Lipid Metabolic Network, Mediterranean Diet and Cardiovascular Disease

Daniel Wang, MD, ScD, Postdoctoral Fellow
Department of Nutrition
Harvard T.H. Chan School of Public Health

Lipid metabolites

Partial correlation matrix of 200 targeted lipid metabolites in the sub-cohort in the PREDIMED Trial

Lipidomics

- Lipidomics:
 - Hundreds of thousands
 - Structurally diverse
 - Intact lipid metabolites
- Additional information for CVD risk prediction beyond:
 - Circulating fatty acids
 - Summary lipid markers

Analytical approaches in metabolomics studies

- Analyzing unit: individual metabolite
- A large number of independent statistical tests
- Stringent multiple-comparison correction
- Generally assumes no prior information

Network/pathway analysis

- Analyzing unit: Pathway
- Consider interactions and dependences in pathways
- Relax multiple-testing burden
- Consider prior biological knowledge

Usefulness of network/pathway analysis

- Network/pathway analysis:
 - Pathway network building
 - Dimensionality reduction
 - Metabolic pathway detection
 - Utilize pathway topological information in regression model

Step 1: Global network construction

Size of vertex: Proportion to -log (P-value) of hazard ratio of CVD

Square vertex: HR <1.00 Circle vertex: HR ≥1.00

Step 2: Major subnetwork detection

Step 3: Network-based regression

- Subnetwork score= $\sum_{n} W_i X_i$
 - X_i: Concentration of lipid metabolite
 - W_{ij}: Network topology structure weight
- Upweight hub metabolites
- Downweight non-hub metabolites
- Include subnetwork scores as exposures into regression model

Major subnetworks and CVD

Cox model stratified on intervention group and included age, sex, BMI, family Hx of CHD, smoking, HTN, DM, dyslipidemia & all 4 subnetwork scores

MedDiet and subnetwork

2 intervention groups combined

HR per 1-SD subnetwork score

Step 4: Metabolic pathway detection

- Further removed paths:
 FDR adjustment
- Repeat Greedy
 Optimization algorithm
- Pathways:
 - Small-scope
 - Lipid metabolites closely connected within pathways
 - Potential biological functions

Metabolic pathways and CVD

Metabolic pathways and CVD

Interaction between MedDiet & ceramide pathway

- Mediterranean diet modified the deleterious effects of ceramide accumulation
- P for interaction=0.01

Adjusted cumulative incidence estimates according to joint groups defined by intervention group and ceramide score level

Summaries & Conclusions

- 4 major subnetworks & 10 metabolic pathways were detected based on the topological structure
- Degree of unsaturation is major driving force underlying the network general architecture
- Divergent associations of the major subnetworks/metabolic pathways with CVD risk
- Novel pathways:
 - HPC pathway
 - Pathway including DAGs & MAG with 18:0
 - Ceramide pathway
- MedDiet intervention could potentially modify association between lipid pathways and CVD risk

Acknowledgement

- Colleagues and PREDIMED Metabolomics Investigators:
 - Yan Zheng, Estefanía Toledo, Cristina Razquin, Miguel Ruiz-Canela López, Marta Guasch-Ferré, Edward Yu, Dolores Corella, Enrique Gómez-Gracia, Fiol M, Ramón Estruch, Emilio Ros, José Lapetra, Montserrat Fito, Fernando Aros, Lluis Serra-Majem, Clary B. Clish, Liming Liang, Jordi Salas-Salvadó, Miguel A. Martínez-González

Thank You!

