotheses 
might provide a theoretical basis for linking placental 
functions (and dysfunction) to brain development. 

Our group can conceptualise two scenarios that 
support the idea of placental mediation of Zika virus-
induced microcephaly. In one scenario, a general pro-
infl ammatory response of the placenta might be 
disrupting embryonic brain development. This idea 
might unify the diverse maternal exposures linked to 
higher risk of microcephaly (eg, radiation exposure, 
tobacco smoke, cocaine use, cytomegalovirus, alcohol 
con sumption, or α-haemolytic streptococci).21–25 

In another scenario, specifi c molecules or pathways 
synthesised by the early placenta are being disrupted, 
such as the microcephaly genes (ie, MCPH1-12, CEP63, 
and CASC5). Mutations in these genes have been 
causally related to microcephaly.16,18,19 The simultaneous 
under or over expression of these genes in the placenta 
and the fetus (ie, defi cient vs toxic levels of a particular 
protein) might contribute to fetal defects. Even though 
the expression of the microcephaly proteins has been 
characterised as intracellular, their placental analogues 
might be packaged and secreted within placental 
exosomes—an important mechanism for intercellular 
communication.26

Two places should be studied to identify candidate 
molecules in the placental and fetal tissue of Zika virus-
infected pregnancies. The fi rst is the medical literature 
on genetic causes of microcephaly.18,19,27 Are these same 
genes causally related to microcephaly in the case of viral 
infection? If so, how and in which cell type are these 
genes being disrupted as a result of Zika virus infection? 
This fi nding could mean that the placenta, being fetal 
tissue, expresses the same genes but under diff erent 
conditions and for diff erent reasons. Or this fi nding 
could indicate some placental participation in these early 
phases of embryonic or fetal development.

The second is the set of molecules causally related to 
Zika virus transfer across the epidermis.28 The 
trophoblast, like the epidermis, is an epithelial cell type. 
Hence, analogies might exist between genes involved in 
the response of the epidermis (ie, AXL, DDX58, IFIH1, 
and MX1) and the placental response to the virus. Inquiry 
into this area might uncover shared mechanisms for 
receptor-mediated transmission, pattern recognition, 
and interferon stimulation. The chorionic villi are 
considered to be like the skin of the placenta. These villi 
are the primary interface between components of 
maternal blood and fetal circulation.

Discussion
Why does it matter if the apparent teratogenic eff ects of 
Zika virus are placentally or directly mediated? As more 
data are collected, we might fi nd that either or both 
hypotheses prove true depending on the timing of 
exposure and the stage of brain development.

The placental mediation hypothesis holds appeal as we 
can easily and non-invasively measure an early placental 
response, whereas we cannot easily access the embryo. 
The placenta is an eff ective broadcaster of information on 
placental and fetal exposures and developmental 
consequences.29 Secreted placental molecules and vesicles 
can be measured in maternal circulation and used by 
clinicians to diagnose a fetus at risk. Real-time monitoring 
of changes in concentrations of secreted molecules over 
the fi rst trimester, linked to imaging of the morphology of 
the gestational sac, could establish temporality and 
provide clues as to how these relationships shift before 
and after the onset of maternal–placental circulation.
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Similarly, understanding any contribution of placental 
inputs to the teratogenic eff ect might clear the path for 
developing pharmacological methods to block terato-
genesis. In the case of West Nile virus (a mosquito-
transmitted fl avivirus like Zika virus), treatments to 
pharmacologically stimulate autophagy were eff ective in 
reducing the neurotoxic eff ects in non-pregnant 
individuals.30 

While the world awaits the epidemiology and pathology 
of this unique viral infection to help to explain the 
current epidemic in Brazil, now is the time to update our 
thinking and approaches to studying teratology and the 
role of the placenta. Doing so might provide large 
scientifi c rewards for this outbreak as well as future 
similar epidemics. 
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