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We identify arches in a bed of granular disks generated by a molecular dynamic-type simulation. We use the
history of the deposition of the particles to identify the supporting contacts of each particle. Then, arches are
defined as sets of mutually stable disks. Different packings generated through tapping are analyzed. The
possibility of identifying arches from the static structure of a deposited bed, without any information on the
history of the deposition, is discussed.
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I. INTRODUCTION

Arches are multiparticle structures encountered in nonse-
quentially deposited granular beds. In some sense, arches are
to granular packings what clusters are to colloids: they rep-
resent collective structures whose existence and behavior de-
termine many properties of the system as a whole. During
the settlement of a granular bed, some particles come to rest
simultaneously by contacting and supporting each other.
These mutually stabilized sets of particles are called arches
or bridges �1�. Of course, these arches are themselves sup-
ported by some of the surrounding particles in the system:
the arch bases. Typically, 70% of the particles are part of
arches in a granular packing of hard spheres �2�; and around
60% in packings of hard disks �3�. Arch formation is crucial
in the jamming of granular flows driven by gravity �4–7� and
it has also been proposed as a mechanism for size segrega-
tion �8,9�.

Arching is the collective process associated with the ap-
pearance of voids that lower the packing fraction of the
sample. Moreover, arching is directly related to the reduction
of particle-particle contacts in the assembly, which deter-
mines the coordination number �2,10�. In two dimension
�2D�, for example, the mean support number �z�support—i.e.,
the coordination number that accounts only for the contacts
that serve as support of at least one grain—can be obtained
from the arch size distribution n�s� as �3�

�z�support = 2�1 +
1

N
�
s=1

N

n�s�	 . �1�

Here N is the total number of particles in the packing and
n�s� is the number of arches consisting of s grains. The num-
ber of particles that do not form part of any arch corresponds
to n�1�. This mean support number coincides with the mean
coordination number �z� when the packing does not have any
nonsupporting contacts. In nonsequentially deposited beds—
especially for soft particles—there will be contacts that are

not essential to the stability of any of the two touching par-
ticles.

A systematic study of arching is particularly complex de-
spite the simplicity associated to the concept of arch. The
typical structural properties of granular materials are mainly
connected with the topological complexity of the contact net-
work. Concepts like “force chain” and “force propagation”
have been profusely studied �11�, but many open questions
still remain. The statistical properties of the arching process
could give some insight into these complex problems.

Arches form dynamically during nonsequential particle
deposition. Given a settled granular sample, identifying if
two particles belong to the same arch is often impossible
without knowing the history of the deposition process. As-
suming that we are able to identify �experimentally� the con-
tacts of each particle, it is impossible to know which of these
contacts are responsible for supporting each particle in place
against gravity. For convex hard particles in 2D, only two of
the contacts of a given particle provide its stability �in three
dimension �3D� this number is three�. The supporting con-
tacts are the first two �three in 3D� contacts made by the
given particle that provide stability against the external force
that drives deposition �e.g., gravity�. Any contact made after-
wards will not provide the essential stability assuming that
the already formed supporting contacts persist. Of course, if
one removes a supporting contact, it is possible that a non-
supporting contact of the particle becomes a supporting con-
tact, hence some nonsupporting contacts may provide sec-
ondary �alternative� stability to the particle.

Finding the supporting contacts of a particle is simple in a
pseudodynamics simulation approach since these contacts
are the essence of the simulation algorithm �2,3,10,12�.
However, in a realistic granular simulation—as well as in
experiments—one needs to track the particle collisions and
analyze stability at every instant to catch the supporting con-
tacts of every particle in the moment they first appear.

In this work, we report a numerical study on the support-
ing contacts that are created during the nonsequential depo-
sition of a granular bed. Then, arches are straightforwardly
obtained and analyzed. We use molecular dynamics simula-
tions and restrict ourselves to a 2D system of inelastic par-
ticles in order to reduce the computational cost. We show
that our identification of supporting contacts is useful in de-*Electronic address: luis@iflysib.unlp.edu.ar
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ciding when the packing has settled, which is a major issue
in these types of simulations. We compare our results with
those obtained by pseudodynamics methods. We also show
that using simple criteria it is possible to identify arches to
some degree without knowing the deposition history. This is
of particular interest for experimental studies where tracking
particles at high velocities is rather expensive.

II. THE 2D SOFT-PARTICLE MOLECULAR
DYNAMICS APPROACH

We simulate the process of filling a box with grains by
using a soft-particle 2D molecular dynamics �MD�. In this
case, the particles �monosized disk� are subjected to the ac-
tion of gravity. Particle-particle interactions are controlled by
the particle-particle overlap �=d− 
rij
 and the velocities ṙij,
�i, and � j. Here, rij represents the center-to-center vector
between particles i and j, d is the particle diameter, and � is
the particle angular velocity. These forces are introduced in
the Newton’s translational and rotational equations of motion
and then numerically integrated by standard methods �13�.

The contact interactions involve a normal force Fn and a
tangential force Ft. In order to simplify the calculus we use a
normal force which involves a linear �Hookean� interaction
between particles.

Fn = kn� − �nvi,j
n , �2�

Ft = − min��
Fn
, 
Fs
�sgn��� , �3�

where

Fs = − ks� − �svi,j
t , �4�

��t� = �
t0

t

vi,j
t �t��dt�, �5�

vi,j
t = ṙij · s + 1

2d��i + � j� . �6�

The first term in Eq. �2� corresponds to a restoring force
proportional to the superposition � of the interacting disks
and the stiffness constant kn. The second term accounts
for the dissipation of energy during the contact and is pro-
portional to the normal component vi,j

n of the relative velocity
ṙij of the disks. The restitution coefficient is an exponentially
decaying function of the dissipation coefficient �n �13�, i.e.,
an increase in the dissipation coefficient leads to a nonlinear
decline of the restitution coefficient.

Equation �3� provides the magnitude of the force in the
tangential direction. It implements the Coulomb’s criterion
with an effective friction following a rule that selects be-
tween static or dynamic friction. Dynamic friction is ac-
counted for by the friction coefficient �. The static friction
force Fs �see Eq. �4�� has an elastic term proportional to the
relative shear displacement � and a dissipative term propor-
tional to the tangential component vi,j

t of the relative velocity.
In Eq. �6�, s is a unit vector normal to rij. The elastic and
dissipative contributions are characterized by ks and �s, re-
spectively. The shear displacement � is calculated through
Eq. �5� by integrating vi,j

t from the beginning of the contact

�i.e., t= t0�. The tangential interaction behaves like a damped
spring which is formed whenever two grains come into con-
tact and is removed when the contact finishes �15�.

The model presented above includes all features that
turned out to be essential in the work reported here. If only
dynamic friction forces are used in the tangential direction,
these keep changing slightly but continuously once the disks
have been deposited, making it impossible to decide whether
the deposition process has definitively finished. The addition
of static friction forces allows the deposit to reach a stable
configuration. Furthermore, apart from the energy dissipation
on normal contact, the tangential component is also respon-
sible for energy dissipation through the second term in Eq.
�4�. This leads to a fast decay of the total kinetic energy of
the system whose final value is negligible in comparison
with simulations without tangential dissipation.

III. ARCH IDENTIFICATION

To identify arches one needs first to identify the two sup-
porting particles of each disk in the packing. Then, arches
can be identified in the usual way �2,3,10�: we first find all
mutually stable particles—which we define as directly
connected—and then we find the arches as chains of con-
nected particles. Two disks i and j are mutually stable if i
supports j and j supports i.

Regardless of the way grains are deposited, they meet
with and split up from other grains until they come to rest.
While this process takes place, each time a new contact hap-
pens we can check if any of the two touching particles may
serve to the stability of the other and save this information.
Equally, we can update this data when touching grains come
apart. Eventually, when all particles have settled, we should
find that every particle has two supporting contacts and that
no updates take place any longer. The algorithm that we
follow to detect and update supporting contacts is described
below.

We consider that two particles in contact with particle i
may provide support to it only if the two particles are one at
each side of i and the center of mass �c.m.� of particle i is
above the segment that joins the two contacts. We call con-
tact chord to this segment. For a particle and a wall to sup-
port particle i we just need to take into account that the
contact between the wall and i has the same y-coordinate as
i. A particle in contact with the base is stable per se.

If at any time a particle i has a single contact, we consider
this contact as a potential first stabilizing contact �awaiting
for the second stabilizing contact to occur� only if i has a
higher y-coordinate than the contacting particle. A contacting
wall cannot be considered a first stabilizing contact.

We construct two arrays �nR�i� and nL�i� with i
=0, . . . ,N−1� that store the indices of the right and left sup-
porting particle of all particles in the system. If a particle has
an undefined support, the corresponding position in the array
is set to −2. If one of the supporting contacts is a container’s
wall �or base�, the corresponding position in the array is set
to −1. Initially, all elements of nR and nL are set to −2. After
an update of all particle positions in the simulation, we check
the status of nR and nL, and update them according to the
protocol described below. The protocol is repeated until no
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changes are induced in nR and nL before a new simulation
time step is advanced.

There are six different situations that may arise depending
on the stability status of a particle previous to the position
update. Within each of these cases there are different actions
to take depending on the new positions of the particles after
the position update. A summary of the most relevant situa-
tions is shown in Fig. 1. Not all plausible situations are con-

sidered here because some do not occur in practice or are
extremely rare.

Case �a�: Here, particle i was resting on the container’s
base before the position update. We simply check if the par-
ticle is still in contact with the base; if not, nR�i� and nL�i�
are set to −2.

Case �b�: In this case, particle i was supported �before the
position update took place� by two other particles whose

FIG. 1. Schematic representa-
tion of the possible states of sta-
bility that a particle i can have at
any given time �left column� and
update protocol that is followed
according to the particle position
after a simulation step �right col-
umns�. The arrays nR�i� and nL�i�
store the indices of the disks that
support disk i �see text�. In case
�d-4� we draw a small disk j since
this situation is difficult to appre-
ciate by eye for equal-sized disks
where small differences in disk-
to-wall overlaps are responsible
for particle j moving to the right
of i.
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indices are stored in nR�i� and nL�i�. We have to check if
these particles are still supporting i; if not, the supporting
particles must be redefined according to these possible situ-
ations:

�1� nR�i� and nL�i� are still in contact with i, nR�i� is still
to the right of i, and nL�i� is still to the left of i, and the c.m.
of i is above the contact chord→ leave nR�i� and nL�i� un-
changed.

�2� Neither nR�i� nor nL�i� are in contact with i→set
nR�i� and nL�i� to −2.

�3� Either nR�i� or nL�i� is no longer in contact with i
→set the lost contact to −2 and check that the remaining
contacting particle is still on its side �right or left� and below
particle i; if not, set also this contact to −2.

�4� nR�i� and nL�i� are still in contact with i, but either
nR�i� is not to the right of i or nL�i� is not to the left of i
→say nR�i� is not to the right of i; then �i� set nL�i� to the
contacting particle �nR�i� or nL�i�� with lower y-coordinate,
�ii� set nR�i�=−2.

�5� nR�i� and nL�i� are still in contact with i, nR�i� is still
to the right of i, and nL�i� is still to the left of i, but the c.m.
of i is not above the contact chord→set nR�i� or nL�i� to −2,
the one with highest y-coordinate.

Case �c�: This case corresponds to a particle with a first
potentially stabilizing contact. Let us assume that this corre-
sponds to nR�i�. We have to check that nR�i� is still in place
and if any new contact can complete the stability condition.
The following situations may arise:

�1� nR�i� is still in contact with i, nR�i� is still to the right
of i→ look for any particle j �or wall� contacting i on its left
side such that the c.m. of i is above the contact chord; if any
is found, then set nL�i�= j.

�2� nR�i� is still in contact with i, but nR�i� is not to the
right of i→set nL�i�=nR�i� and nR�i�=−2.

�3� nR�i� is not in contact with i→set nR�i�=−2.
Case �d�: This case is similar to case �b� but one of the

two container’s walls takes the place of one of the supporting
particles. Let us assume that nR�i�=−1, i.e., we are consid-
ering the right wall. Again, we have to redefine supporting
contacts according to these possible situations:

�1� nR�i� and nL�i� are still in contact with i, nL�i� is still
to the left of i, and the c.m. of i is above the contact chord
→ leave nR�i� and nL�i� unchanged.

�2� Neither nR�i� nor nL�i� are in contact with i→set
nR�i� and nL�i� to −2.

�3� Either nR�i� or nL�i� is no longer in contact with i
→ �i� set the lost contact to −2; �ii� if the remaining contact is
nR�i� �the wall�, then set nR�i�=−2, or else check that nL�i�
is still to the left of i and with a y-coordinate below particle
i; if not, set also this contact to −2.

�4� nR�i� and nL�i� are still in contact with i, but nL�i� is
not to the left of i→set nR�i�=nL�i� and set nL�i�=−2.

�5� nR�i� and nL�i� are still in contact with i, nL�i� is still
to the left of i, but the c.m. of i is not above the contact
chord→set nR�i� and nL�i� to −2.

Case �e�: This case corresponds to a particle i that was in
the air �without defined supporting contacts� before the po-
sition update. We need to check if any contact has occurred

and if it is a potential first stabilizing contact. Before doing
this, we check that the particle has negative vertical velocity
to avoid considering particles that are in their way up after a
bounce. Two situations may arise:

�1� Particle i contacts the container’s base→set nR�i� and
nL�i� to −1.

�2� Particle i contacts another particle j→ if i has higher
y-coordinate than j, then set either nR�i� or nL�i� �depending
on which side of i is j� to j.

Case �f�: This case never arises because a contacting wall
cannot be considered a first stabilizing contact.

IV. RESULTS ON TAPPED GRANULAR BEDS

In order to test the algorithm for the identification of sup-
porting contacts and arches in a realistic nonsequential depo-
sition, we carry out MD simulations of the tapping of 512
disks in a rectangular box 13.91d wide. The values used for
the parameters of the force model are �=0.5, kn=105, �n

=300, ks= 2
7kn, and �s=200 with an integration time step �

=10−4. The stiffness constants k are measured in units of
mg /d, the damping constants � in m�g /d, and time in �d /g.
Here, m, d, and g stand, respectively, for the mass of the
disks, the diameter of the disks, and the acceleration of grav-
ity. The walls and base are represented by disks with infinite
mass and diameter. The velocity-Verlet method was used to
integrate the equations of motion along with a neighbor list
to speed up the simulation. In order to keep the numerical
integration stable, a basic requirement is to use an integration
time step � much smaller than the contact time between par-
ticles, which is essentially controlled by �n. We have chosen
� to be 50 times shorter than the typical duration of a contact.
A more detailed discussion about the numerical algorithm
can be found in Ref. �14�.

The value of �n is chosen deliberately high in order to
have a small coefficient of normal restitution �en=0.058�.
This way we reduce computer time since fast energy dissi-
pation leads the system to rest in less time. Of course, this
also reduces the number of bounces and oscillations in the
system.

Disks are initially placed at random without overlaps in
the simulation box, and the initial velocities are assigned
from a Gaussian distribution of mean zero. The y-coordinates
range from 0 up to 100d. Then, particles are allowed to de-
posit under the action of gravity. The deposit is said to be
stable when the supporting contacts arrays nR�i� and nL�i�
�see Sec. III�, remain unchanged for 104 time steps. Then, the
stable configuration is saved. It is worth mentioning that this
criterion to decide when the system is “at rest” is very reli-
able. All our simulation runs end up with unchanging sup-
porting contacts arrays. Even though particles may perform
small vibrations about their equilibrium positions and orien-
tations, they remain supported by the same set of particles
and this is what defines the mechanical stability in a macro-
scopic sense.

The tapping process is simulated by moving the contain-
er’s base and walls in the vertical direction half period of a
sine function of amplitude A and frequency w=2�g /d. The
tapping amplitude is measured through the peak acceleration
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�=Aw2. After all particles have settled down and the stable
configuration has been saved, we increase the amplitude of
the perturbation by ��=0.0134g and the process is repeated.
The range of the tapping amplitude goes from 0 to 6.41g.
When the maximum amplitude is reached, the system is then
tapped with decreasing amplitudes down to �=0. Then, a
new increasing � cycle is started and so on.

The “annealing” protocol is performed several times start-
ing from different initially deposited beds and then the re-
sults are averaged separating the very first increasing � phase
from the rest of the tapping ramps. We introduce this aver-
aging method due to the fact that all quantities obtained for
the initial increasing ramp do not match the subsequent de-
creasing and increasing ramps for amplitudes below some
threshold �0 �see the inset of Fig. 3�b��. The first increasing
ramp of the tapping protocol is known as the irreversible
branch and the subsequent coinciding ramps are known as
the reversible branch. Despite the introduction of static fric-
tion �which could induce history dependent effects� and the
fact that we apply a single tap to the system at each �, the
results show the same trends as many experiments �16–18�
where the granular assembly is subjected to some sort of
tapped annealing. Unfortunately, the slow decaying time of
the compaction process makes it virtually impossible to
simulate a real experimental situation.

In order to enhance the quality of the averaged arch prop-
erties at given states along the tapping ramp, we take inter-
mediate configurations ��=0.71 and 4.99� and tap the system
at constant � for longer runs �1000 cycles�. These values of
� correspond to a high-density and a low-density state of the
system. The results obtained from these longer runs are es-
sentially the same as those obtained from the corresponding
states along the annealing process; only the statistical disper-
sion is improved.

We can see two snapshots of configurations obtained at
low- and high-tapping amplitudes in Fig. 2. The arches iden-
tified in the sample can be appreciated by means of the seg-
ments that join mutually stabilizing disks �see Sec. III�. A
single disconnected segment indicates that the two joined
disks support each other and therefore form an arch. A chain
of connected segments indicates that all joined disks belong
to the same arch. For each arch there are two disks that form
the base of the arch, these are not indicated in the figure. The
configuration with �=0.71 �Fig. 2�a�� is quite ordered, show-
ing a localized disordered region at middle height in the
packing. Large crystal-like domains of triangular order are
observed with clear defect boundaries in agreement with ex-
periments �20�. Here, most arches consist of only two par-
ticles; only a few three-particle arches can be appreciated.
Figure 2�b� corresponds to �=4.99. This configuration is
clearly more disordered than the former; however, void
spaces are rather uniform in size and homogeneously distrib-
uted throughout the packing. This contrasts with the larger
degree of disorder displayed by pseudodynamic simulations
�3� where a wider distribution of void sizes is found. Figure
2�b� shows a larger number of arches than Fig. 2�a�, particu-
larly larger arches consisting of up to six disks.

In Fig. 3 we show the results of the mean coordination
number �z� and packing fraction 	 obtained for the reversible
branch of the tapping ramp �i.e., decreasing ramp�. We also

show the values for �z�support that include only those contacts
that serve to the stability of at least one of the two touching
particles. Unlike hard particles �3�, soft particles present
more contacts than those just needed to make particles
stable, therefore �z�support is not related to �z� in a trivial way.
We have to bear in mind that �z�support is directly related to
the arch size distribution; not �z�. Our results show that
�z�support and �z� present qualitatively the same behavior al-
though �z�support presents lower values and varies within a
narrower range.

We can see from Fig. 3 that both �z� and 	 have rather
high values when the tapping amplitude is small, correspond-
ing to an ordered system. As � is increased, those values
undergo a slow decrease as the system gets disordered. Fi-
nally, 	 and �z� present a slight increase from their minimum
values for high tapping amplitudes. This result qualitatively
agrees with the experimentally observed behavior in 3D �16�
where a minimum in the density dependence on � has been
observed. However, simulations of disks through pseudody-
namics �3� show a much sharper transition between the or-

FIG. 2. Two snapshots of the configurations obtained for tapping
amplitudes �=0.71 �a� and 4.99 �b�. Arches identified with the pro-
tocol of Sec. III are indicated by segments that join disks belonging
to the same arch. Note that some disks may seem to be in unstable
positions since all contacts are above its center. These disks are in
fact stable thanks to the static friction forces. For each arch there
are two disks that form the base of the arch �these are not indicated
in the figure�.

IDENTIFICATION OF ARCHES IN TWO-DIMENSIONAL¼ PHYSICAL REVIEW E 74, 021303 �2006�

021303-5



dered �low �� and the disordered �high �� regime. Moreover,
these simulations �3� present a positive slope in �z�support for
low tapping amplitudes within the ordered regime.

Let us look into the relationship between the former quan-
tities and the arches identified by our algorithm. Figure 4
shows the number of arches normalized by the number of
particles as a function of � along the reversible branch. We
see that the large decrease in �z� and 	 �Fig. 3� corresponds
to an increase of the total number of arches in the bed. This
number reaches a maximum value and then shows a slight
decrease in correspondence with the increase in �z� and 	 for
high values of �. Clearly, there is a correlation between the
buildup �breakdown� of arches and the number of contacts
and the free volume encountered in the sample. At very low
tapping amplitudes the particles deposit in a very ordered
manner without forming many arches; this means that, ac-
cording to Eq. �1�, �z�support is rather high �3.5, 4 being the
maximum allowed value in 2D�; moreover, there are few
arch-trapped voids and 	 is high. At moderate �, arches are
created with high probability; the coordination number then
falls accordingly and the arch-trapped voids lower the pack-
ing fraction. For very high tapping amplitudes arches are
again broken down partially; new particle-particle contacts
are created and arch-trapped voids are filled up.

In Fig. 5, the arch size distribution n�s� is shown for two
values of the tapping amplitude. We can observe that for
moderate tapping amplitudes the system has a larger number
of large arches whereas for gentle tapping there is a larger

amount of disks that do not belong to any arch �s=1�. Inter-
estingly, in both cases the distribution can be fitted to a
second-order polynomial, in a semilogarithmic scale. This is
in agreement with results from pseudodynamics simulations
�3�. In 3D it has been found that n�s�
s−1.0±0.03 �2,10�, which
corresponds to a significantly higher prevalence of large
arches with respect to 2D packings.

In Fig. 6 we show the distributions of the horizontal span
of the arches and compare them with a theoretical model �4�
based on a restricted random walk. The horizontal span is the
projection onto the horizontal axis of the segment that joins
the centers of the right-end disk and the left-end disk of an
arch. We use the results obtained for arches composed by
two, three, and four disks obtained for two different tapping
amplitudes. At high packing fractions, arch extensions ap-
pear discretized. Since the system presents an ordered lay-
ered structure, the particles of any arch of s disks form a
string that connects layers �or stay in the same layer� so that
the end-to-end horizontal projection of the arch can only be
an integer number of on-layer jumps plus an integer number
of between-layers jumps; both jumps have characteristic
horizontal projections in the triangular lattice formed by the
disks. We saw above that although 	 undergoes a decrease in
its value for intermediate tapping amplitudes, it remains
rather high. For this reason, although horizontal span distri-

FIG. 3. Coordination number, support number, and packing fraction as a function of the tapping amplitude � within the reversible branch
of the annealing protocol. �a� Coordination number �z� �dashed line� and support number �z�support �solid line�. �b� Packing fraction 	. The
inset in panel �b� shows separately the curves corresponding to several tapping ramps, including the irreversible branch �lower curve�.

FIG. 4. Number of arches per disk as a function of �. Only the
reversible branch of the annealing protocol is shown.

FIG. 5. Distribution of arch sizes for �=4.99 �down triangles�
and 0.71 �up triangles�. The lines are fits to a second-order polyno-
mial. The data for s=1 correspond to the number of disks that are
not forming arches.
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butions are more homogeneous, we still find some character-
istic peaks for high �. These results do not agree with the
prediction of the random-walk model where horizontal span
distributions are smooth. However, it must be taken into ac-
count that the restricted random walk model was proposed to
represent arches at the outlet of a hopper where particles
cannot order but simply fit in the gap between walls.

V. ARCHES FROM STATIC CONFIGURATIONS

In this section we intend to show to what extent an at-
tempt to identify arches from the static structure of a depos-
ited system can yield realistic results. We test two criteria

that select two of the contacting particles of each particle as
the supporting pair of the given grain: �a� random stabilizing
pair, and �b� lowest stabilizing pair. We identify all pairs of
contacting particles that may—according to their relative po-
sitions and the contact chord criterion—stabilize a given
grain. For criterion �a� we then choose one of these pairs at
random as the supporting pair. For criterion �b� we choose
the pair that has the lower center of mass. In principle, we
expect that case �b� should provide a more reliable identifi-
cation of supporting contacts since those contacting particles
in lower positions may correspond to the “real” supports,
whereas those in higher positions may correspond to contacts
made by further deposition of other particles on top of the
particle under consideration. We will see that this is not the
case.

We have obtained the arch size distribution n�s� by apply-
ing the static criteria above to packings corresponding to �
=0.71 and 4.99. Figure 7 shows clearly that, for disordered
packings ��=4.99�, arches are identified much better by the
random criterion. The lowest supporting pair criterion detects
less arches than the realistic dynamic criterion. As we can
see from the inset of Fig. 7, for very ordered packings ��
=0.71�, both criteria fail. Criterion �a� overestimates whereas
criterion �b� underestimates the number of arches beyond s
=2. A detailed analysis of the supporting contacts detected
by the static criteria shows that criterion �a� tends to find
many false mutually stabilizing pair of particles in ordered
packings, which leads to the identification of false arches. On
the other hand, criterion �b� tends to detect too few of the
real mutually stabilizing pairs of particles and for that reason
the number of arches detected are fewer than with the dy-
namic criterion.

VI. CONCLUSIONS AND FINAL REMARKS

We have presented a protocol to dynamically identify
arches during the deposition of granular particles carried out

FIG. 6. Horizontal span distribution for arches with 2 �a�, 3 �b�,
and 4 �c� disks. The lines correspond to �=0.71 �dotted� and �
=4.99 �dashed�. The solid lines correspond to the restricted random
walk model �4�.

FIG. 7. Distribution of arch sizes for �=4.99 comparing the real
distribution obtained from simulations �circles� with the distribu-
tions obtained from the static structure using criteria �a� �up tri-
angles� and �b� �down triangles�. The inset shows the same results
for �=0.71.
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through realistic granular dynamics. We find that simple
static criteria can correctly identify arches to some degree for
not very ordered packings. In particular, the criterion we call
random stabilizing pair seems to be the most successful and
could be used to identify arches in experimentally generated
2D granular beds �19,20�. However, in ordered packings it is
very difficult to identify arches from static configurations.
The reason for this is that in an ordered packing the coordi-
nation number is rather high and then the number of plau-
sible stabilizing pairs for a given particle is higher than that
in disordered packings. Since choosing the correct pair is the
essence of the criterion to successfully identify stabilizing
contacts, the more pairs we have to choose from, the more
likely we make a mistake.

The packings generated by varying the tapping amplitude
“quasistatically’’ present a low-density disordered regime �at
high tapping amplitudes� and a high-density, ordered regime
�at low tapping amplitudes�. The support number decreases
with increasing tapping amplitude except for the very high
tapping amplitudes. These observations are in contrast with
pseudodynamic simulations �3� where �z�support increases
with � �except at the order-disorder transition�. We believe
that this is due to the fact that the pseudodynamics is a good
representation for fully inelastic disks that roll without slip
and that “fall down’’ at constant velocity—a situation that
seems to be met by particles carried on a conveyor belt at
low velocities �19�. The simulations in the present work are
rather far from this regime since particles can spring away
from an impact and so explore a wider range of position in
the box before finding a locally stable configuration.

The form of the arch size distributions is in agreement
with pseudodynamic simulations. This suggests that the form
of n�s� is rather insensitive to the deposition algorithm. The
calculated number of arches grows sharply as the density
decreases when the tapping amplitude is increased. However,
this tendency is not monotonic and above a transition zone
the number of arches decreases whereas the density in-
creases. This feature highlights the intuitive connection be-
tween arches and density fluctuations.

We have to point out here that the criterion we used to
decide if two contacts may be the stabilizing contacts for a
given particle i �i.e., that the contact chord is below the c.m.
of i�, rules out the possibility that a particle be supported
from “above.” This situation does indeed arise occasionally
due to static friction. Two contacting particles with y coordi-
nates slightly above particle i may sustain the particle due to
high static friction forces. We have found that this situation
indeed occurs in our simulations. Indeed, some instances can
be appreciated in Fig. 2�b�. A detailed analysis of these types
of arches that are also found in experiments �see, for ex-
ample, Ref. �4�� will be presented elsewhere.
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