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a b s t r a c t 

We present experimental data of the motion of a cylindrical slider interacting only by friction with a 

polished horizontal tray. The tray is harmonically shacked in the horizontal direction. Below a certain 

threshold of the driver acceleration, the slider permanently sticks to its substrate due to the static fric- 

tion. Above that threshold, the observed slider dynamics is periodic (synchronous with the driver oscil- 

lation frequency) but not wholly harmonic: for driver accelerations little beyond the threshold, the slider 

velocity signal is quasi-triangular. A Markovian model shows that, with increasing driver acceleration, the 

slider motion increasingly tends to be harmonic again, though with a prominent phase difference respect 

to the driver. 

© 2019 Elsevier Ltd. All rights reserved. 

1

 

L  

l  

T  

o  

C  

a  

g  

i  

s  

m  

d  

t

 

t  

m  

q  

u  

a  

w  

t  

t  

p  

s  

T  

t  

i  

o

 

m  

n  

l  

t  

m  

r  

z  

r  

a  

s  

t  

t  

s  

d  

M  

l  

e  

w  

t  

h  

d  

h

0

. Introduction 

The established laws of sliding friction were discovered by

eonardo da Vinci in 1493, a pioneer in tribology, but the corre-

ations documented in his notebooks were not ever published [1] .

hose ideas became only recently knew as being identical to those

f Guillaume Amontons publish in 1699 [2] , and that laws that

oulomb published in 1821 [3] . In 1750 Leonhard Euler derived the

ngle of repose of a weight on an inclined plane and first distin-

uished between static and dynamic friction. Ever since increas-

ngly sophisticated models of friction have been published, each

uccessful for the particular domain where they are applied. Today

any tribologists believe that long-range attractive isotropic Van

er Waals forces cause dynamic friction, and shorter-range attrac-

ive anisotropic Van der Waals forces, static friction [4] . 

Despite the microscopic peculiarities of solid-solid surface in-

eraction, the complex dynamics observed in a large variety of

echanical devices can be retrieved from just a few macroscopic

uantities. The dynamic effects include stick-slip transitions, reg-

lar and chaotic self-oscillations, as they were discussed by Popp

nd Stelter in 1990 [5] . After their seminal paper a large number of

orks have been devoted to understanding the interplay between

he static and dynamic friction coefficients, μstat and μdyn respec-

ively, on the resulting dynamics of excited frictional systems [6] . A

ossibly superfluous effect to mention is that the response of the

lider changes from period to period. No two periods are identical.
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his is solid experimental proof that, whatever the interplay be-

ween the two friction coefficients, it cannot be possibly determin-

stic on the mesoscopic scale. Hence, theoretical friction modeling

f dry surfaces must necessarily be of a probabilistic kind. 

Fig. 1 a summarizes some of the most common deterministic

odels representing frictional interaction. In the sketch, the mag-

itude of friction force F f is represented against the relative ve-

ocity between the moving objects, v . The four models are all de-

erministic. The piecewise line represents the standard Coulombic

odel: the friction force starts out at zero, and instantaneously

ises to the dynamic friction level, with a delta function at time

ero. The red line represents the smooth friction interaction, and

ises linearly in time until it intersects, upon exiting the grey

rea, the dynamic force level. The blue curve represents Bensons

tatic model: it starts out at zero, too, jumps instantaneously to

he static force level F stat = μstat Mg, and relaxes exponentially to

he dynamic force level F dyn = μdyn Mg, where M stands for the

liders mass. Finally, the green curve represents Bensons velocity-

ependent friction model (see [7] for a more detailed explanation).

ore sophisticated approaches have been developed to include a

arge variety of parameters, like humidity, temperature, and what-

ver macroscopic experimental-physical quantity [8] . The function

e use in our work offers the same options. It is not depicted in

he schematic because it is a fundamentally different function: it

as two arguments instead of one. The second argument is the

rivers harmonic phase: as we use setup (c), an inert mass is har-

onically shaken in a horizontal direction. In the laboratory frame,

he force function is the linear extrapolation of Bensons velocity-

ependent function, until the line hits the static force; its phase

s zero throughout, meaning that the slider is like glued to the

https://doi.org/10.1016/j.chaos.2018.12.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.12.028&domain=pdf
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Fig. 1. Commonly used models of dry friction and experimental setups: (a) Dry friction models, described in more detail below; (b) Typical experimental setup used to 

measure the dynamic friction coefficient. (c) Sketch of the experimental setups introduced in this work. Note that the slider moves freely, only under the action of alternating 

frictional force. 
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moving substrate. For higher velocities, the force reduces to the

dynamic force level, though with an increasing phase delay with

respect to the driver. At these higher driver velocities, the friction

force performs a Markovian random walk, such that the sliders ve-

locity always finds itself between two extremes which we -ad hoc-

coin attractor curves. The zero phase straight line to the static force

level is the low-velocity attractor, and a second curve from the

static force level back to the dynamic force level (joining at infinite

velocities) is the other. For high enough accelerations, the friction

force coincides with the second attractor. The “gray region” marks

the velocity region where the models differ most. Our model dif-

fers from all other models in the Markovian aspect: only the two

predetermined attractors (magnitude and phase) can be depicted,

not the actual friction force. 

Apart from the peculiar nature of the (inherently probabilistic)

model, the experimental approach is peculiar, too. One of the rea-

sons is that many of the used experimental setups are inspired by

the industrial or applied process, like the effects of a cutting ma-

chine on a rotating piece or the induced chord self-vibrations by

a violin bow. The canonical example of this type of devices re-

gards the observed dynamics in the experiment sketched in Fig. 1 b,

where the competition between a controlled external force and the

induced frictional interaction of the contact surfaces [9] results in

complex, even random, movements. 

The probabilistic element regarding this randomness is not

of fundamental kind, like quantum indeterminacy, but rather of
Fig. 2. Experimental devices: (a) Experimental setup used to analyze the slider dynamic

distinguish both slider and tray reference (see text for details). (c) Upper image and cut v
he many-particle kind in Boltzmann classical thermodynamics: it

rades in useless, 6N (positions and velocities of N particles at

ll times) knowledge of a single deterministic system for a few

hermodynamic potentials and their arguments valid for infinite-

nsemble averages. In a future experiment, we hope to be able

o take up Feynman’s challenge, who claimed, “with dry metals it

s very hard to show any difference” (between the friction coeffi-

ients) [10] . 

In this work, we introduce an elemental experimental setup,

eveloped to analyze the dynamics of a dry slider-substrate system

xcited only by frictional forces. Instead of applying a continuous

xcitation like the one introduced in Fig. 1 b, we apply a harmonic

orce to an entirely free mass that moves only under the action of

riction and inertia, Fig. 1 c. Then, the relative positions of driver

nd slider are analyzed and the origin of the slider dynamics is

iscussed. 

. Experimental setup 

The apparatus used to perform the experiments is presented

n Fig. 2 . The setup consists of a horizontal tray (carefully lev-

led at ± 0.001 rad) with a bottom of uncoated glass flat windows

Edmund Scientific 102 × 152 × 2.4 mm). The photograph region

orresponds to a rectangular area of 80 × 40 mm. The tray is

irectly fastened to an electromechanical shaker (Tira TV52120),

hich defines the longitudinal axis, x off the setup. The perpen-
s. (b) A more simple and compact version of the same setup where its possible to 

iew of the slider. 
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Fig. 3. Harmonic regime: (a) Temporal evolution of the tray (red dots) and the slider (blue dots) for v d ω < μstat g frame-lab referenced. The slider is permanently stuck to 

the substrate. Continuous lines are the harmonic fits of the experimental points. (b) Spatio-temporal evolution of the slider decelerating on a substrate at rest (continuous 

line). Two fits (dotted lines) differing four part in thousands are included to highlight the strong influence on the arrest dynamics of the dynamical friction coefficient. The 

inset is included to highlight the fit sensitivity to the μdyn small variation. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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icular axis ( y ) in the horizontal plane is called transverse, and

he out-of plane axis the vertical, z . Non-longitudinal displacements

re minimized due to a couple of bearing guides placed at both

ide of the tray. The shaker is driven by a signal generator (Keith-

ey 33220A) yielding high quality sinusoidal oscillations. A 3D-

iezoelectric accelerometer, connected to the tray, measures the

hree axis accelerations. The slider is a rimmed, aluminum cylin-

er of 1 cm height, and 2.5 cm diameter ( Fig. 2 c). The mass of the

lider is 21.19 ± 0.01 g. The rim at the cylinders bottom is carefully

olished using high-grade paper sheets and polish liquid. 

The drivers reference consists of a small-radius cylinder (with

he same 1 cm height as the slider) glued onto the substrate and

ith a fluorescent disk on top of it. A homogeneous and incoher-

nt light source allows for a zenithal high-speed camera (FASTCAM

ini UX100 - Photron) to record the positions of both slider and

ubstrate in a single shot. The centroid of the photographed disks

s calculated using an in-house developed image toolbox. The spa-

ial resolution is as small as 80 μm corresponding to the pixel size

n the horizontal plane. Higher spatial resolution is possible at the

ost of a lower temporal resolution. 

The control parameter is the maximum tray acceleration, v d ω,

ith v d the drivers velocity amplitude, and ω the drivers oscilla-

ion frequency. In order to explore a wide range of amplitudes with

 minimum of shaker-induced noise, 20 Hz turned out to be the

ptimum driving frequency. Fig. 3 a shows that, for v d ω < μstat g ,

he slider is permanently stuck to the substrate. Beyond a certain

hreshold, the sticking process becomes a short-lived phenomenon.

t only happens when the velocities of the slider and substrate are

dentical along a certain fraction of the oscillation period. For this

eason, the drivers harmonic velocity will be considered the “at-

ractive solution” of the sliders dynamics in the next paragraphs. 

. Experimental results 

.1. Uniform decelerating regime 

Fig. 3 a shows the slider moves jointly with the tray for smalls

ray velocities. These dynamics occur when the tray acceleration

s smaller than a certain threshold imposed by the static friction

oefficient, μstat . In order to estimate the magnitude of the static

nd dynamics friction coefficients we first explore the uniform de-

elerating regime just by kicking the slider on the tray at rest,

ig. 3 b. The measured trajectory is displayed by the continuous

urve whereas dotted curves are numerical fits assuming a stick-

ree trajectory. Both fits differ only in four-part in one thousand
ighlighting the sensitivity of this magnitude on the transition

hreshold to the stuck position. Thus, the second time derivative

f the experimental data yields a good estimation of the dynamic

riction coefficient, μdyn = 0 . 32 ± 0 . 01 . However, despite the high

patiotemporal resolution reached by our experimental setup, the

ethod is not able to give an objective approximation of μstat . 

.2. Harmonic frictional perturbation 

We have just seen that, for v d ω < μstat g , the slider is perma-

ently stuck to the substrate ( Fig. 3 a). Upon gently increasing the

scillation amplitude, a smooth transition to a sliding regime could

e expected. Yet, such a smooth transition does not exist. Instead,

hen the tray acceleration approaches to certain critical value, the

lider starts to move at an unpredictable driver amplitude. Once it

oves, it moves quasi-harmonically, out of phase with the driver

s is displayed in Fig. 4 . Quite notably, from the critical accelera-

ion value upward, the sliders amplitude of motion does not in-

rease smoothly from zero upwards, but it sets in at a non-zero

alue, proportional to the difference in friction coefficients. 

The non-harmonicity of the slider motion is better visible in its

elocity than in its position. An average over 18 periods reduces

he noise. A further noise-reduction step was applied by passing

he slider velocity through a lowpass filter with small bandwidth.

s expected, the substrate velocity remains a pure harmonic, with

mplitude v d . Instead, the slider velocity is closer to a triangle with

 slightly lower amplitude (see Fig. 7 b). 

. Linear kernel convolution based on momentum transfer 

In order to understand the origin of the slider kinematic fea-

ures we implement an approach based on elemental kinematic

ssumptions. As the sliders velocity results from a continuously

hanging force operating on it, we assume that the slider dynam-

cs is given by the convolution of the drivers speed with specific

liders deceleration kernel, K slider ( t ). Such kernel is equal to the

liders linearly decreasing velocity on a steady substrate divided

y its integral. The kernel has inverse time units by definition. As

he convolution integral is over time, the convolution has the same

nits as the drivers velocity. Hence, the sliders harmonic velocity

esponse reads: 

 harmonic (t) = 

∫ ∞ 

ds K slider (s ) v dri v er (t − s ) (1) 

−∞ 
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Fig. 4. Slider dynamics: (a) Detrended coordinates of the tray (red dots) and slider (blue dot) beyond the sliding threshold. (b) A single period of tray oscillation is zoomed 

and compared with the slider displacement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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with the kernel K slider defined as 

K slider (t) ≡ v deceleration (t) ∣∣∫ ∞ 

−∞ 

ds v deceleration (s ) 
∣∣ (2)

Whatever the functional form of the Kernel, the sliders velocity

response is always a harmonic signal, because the driver is har-

monic. Hence, a convolution can describe the second attractor (the

first one being the drivers velocity). To state the same in negative

term: a convolution with a harmonic driver can never describe a

non-harmonic signal. Yet our measured response data are clearly

not harmonic. The physical reason of the convolutions failure to

reproduce the slider dynamics close to the critical driver acceler-

ation (where it equals μstat g ) is that the convolution ignores the

role of the static friction coefficient, which controls, in fact, the

transition between the stuck and stick-free dynamics, correspond-

ing to the first and second attractor, respectively. None of the clas-

sical friction models, sketched in Fig. 1 a, incorporates the experi-

mentally obvious indeterminism inherent in the slider velocity, and

none of them considers the slider motion as a competition be-

tween two harmonic attractors. In this sense the here presented

approach breaks with the known standards. 

The simplest model assumes a constant deceleration, whence a

linearly decreasing deceleration velocity as a function of time. Con-

sequently, the Kernel can be written as a function of one parameter

only, the time during which the past forces have been operating on

the slider, t mx : 

K slider (t| t mx ) = 

2 

t mx 

(
1 − t 

t mx 

)
θ (t) θ (t mx − t) (3)
Fig. 5. Sliding regime: (a) Phase difference and velocity ratio, (b), between tray and slider

between v s 
v d 

(red arrows) provides a good estimation of t mx as is possible to check from 

(For interpretation of the references to color in this figure legend, the reader is referred t
The Heaviside function is defined as usual: θ (t) =
1 for t ≥ 0 

0 for t < 0 

}
, and the kernel satisfies the normalization condi-

ion: 
 ∞ 

−∞ 

dt K kick (t| t mx ) = 1 (4)

This property of the kernel, combined with its finite duration

 mx implies that when t mx → 0, the kernel turns into a delta func-

ion. In that limit, the convolution response of the slider falls on

op of the driver: the slider is “permanently stuck” to the substrate.

he predicted “stick-free” velocity, v sf is obtained from the expres-

ion: 

 s f (t| t mx ) = 

2 

t mx 

∫ t mx 

0 

ds (1 − s 

t mx 
) v d cos ω 0 (t − s ) 

= 

2 v d 
(ω 0 t mx ) 2 

A s cos (ω 0 t − �φ) (5)

ith the definitions: 
 

A s ≡
√ 

A 

2 
a + A 

2 
b 

tan �φ ≡ A b 

A a 

} {
A a ≡ 1 − cos ω 0 t mx 

A b ≡ ω 0 t mx − sin ω 0 t mx 

}
(6)

Accordingly, the resulting slider maximum velocity and phase-

elay against the tray signal can be predicted using an ordinary

armonic convolution, i.e. by plotting Eq. (6) as a function of the

ight time t mx . Fig. 5 b represents the slider’s amplitude divided

y the driver’s: it is always below unity due to energy conserva-

ion. Fig. 5 a shows the phase delay of the slider with respect to
 obtained from the linear kernel convolution procedure. Insets: the measured ratio 

the expected phase difference determined in the inset of (a) (see text for details). 

o the web version of this article.) 
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Fig. 6. Smoothed experimental results: The complete temporal signal displacements of tray, (a), and slider, (b), have been collapsed into a single period to obtain smoothed 

signals where the phase difference, ��, can be obtained (c). 
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he driver. Note that when the t mx becomes larger than the oscilla-

ion time, T , the slider velocity tends to zero as is expected when

he friction tends to disappear. As the time t mx could be estimated

rom the phase-shift between tray and slider position signals (see

ig. 6 c) we can use this magnitude to calculate the slider to tray

elocity ratio, v s / v d as is sketched by the arrows in the insets of

ig. 5 . Finally, the relation μdyn gt mx = | v d | allows for straightfor-

ard determination of t mx from the data, as the dynamic friction

oefficient and the driver amplitude are both known. 

. Discrete-Markovian walk model 

Fig. 7 illustrates the gist of our model results. Fig. 7 a shows only

dealized data: the two harmonic attractor curves, corresponding

o the static and dynamical solution of the convolution proce-

ure, and the velocity signal calculated from the Markovian model.

ig. 7 b shows only measured data: the driver and slider velocities

veraged over heighten periods and finally, Fig. 7 c shows a com-

arison of the measured and calculated slider velocities using the

arkovian model. The latter will be explained in detail below. 

Inspired in previous works that take into account the random

haracter of the frictional interaction [11,12] , we speculate that the

river velocity and the convolution solution act as competing at-

ractors for the sliders dynamics. 

The model needs to have the following limiting characteristics.

henever the sliders and drivers velocities and accelerations are

lose enough, the slider should stick to the driver, and follow the

rst attractor. On the other hand, whenever the sliders and drivers

elocities and accelerations are distant enough, the slider should

ollow the second, or stick-free attractor. 

The basic idea of the Markovian propagation is to calculate the

elocity of the slider from its previous velocity by means of a ran-

om generator. Here, the adjective previous refers to the temporal
ig. 7. Markovian model results: (a) Tray velocity and the linearly predicted slider veloc

he same magnitudes calculated from the experimental data. (c) Experimental slider veloc

eferences to color in this figure legend, the reader is referred to the web version of this 
iscretization. We implement the randomness by defining a prob-

bility for the slider to move toward one attractor or the other,

epending on whether the fraction of friction parameters is larger

r smaller than that random number. For this reason, every sin-

le run of the code over one driver period gives slightly different

esults. 

The propagation of the Markovian model makes use of three

ypical discrete functions: 

1. the function “rnd[arg]”, which rounds off its real argument to

the nearest integer; 

2. the function “ran”, which yields a random number between

zero and one; 

3. the function “sgn[arg]”, which yields the values -1 or +1 de-

pending on the sign of its argument. 

These functions are crucial because, in discretizing the veloc-

ty to natural numbers n j , the scaled velocity difference �n j ≡
 j+1 − n j should be a natural number, too. Apart from the ran-

om velocity numbers n j , we also need to define the two attrac-

ors, which are fixed harmonics: the first (stuck to the driver) at-

ractor is represented by the discretized velocity number n dr 
j+1 

, and

he second (stick-free) attractor by the velocity number n 
s f 
j+1 

. In

erms of the above functions, the Markovian velocity propagator

eads 

n j ≡ θ [ χ − ran ] sgn [ n 

dr 
j+1 − n j ] 

+ rnd [ χ ] θ [ ran − χ ] sgn [ n 

s f 
j+1 

− n j ] (7) 

here χ is a function of χμ ≡ �μ
μstat 

and χacc ≡ v d ω 
g . The former

s a measure for the ratio of the friction coefficients, and the lat-

er for the amplitude of the driver acceleration; and we also in-

roduced the friction difference �μ ≡ μstat − μdyn . In the most

imple of cases, χ is their direct product function: χ = χμχacc .
ity. The green symbol corresponds to the prediction of the Markovian model. (b) 

ity and the velocity obtained from the Markovian model. (For interpretation of the 

article.) 
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The physical interpretation of this product χ is a threshold of

likelihood to follow either of the attractor curves. It has the fol-

lowing properties: in the limit of vanishing χ the sliders velocity

always coincides with the first attractor, no matter what value the

random generator provides. In case χ > 1, the sliders velocity al-

ways coincides with the second attractor, no matter what value the

random generator provides. The critical parameters in determining

what attractor to follow, just happen to be these two arguments

χμ and χ acc . Indeed, for zero acceleration, χ acc vanishes, and the

sliders velocity always coincides with the first attractor. Likewise,

for infinite acceleration, χ acc diverges, and the sliders velocity al-

ways coincides with the second attractor. An analogous require-

ment holds for the friction coefficients: for infinite static or vanish-

ing dynamic coefficients, sliders velocity always coincides with the

first attractor, while for equal friction coefficients there is no static

coefficient effect, whence sliders velocity always coincides with the

second attractor. The two Heaviside theta-functions of Eq. (7) grant

the correct output of the algorithm. 

As the velocity decays linearly with the dynamic friction coef-

ficient, its decay to the equilibrium value should occur according

to v deceleration = v d − μdyn gt . When we use δt Markov as the discrete

Markovian time step, and δv Markov as the discrete Markovian ve-

locity step, the velocity-time aspect ratio remains unchanged upon

requiring that δv Markov ≡μdyn g δt Markov . Then, the velocity jump is

unity in the case of the first attractor, and a fraction rnd [ μdyn / μstat ]

smaller for the second attractor. Setting this ratio to unity (as it is

in most experimental cases) does not lose the crucial information

on the value of �μ, as it is numerically hardwired into χ . 

In order not to confuse the reader, we did not yet comment on

the exact value of t mx we used to calculate the second attractor.

Had we used the value prescribed by its definition μdyn gt mx = | v d | ,
the phase delay of the second attractor would be one third the

value we have used in our simulations. 

6. Conclusion 

We present experimental data of the motion of a macro-

scopic piece moving freely under the frictional interaction with

a harmonically oscillating horizontal substrate. We observed that,

despite plenty of uncontrolled parameters like the local heating

due to friction, the existence of uncontrolled dust on the tray or a

not perfectly polished slider surface, the dynamics displayed by the

slider is periodic with a well-defined amplitude and phase delay
gainst the driving signal. The threshold acceleration, where the

lider starts to move, is well defined and the resulting dynamics

ave the same periodicity. The transition between the stuck to the

tick-free regime is discontinuous; all our experiments point to-

ards a critical acceleration below which the slider is permanently

tuck to the substrate. From the kinematic approach introduced to

redict the sliders velocity, we deduce that –at least slightly be-

ond threshold– static friction operates via stick-and-loose stochas-

ic process, which depends on slider’s relative velocity and accel-

ration. This fact inspired the introduction of a Markovian process

o model the competition between two attractor solutions. Under

his simple assumption, the slider velocity can be very well pre-

icted. Moreover, the authors are confident that the same model

pplies to all possible driver accelerations, as the model is built

n such a way as to reproduce the correct extreme acceleration

ases. 
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