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Flow of colloidal suspensions through small orifices
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In this work, we numerically study a dense colloidal suspension flowing through a small outlet driven by
a pressure drop using lattice-Boltzmann methods. This system shows intermittent flow regimes that precede
clogging events. Several pieces of evidence suggest that the temperature controls the dynamic state of the system
when the driving force and the aperture size are fixed. When the temperature is low, the suspension’s flow can
be interrupted during long time periods, which can be even two orders of magnitude larger than the system’s
characteristic time (Stokes). We also find that strong thermal noise does not allow the formation of stable aggregate
structures avoiding extreme clogging events, but, at the same time, it randomizes the particle trajectories and
disturbs the advective particle flow through the aperture. Moreover, examining the particle velocity statistics, we
obtain that in the plane normal to the pressure drop the colloids always move as free particles regardless of the
temperature value. In the pressure drop direction, at high temperature the colloids experience a simple balance
between advective and diffusive transport, but at low temperature the nature of the flow is much more complex,
correlating with the occurrence of very long clogging events.
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I. INTRODUCTION

Colloidal suspensions are dispersions of solid particles or
droplets embedded in a liquid with different density [1]. They
are very common in nature [2], as well as in technological ap-
plications [3,4]. Thus, it is a significant technological challenge
to quantify and predict their permeability through membranes
and rheological response in confined geometries [1].

Ten years ago, clogging events were detected experimen-
tally in a colloidal suspension passing through small apertures
[5–7]. These authors measured macroscopic variables such as
the filtrate flux, the pressure drop, and changes in the volume
fraction [5–7]. More importantly, the direct visualization of
microparticles or drops has made it possible to obtain a
detailed description of the clogs. For instance, in Ref. [8] the
clogging of suspensions of monodisperse polystyrene beads
in single-pore microchannels was investigated in detail. In that
length scale, it was found that clogging occurs regardless of the
volumetric flow rate and the suspension’s volume fraction [8].
Nevertheless, again at the level of a single pore, Dersoir et al.
[9] recently identified two clogging regimes depending on the
applied pressure. At low pressure, the clogging time seems to
be constant. For higher pressure drops, however, the duration
of the clogs depends on the pressure drop. Here, it is important
to mention that Sharp and Adrian [10] also observed arching of
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polystyrene particles in microchannels, at a very low volume
fraction (0.5–0.6 %). Explaining their outcomes, they assumed
a simple balance between hydrodynamic and contact frictional
forces and a weak impact of the surface attraction.

On the other hand, Hong and co-workers [11] investigated
experimentally the flow of a quasi-two-dimensional emulsion
through a constricting hopper shape. As a result, they found
that the suspension flow changes its nature depending on the
volumetric flow rate. At low flow rates, the droplets exit the
hopper via intermittent avalanches, while at high flow rates the
droplets exit continuously. Moreover, the same group studied
experimentally the flow of oil-in-water emulsion droplets
through a quasi-two-dimensional hopper [11], obtaining that
clogging is only produced with a very narrow hopper opening.
Those results contrast with previous studies with frictional
disks, where arch formation and clogging were detected with
significantly larger hopper openings [12–15]. In this regard,
upon exploring low-adherence regimes in microfluidic de-
vices, the authors of [16–18] determined that non-Brownian
polystyrene particles behaved very similar to dry granular sys-
tems when flowing through very small orifices. Additionally,
it is worth mentioning that recent experimental works have
shown that the rheological responses of colloids and emulsions
are very sensitive to the confining conditions [19–22].

Some theoretical and numerical efforts have been made in
the field of colloid release and clogging [23–30]. For instance,
recently Agbangla et al. [26] analyzed numerically the collec-
tive hydrodynamic and colloidal effects of microparticles mov-
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ing through a pore. They found very stable clogged structures
induced by strong particle-particle interaction and particle-
wall adhesion, which prevents rearrangements of particles
within an aggregate and enhances clog stability. Moreover,
very detailed theoretical analyses have recently enabled us to
describe clog formation [25–30]. Thus, it is currently accepted
that the clogging process is mainly ruled by the driven force
acting on the particles, long-range hydrodynamic interactions,
and the nature of the particle-particle and particle-wall inter-
actions [23–30].

It is a fact that in colloidal suspensions, both rheological
properties and equilibrium phase behavior are very sensitive to
changes in temperature. Moreover, flow-stopping blockages
in colloidal suspensions are usually controlled by local
mechanisms that determine how the aggregate of particles
grow and stick to the confining surface. The question is
whether those local mechanisms are affected by thermal
noise. For instance, it was recently found experimentally that
high-frequency and low-amplitude perturbation perpendicular
to the shearing direction can unjam flow-induced structures
[31]. In our work, we examine numerically the role of thermal
fluctuations on colloidal suspensions when flowing through
a small orifice, driven by a pressure drop. We find that
the thermal fluctuations have a significant influence on the
stability of the clogs. The paper is organized as follows: in
Sec. II we briefly describe the numerical model. In Sec. III we
discuss the numerical results of the particle dynamics crossing
the orifice and the statistics of clogging events. Finally, we
provide our conclusions and an outlook.

II. NUMERICAL MODEL

We examine colloidal suspensions composed of spherical
particles of radius R embedded in a liquid. The fluid is modeled
using a lattice Boltzmann approach (LB), which resembles the
solution of the Navier-Stokes equations at large time scales
[32]. At each lattice node, the liquid is defined by a distribution
function f (�r,t) that evolves in discrete time steps as

fi(�r + �ci�t ; t + �t) = fi(�r; t) + �ij

[
f

eq
j (�r; t) − fj (�r; t)

]
.

(1)

This evolution rule accounts for the linear momentum stream-
ing to the neighboring nodes j due to the liquid advection
motion of velocity �ci . Moreover, a collision operator �ij

controls the relaxation process toward an equilibrium state,
characterized by f

eq
j (�r; t). Here we use Ludwig, an implemen-

tation of the lattice Boltzmann method adapted to the study of
complex fluids, and which puts into effect a multirelaxation
implementation of the collision operator �ij [33]. The system
geometry is a three-dimensional (3D) cubic lattice with 19
allowed velocities �ci known as a D3Q19 scheme [32]. We use
units such that the mass of the nodes, the lattice spacing, and
the time step are 1 and the kinematic viscosity is ν.

Thermal fluctuations are included in the lattice Boltzmann
model adding an additional noise term to the left of Eq. (1),
ξi . This additional contribution introduces fluctuations in the
populations in each phase-space cell. The stochastic properties
of this term are chosen to ensure that the fluctuation-dissipation
theorem in equilibrium is satisfied. Toward that end, the

amplitudes of the random sources are linked to the properties of
the sources of dissipation of the collision operator. This choice
ensures that mass and momentum conservation are preserved
by this noise contribution, and that equipartition is satisfied
in equilibrium, which guarantees that in the absence of any
forcing, the suspension reaches thermal equilibrium [34,35].

The colloids are modeled defining solid particles of radius
R, which interact with the surrounding fluid through bounce-
back links. Hence, the total force and torque acting on a
solid particle are determined using the mechanical constraint,
which is given by the momentum exchange between the
solid particle and the surrounding fluid nodes. Additionally,
a contact interaction between the colloids was also used. For
the sake of simplicity, we have assumed that the interaction
between two solid particles is defined by the potential,

vss(r) = ε

(
σ

r

)νo

, (2)

where ε accounts for the strength of the interaction, σ is the
length scale, and ν0 characterizes the range of particle-particle
interaction. The numerical implementation of the interaction
potential Eq. (2) ensures that colloids do not overlap at the
hard-core radiusR when introducing a so-called hydrodynamic
radius Rh [36]. In general, simulating multiparticle suspension,
all distance calculations are based on the hydrodynamic radius
Rh, and to obtain accurate results it is then essential to use
a calibrated value [37], which is typically larger than the
physical radius R. Thus, we have used ε = 0.04, σ = 1.0,
ν0 = 1.0, R = 4.8, and Rh = 5 (in lattice units), which ensure
that colloids do not overlap (�r > 0.2) in the studied stress
conditions [38,39].

In our numerical experiment, the colloidal suspension is
confined between two parallel solid walls that have a circular
orifice of modifiable radius W . Thus, the interaction with
the wall is suppressed in the orifice region, which allows the
suspension to flow through it (in the y direction). Moreover,
while the colloidal particles are passing through the orifice,
they interact with an imaginary colloid with radius R, which
replicates the aperture boundary. In the other two directions (x
and z), the system is periodic.

The system size is 44 nodes wide in the transverse direction
and 88 nodes wide in the direction perpendicular to the solid
walls. A total of 128 colloidal particles are initially randomly
distributed, corresponding to an average volume fraction φ =
0.4. The fluid is subject to a uniform force perpendicular
to the walls, mimicking a pressure-driven flow that pushes
the colloidal particles through the opening. Thus, a constant
pressure gradient �p

L
is applied in a direction normal to the

walls. This forcing induces the accumulation of the colloidal
particles in the neighborhood of the orifice. However, long
simulations are required to sample appropriately the statistics
of clogging events. Toward that end, in each simulation the
colloidal particles are allowed to cross the system size several
times. After crossing the aperture region at y = 88 in lattice
units, the particles reenter at the same x and z position at which
they exited but with y equal to y − 88 in lattice units [see
Fig. 1(a)]. We typically run T = 108 time steps. However, in
some cases the particle flow is interrupted indefinitely. The
simulation are executed several times to gather statistics of at
least 105 colloidal particles passing through the orifice.
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FIG. 1. Part (a) illustrates the simulation box of 3D colloidal
suspensions passing through a small circular orifice. Parts (c) (lateral
view) and (b) (top view) show a clog as observed in the simulations.

In the present study, attention is focused on the influence of
the temperature. An outlet size of radius W = 1.7 × R and a
pressure drop of �p

L
= 5 × 10−5 are fixed. The fluid parameters

are chosen to ensure a low Reynolds number Re = UcR/ν,
which can be estimated using the particle radius R, the fluid
kinematic viscosity ν = 0.5, and the system characteristic
velocity Uc = W 2

4ν

�p

L
. In the following sections, the values of

kBT are given in terms of the colloid’s characteristic kinetic

energy Ec = mU 2
c

2 , where m is the mass of the colloid. In all
cases, the Reynolds number Re results smaller than 0.02.

III. RESULTS AND DISCUSSION

Initially, the colloidal particles are randomly distributed in
the space domain, and the pressure drop induces a flow. As
time passes, particles flow continuously through the orifice,
experiencing a driven motion in the y direction while moving
diffusively in the x and z directions [see Fig. 1(a)]. Further-
more, the interaction with the orifice edge induces flow-rate
fluctuations, and, eventually, clogging events are detected. In
Figs. 1(c) (lateral view) and 1(b) (top view), we illustrate a
vault that is typically formed at the orifice perturbing the global
flow. In general, both the structure formed and its stability
are nontrivial, and they depend on the pressure gradient, the
temperature, and the orifice size.

The simulations show that temperature plays an important
role in the stability of large macroscopic clogging events at
the orifice. Figure 2 illustrates the time-series data of clogging
times �t detected during the flowing processes. For compari-
son, results corresponding to three different temperatures T are
displayed. Additionally, in each case we estimated the values
of the Peclet number, defined as the ratio between the mean
advective Sadv and diffusive Sdiff displacements of the particle

in the unit of LB time, yielding Pe = Sadv
Sdiff

= Uc√
D

=
√

6πνR
kBT

Uc.

The clogging time �t is defined as the time lapse between
the passing of two consecutive particles through the orifice.
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FIG. 2. Time-series data of clogging times �t during the flowing
process rescaled with the characteristic time td . Data correspond to
temperatures: (a) T = 0, (b) T = 0.26Ec below, and (c) T = 0.50Ec

above the clogging transition.

Besides that, n represents the index of the crossing particle.
Note that the values of �t are normalized with the character-
istic time td , in which the colloid moves the length of its own
diameter, driven by the pressure drop without interacting with
the orifice and with other particles. This value is estimated
as td = 2R

Uc
≈ 5 × 103. Thus, from Fig. 2 one can conclude

that even though the pressure gradient continually drives the
colloids to move through the aperture, the formation of particle
structures is frequently detected. When T = 0 [see Fig. 2(a)],
particle aggregates totally block the orifice just after a few
particles have passed through it, and consequently the particle
flow is interrupted indefinitely. Note that, for practical reasons,
we have defined an infinite clogging time when �t > 200td =
1 000 000 steps. When introducing thermal fluctuations, how-
ever, the formation of stable aggregate structures is less likely,
delaying the occurrence of events with infinite clogging time
[see Figs. 2(b) and 2(c)]. Note that for the case of very strong
thermal fluctuations [see Fig. 2(c)], permanent particle flow
interruptions are not detected.

One can gain insight into the colloid-current fluctuations by
examining the burst size s = �n, i.e., the number of colloids
crossing the orifice between two macroscopic clogging events.
However, it is arbitrary in principle to define the size of a macro-
scopic clogging event �tc. For a better view and discussion,
we have defined �tc in terms of the characteristic time td . In
Fig. 3, the probability density distributions D(s) are illustrated.
For comparison, we illustrate the burst statistics using two
different definitions �tc = td and 4td . Note that in both cases
the data are in agreement with an exponential behavior, which
suggests that the probability of clogging is constant during the
burst. Notably, similar results were observed in very different
scenarios when exploring pedestrians [40] and flocks [41]
passing through a narrow door.

In Fig. 4 we study the evolution of the mean burst size 〈s〉
with �tc. As is expected, in all cases 〈s〉 grows monotonously
with �tc. For �tc ≥ 5td , we found that the increase of 〈s〉 is
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FIG. 3. Probability density distributions of the burst size. For the
definition of a burst, the persistence of macroscopic clogging events
of (a) �tc = td and (b) �tc = 4 × td was used.

faster as the temperature is lower, denoting that the number
of colloids crossing the orifice between consecutive extreme
events of size �tc decreases with increasing temperature.
The latter suggests that the thermal fluctuations prevent the
pressure-driven particle flow through the orifice. This finding
contrasts with previous experimental results in vertical vibrated
silos, in which arch destabilization and an increase in the
flow rate were induced by increasing the vibration amplitude
[14,42]. However, this difference might be related to the fact
that thermal fluctuations are isotropic and that the orifice
and the particle size are very close. Very recently, To and
co-workers reported the flow in vibrated silos in which the
orifice location oscillates in the horizontal direction [43]. They
found that when the orifice size and the particle ratio are
very similar, the vibration hinders the entrance of the particles
through the orifice. As a result, the macroscopic flow rate
decreases with increasing oscillation amplitude. In our case,
we speculate that thermal fluctuations induce a locking effect
when a single particle is crossing the aperture and it interacts
with the aperture border.
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FIG. 4. Mean burst size 〈s〉 as a function of the value tc chosen
for the definition of clogs.

The statistics of the clogging times �t reveals notable
features of the clogging process. The probability density
distributions D(�t/td ) and their complementary cumulative
distributions P (t > �t/td ) are illustrated in Fig. 5. Outcomes
obtained in systems with different temperatures are compared.
The first issue is the detection of very fast events (�t < td ).
Moreover, they are more likely when the temperature is high
(low Pe values), which indicates that they correlate with strong
thermal fluctuations acting in the direction of the flow. For low
temperature, however, those events are rare.

Examining the probability density distributions D(�t/td ),
it is hard to elucidate the effect of thermal fluctuations on
the statistics of long clogging times. To look deeply into the
nature of these distributions, we also compute the complemen-
tary cumulative distributions [see Fig. 5(b)]. Remarkably, the
statistics of extreme �t/td values is affected by temperature
changes. In the limit of very low temperature (Pe = ∞), we
observe that the tails of the cumulative distributions follow the
power law P (t > �t/td ) = �t−α with α < 2. As the temper-
ature is increased, however, the occurrence of long clogs is less
likely, and we obtain that the value of α increases continuously.
In the limit of very high temperature (Pe = 0.6), the cumulative
distributions P (t > �t/td ) compare better with an exponential
law. From these results, one can conclude that strong ther-
mal noise does not allow the formation of stable aggregate
structures, avoiding the occurrence of extreme clogging events.
Our outcomes indicate that there is a well-defined transition,
which is detected by changing the temperature. We find that

above Tc ≈ 0.26mU 2
c

2kB
the tail of the cumulative distribution fits a

power-law function with α < 2, which corresponds to clogged
states characterized by an infinite value of the mean clogging
time 〈�t〉 = ∞. We refer to that state T > Tc as a clogged state
[44]. For T < Tc, however, the exponent result α > 2, i.e., the
probability of detecting very long clogs, is notably lower and
the flow states are characterized by a finite mean clogging time
(unclogged state) [44].

Interestingly, we found that the values of the Peclet num-
ber Pe = Sadv

Sdiff
are within the range Pe = 2.6 (the lowest
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FIG. 5. (a) Probability density and (b) cumulative distribution
functions of the time lapses obtained for an outlet with radius
W = 1.7 × R and different temperatures (in units of the colloid
characteristic kinetic energy, as indicated in the legend).

temperature) and Pe = 0.6 (the highest temperature). These
results suggest that the thermal bath notably randomizes the
particle trajectories over the unit of time. This correlates
with the fact that the number of colloids crossing the orifice
between consecutive extreme events of size �tc decreases
with increasing temperature (see Fig. 4). Thus, large thermal
fluctuations disturb the advective particle flow through the
aperture, resulting in a notably lower Peclet value. Controver-
sially, the statistics of clogging times also indicates that strong
thermal fluctuations are significant in preventing extremely
long clogging events (see Fig. 5). This finding indicates that
thermal fluctuations do not allow the development of very
stable structures, which are responsible for the occurrence of
those extreme events.

Additionally, the velocity statistics of the colloids is also
examined for different temperatures. The velocity of each col-
loid is recorded when crossing the orifice, and the probability
densities D(v) are computed for each velocity component. The
data obtained for three temperatures are illustrated in Fig. 6.
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FIG. 6. Velocity distributions obtained in a region close to the
aperture (after crossing) for different temperatures. (a) D(Vx) mea-
sured perpendicular to the pressure gradient, and (b) D(Vy) measured
parallel to the pressure gradient.

Note that no driven force is acting on the x and z directions, and,
as a result, the probability distributions are Gaussian centered
at vx = 0 and vz = 0 (data not shown). In fact, in the x-z plane
the colloids behave as free particles moving diffusively, with
equal probability in any direction. As expected, the width of
the curve is proportional to the intensity of thermal vibrations.
On the other hand, the probability distribution of vy is shifted
toward the positive direction as a consequence of the liquid
advection. Thus, in the y direction the particles are transported
by the fluid, while their individual movement fluctuates due to
the thermal noise.

To clarify the impact of both advective and diffusive
transport, we carefully check the symmetry of the prob-
ability density distributions. Toward that end, we subtract
the advective velocity 〈vy〉 from the velocity of each parti-
cle vy , and we calculate the probability density distribution
with respect to the moving reference frame D(vy − 〈vy〉) =
D(Vr ). For comparison, in Fig. 7 the distributions D(Vr ) and
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vy − 〈vy〉 in (a) results corresponding to T < Tc (clogged region) and
(b) results corresponding to T > Tc (unclogged region).

D(−Vr ) are illustrated. It is noticeable that systems with high
temperature T > Tc exhibit very symmetric probability den-
sity distributions indicating a simple balance between advec-
tive and diffusive transport through the orifice. In contrast, for
T < Tc the curves do not collapse, suggesting that the flow
nature is much more complex than a simple superposition
of advective and diffusive motions. This fact correlates with
the development of very stable structures and very long clog
events. This analysis is significant because it provides a tool
with which to examine the nature of suspension flow through
bottlenecks.

Examining the time evolution of macroscopic properties,
we also capture interesting features of the clogging process.
For instance, the behavior of the aperture permeability for
the particles defined as k(t) = νv̄y

�p/L
is shown in Fig. 8. The

value v̄y accounts for the mean velocity of colloids that
cross the aperture in a given time window in the direction
perpendicular to the wall. In the description, the magnitude
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FIG. 8. Behavior of the normalized permeability k(t)
ko

= v̄y

Uo
. The

values of k(t)
ko

are averaged over two time windows (a) one time step and
(b) 100 time steps. Outcomes corresponding to different temperatures
are shown.

k(t) is normalized using the reference aperture permeability
to the fluid, ko, which corresponds to the liquid flow through
an orifice free of particles, ko = νUo

�p/L
, yielding k(t)

ko
= v̄y

Uo
. Note

that this magnitude is proportional to the instantaneous current
of colloids crossing the orifice. In Figs. 8(a) and 8(b) the values
of k(t)

ko
are illustrated, corresponding to an average over one

time step and 100 time steps, respectively. This procedure
enables us to differentiate between thermal fluctuations and
fluctuations induced by the presence of the hole. As might
be expected, the amplitude of the k(t)

ko
fluctuations correlates

with the liquid temperature. Note that by increasing the width
of the time windows, the instantaneous fluctuations of k(t)

ko

decrease toward an asymptotic value, which no longer depends
on the temperature [see Fig. 8(b)]. The remaining fluctuations
correspond to the limiting case T = 0. In fact, those remaining
fluctuations are only related with the geometrical granular
constraint, which is typically governed by the ratio between
the orifice size and the colloid’s diameter W/2R. Finally,
we find that the mean value of k(t)

ko
, averaged over a much
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longer period of 100 × td , increases slightly upon increasing
the Peclet number Pe (see the mean values in Fig. 8).

IV. CONCLUSIONS

Summarizing, we present a systematic study of a colloidal
suspension flowing through an orifice driven by a pressure drop
and with thermal fluctuations. The model allows us to control
the temperature, the orifice size, and the pressure drop, but
attention is focused here on the significance of the temperature.
First, we explore the flow fluctuations by describing the
statistics of bursts, which is in agreement with an exponential
behavior. The latter suggests that the probability of clogging
is constant during the bursts. Moreover, we find that the mean
number of colloids crossing the orifice between macroscopic
clogging events decreases with increasing temperature, which
indicates that thermal fluctuations prevent the particle flow
through the orifice. We speculate that the isotropic nature
of the thermal fluctuations might induce a locking effect
while a single particle crosses the aperture. However, we also
found that the thermal fluctuations play an important role in
preventing extremely long clogging events, and, as a result, the
temperature controls the dynamic state of the system when the
driving force is fixed. Thus, for low temperature, we observe
that the time elapse distributions display power-law tails
D(�t/td ) = �t−α withα < 2, which corresponds to a clogged
state characterized by the infinite value of the mean clogging

time 〈�t〉 = ∞. As the temperature is increased, however, we
find that long clogs are less likely to have power-law tails with
α > 2 or exponential laws. This scenario represents flow states
with a finite value of the mean clogging time. Remarkably, we
observe that the approach to complete obstruction in colloidal
suspensions obeys the same universal scenario as granular
materials [14], animal herds [41], human models [44], and
experiments [45]. Finally, examining the velocity statistics of
the particle close to the orifice, for T > Tc we observe a simple
balance between advective and diffusive transport. In contrast,
for T < Tc the movement of individual particles is much more
complex. This result is significant because it provides a tool to
examine the nature of suspension flow through bottlenecks.

Our outcomes lead to several questions on the fundamental
mechanisms behind clogging in colloidal suspensions when
flowing through small orifices. Our intention is to address some
of those questions in future works by exploring the significance
of the pressure drop, the orifice diameter, and the balance
between hydrodynamic forces and the interaction potential.
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