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Abstract. The silo discharge process is studied by molecular dynamics simulations. The development of the
velocity profile and the probability density function for the displacements in the horizontal and vertical
axis are obtained. The PDFs obtained at the beginning of the discharge reveal non-Gaussian statistics
and superdiffusive behaviors. When the stationary flow is developed, the PDFs at shorter temporal scales
are non-Gaussian too. For big orifices a well-defined transition between ballistic and diffusive regime is
observed. In the case of a small outlet orifice, no well-defined transition is observed. We use a nonlinear
diffusion equation introduced in the framework of non-extensive thermodynamics in order to describe the
movements of the grains. The solution of this equation gives a well-defined relationship (γ = 2/(3 − q))
between the anomalous diffusion exponent γ and the entropic parameter q introduced by the non-extensive
formalism to fit the PDF of the fluctuations.

PACS. 45.70.-n Granular systems – 45.70.Mg Granular flow: mixing, segregation and stratification –
45.50.-j Dynamics and kinematics of a particle and a system of particles

1 Introduction

The process of gravity-driven silo discharge could naively
be expected to be a simple one, yet we lack a well-defined
theoretical framework to explain the experimentally ob-
served grain dynamics in terms of fundamental interac-
tions. During the silo drainage, particles evolve under the
action of gravity and interact between them through in-
elastic collisions in a complicated way, where intensive
variables —such as density or temperature— are not well
defined. Under these circumstances, the displacement and
velocity fluctuations could be of the same order as its mean
values, and the net force acting on each particle could even
present strong deviations compared to the gravity force,
therefore introducing unwanted effects like segregation or
jamming [1–3]. Two models were generally considered suc-
cessful in explaining the global characteristics of the flow
(the velocity profile) inside the silo. One of them is based
on a continuous approach and the other takes into ac-
count the discrete nature of the media. The continuum
model [4] uses concepts like elasto-plastic potentials intro-
duced in the framework of continuum mechanics, in which
the mean-velocity field can be obtained. Nevertheless, this
approach loses validity near the outlet orifice and does not
bring any information about possible microscopic effects
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like mixing or segregation. The second one is based on
the idea that each individual particle executes haphazard
movements which can be treated as a random walk. This
notion was originally introduced by Litwiniszyn in the six-
ties and is commonly called diffusive void model [5]. This
model focuses on the movement of voids injected at the
outlet of the silo. Such voids diffuse upwards, exchang-
ing their positions with the grains, which in turn move
towards the orifice at the bottom. In spite of their differ-
ent premises, both approaches give essentially the same
results for the mean-velocity profile, but in the latter case
the profile depends only on a single parameter, that can be
regarded as a characteristic length α related to diffusion.

In this work we present numerical simulations of a silo
discharge process, including the beginning of the opera-
tion. We use three outlet diameters to study the behav-
ior of the velocity profile, demonstrating an evolution be-
tween the transitory and stationary states. Results for the
PDFs of the displacements of individual grains reveal non-
Gaussian statistics and super-diffusive behavior at the be-
ginning of the discharge. In agreement with experiments,
non-Gaussian to Gaussian PDF’s transition is observed in
the stationary regime. Finally, we show that the complete
sequence of dynamical states displayed by the particles at
the beginning of the discharge can be interpreted in the
non-extensive statistical-mechanics framework introduced
by Tsallis [6], which can be used to fit the obtained PDFs
if the anomalous scaling of mean-square displacement as
a function of time is taken into account.
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2 The diffusive approach

The diffusive void model yields a well defined relationship
between the fluctuations of the positions of the particles
and the characteristic length used to fit the velocity
profile [5,7]. But recent experiments have evidenced
some discrepancies concerning these predictions. In [8],
a high-resolution particle tracking experiment of a silo
discharge is reported. The estimated value for the pa-
rameter α —around 2 or 3 particle diameters— is much
larger than the one predicted by the aforementioned
authors. Choi et al. also reported the observation of
non-Gaussian statistics and a super-diffusive regime of
the grain displacements at sufficiently short temporal
scales. (This temporal scale is defined by the time it
takes for a bead to fall a distance of its own diameter).
The probability density functions (PDFs) obtained for
the particle displacement in the vertical and horizontal
directions at this scale are both fat-tailed. For larger dis-
placements both PDFs evolve toward a Gaussian shape.
The grains undergo a transition from a super-diffusive
to a diffusive regime in a coarse-grained scale. At these
scales, the velocity profile is stable and the diffusive
models seem to regain their validity. More recently, a
similar experiment was reported where the non-Gaussian
fluctuations remain even for the coarse-grained scale [9].

Let us to go through the fundamental assumptions of
the diffusive models. The line of reasoning proposed by
Litwiniszyn [5], later developed by Mullins [7], basically
introduces two fundamental assumptions: i) the particle
moves following a random walk in which the interaction
between horizontal an vertical displacements can be ne-
glected, and ii) the time elapsed in one jump is almost the
same than the one corresponding to a free fall. Assuming
these hypothesis, in a typical experimental situation the
diffusivity of the particle scales with its diameter d as D ≃
√

gd3, and the parameter α —which Mullis named “jump-
ing distance”— can be expressed as D/V = 3/8d, where V
is the mean velocity in the vertical direction. The param-
eter α is relevant to check the theory against the experi-
mental results because it is all that is needed to fit the ve-
locity profile. The same parameter was derived from prob-
abilistic arguments for an hexagonal array of particles [5],

yielding the value d/
√

6. Taking into account the strongly
biased character of the diffusive movements in the vertical
direction, it is possible to write an analytic expression for
the velocity profile (assuming a point source of voids) [7]:

v(r, z) ∝ exp

(

− r2

4αz

)

, (1)

where r2 = x2 + y2.
The same profile was derived from phenomenological

arguments by Nedderman and Tüzün at the end of the
seventies [10]. Following a kinematic reasoning, this model
reproduces quite well the velocity profile inside the silo by
assuming that the horizontal component of the velocity
u is straightforwardly proportional to the gradient of the
vertical velocity v:

u = B
∂v

∂x
. (2)

Considering the granular media as an incompressible
material, an equation can be deduced for the velocity pro-
file which is isomorphic to the one obtained following the
diffusive model:

∂v

∂z
= B

∂2v

∂x2
. (3)

In this kinematic model, the temporal variable has
been replaced by the coordinate z. The solution to this
parabolic equation corresponds to a Gaussian profile
whose shape only depends on the parameter B:

v(x, z) =
Q√

4πBz
e−x2/4Bz, (4)

where Q stands for the volumetric flow.
The parameter B appearing in equation (3) plays the

same role than the “jumping length” α introduced by dif-
fusive models. But contrary to them, the kinematic model
does not provide any explanation about the dependence
of B on the typical variables of the problem —such as par-
ticle diameter, silo size or any other characteristic length.
In all the cases reported, the value of B lies between 2 or
3 times the particle diameter. Besides, B depends on the
position inside the silo [11].

Although the experimentally determined value of B
does not match the jumping length predicted by the dif-
fusive models either, both approaches rely on just a single
parameter to describe the flow. This makes these kind of
models appealing when trying to describe the movements
of the particles in the discharge process.

Recently, a more general description was intro-
duced [12] in order to provide an explanation for the
discrepancy between the experimentally determined fig-
ures for the “diffusive length” and the values predicted
by the diffusive approach. This new model assumes that
the voids injected at the outlet of the silo do not match
the size of just one particle. Instead, the injected void
spreads through several grains, which will then move coop-
eratively. The resulting “cluster”, which spreads the void
throughout a group of particles, is called a “spot”. Spots
move upward inside the silo and the grains affected by the
spot carry out small movements toward the base. As the
grains affected by the spot must move in a concerted fash-
ion, it is not surprising that the displacements of nearby
particles present strong correlations. The resulting spot
diffusivity allows to recover the values for the jumping
length obtained in experiments.

Let us note that in all the cited references the dis-
charge process must have reached a steady state regarding
the flow, far enough from the beginning of the discharge.
Moreover, the size of the orifice was large enough to avoid
jamming events like those described in [13]. Remarkably,
the universality of the results may be lost when the size
of the outlet orifice is small (see the case of small flow in
Ref. [8]). Regardless of the inherent complexity of these
states, a diffusive approach might be suitable to describe
the particle displacements, although the simple assump-
tions introduced by the model could lose their validity.
Early stages of the discharge process involve a densely
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Fig. 1. Average vertical velocity profile inside the silo for orifices of size 11 (top) and 3.8 d (bottom) at different stages of its
evolution. Time increases from left to right. The last picture corresponds to the fully developed regime. The localized structures
correspond to a well-defined region where strong velocity gradient exist. Note than this zone does not totally disappear in the
stationary regime of the small outlet orifice.

packed media subjected to a strong, inhomogeneous shear-
ing. Furthermore, even in the case of homogenous shear,
densely packed granular media is prone to complex dy-
namics, as reported in [14–16], where concepts like parti-
cle mobility and diffusivity to are invoked to describe the
particle dynamics.

3 Numerical simulations

We have carried out molecular dynamics simulations of
disks in two dimensions [17]. A simulation begins with
5000 disks arranged in a regular lattice; they are then
given random velocities, which have a Gaussian distribu-
tion. The disks are allowed to fall under gravity through
a conical silo. Below this hopper lies a flat bottomed silo
where the grains are deposited. This is the preparation
phase, which is purposely long and complex in order to
break the correlations that the initial regular arrangement
of the grains might induce in the dynamics. Once all the
grains have fallen into the flat silo, we wait until most of
the kinetic energy is dissipated. Finally, we open an outlet
at the bottom allowing the grains to fall and we start our
measurements.

The walls of the two silos used are built with grains.
The interaction between grains is the same as the inter-
action between grains and walls, but the latter are fixed
in their places. Thus the walls are rough and cause dis-
sipative collisions. The width of the silo base is 50 grain
diameters and the height reached by the grains when the
silo is full is approximately twice that length. These di-
mensions guarantee that the flow rate does not depend on
wall or filling effects. In addition, the filling height changes
only slightly during a simulation.

The model for the forces describing the interaction of
two particles i, j consists of normal and transversal con-
tacts as well as dissipative terms:

Fn = knξ3/2 − γnvn
i,j , (5)

Ft = −min
(

µ|Fn|, γs|vs
i,j |

)

· sign
(

vs
i,j

)

, (6)

where

vs
i,j = ṙij · s +

1

2
d (ωi + ωj) . (7)

Equation (5) gives the force in the normal direction
of the contact. The first term is a restoring force propor-
tional to the superposition ξ of the disks. The 3/2 ex-
ponent arises from the Hertz theory of the contact. The
second term is a dissipation proportional to the relative
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Fig. 2. Normalized PDFs for (a) horizontal and (b) verti-
cal displacements. These distributions have been obtained in a
temporal window where the averaged particle displacement is
lower than a particle diameter. The dashed line is a Gaussian.

normal velocity of the interacting disks with damping co-
efficient γn. Equation (6) is the sliding component of the
damping force. It implements the Coulomb criterion with
friction coefficient µ. The damping in the transverse direc-
tion is proportional to the shear velocity given by equa-
tion (7) and a transverse damping coefficient γs. In this
equation s is a unit vector tangential to the disks at the
contact point, and ωi and ωj are their angular velocities.
Thus, in this scheme of forces we have a restoring force
which prevents grains to interpenetrate (although a very
small penetration is needed) along with damping terms
in the normal and tangential directions which dissipate
energy during the contact. This dissipation is among the
most prominent characteristics of granular media.

The values of the coefficients are, in reduced units,
kn = 105 mg/d, γn = 100m

√

g/d, γs = 300m
√

g/d, and
µ = 0.5. The integration time-step used is 1.25−4 τ with
τ =

√

d/g, and m, d and g stand, respectively, for the mass
and diameter of the disks and the acceleration of gravity.

The equations of motion were integrated using the
velocity-Verlet algorithm and we used a neighbor list [18]
to reduce the computational effort.

Fig. 3. Normalized PDFs for (a) horizontal and (b) verti-
cal displacements. These distributions have been obtained in a
temporal window where the averaged particle displacement is
larger than a particle diameter. The dashed line is a Gaussian.

3.1 Velocity profiles and probability density functions

Using three different diameters of the exit orifice (namely,
3.8 d, 11 d and 16 d), we studied the evolution of the ver-
tical velocity profile. The smaller and larger diameters
where chosen because they belong clearly in two distinct
regimes: for the former, the flow can be intermittent, while
for the latter it is not [13]. We compute the velocity pro-
file from the moment when the outlet is opened until the
moment when the velocity profile becomes stationary. For
each orifice size we perform 20 independent simulations
and average them to obtain the final result.

In Figure 1 we show the evolution of the averaged ve-
locity profile (only its vertical component) for the 3.8 and
11 d orifices. It is evident that in both cases groups of
grains move downward together at the very beginning of
the discharge, while structures that can be described as
“bubbles” can be seen moving upward. Let us stress that
these spatial structures do not correspond exactly to the
spots introduced in [12]. These bubbles are zones where
the mean velocity is larger than the bulk and its evolu-
tion reveals the intermittent regime at the beginning of
the discharge. When these bubbles disappear, the charac-
teristic stable flow profile is developed and the asymptotic
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Fig. 4. Mean squared displacements for the horizontal and vertical displacements in logarithmic scale. Circles correspond to
the x-component and triangles to the z-component. (a) 16 d silo. The ballistic character for small displacements is obvious; once
the displacement exceeds a distance of about the diameter of the particle the movement becomes diffusive. (b) 3.8 d silo. For
small exit orifices it is difficult to distinguish the two behaviors and the crossover at about one d mentioned for the large orifice.
The movement of the particles seems to be superdiffusive at all scales.

velocity converges to a Gaussian profile. In the asymptotic
regime (for the bigger orifices) the velocity profile in the
middle of the silo can be fitted using a numerical “diffu-
sivity length” of 2.2±0.2 d which is in excellent agreement
with experiments [8,10].

The results obtained with the smaller exit orifice are
similar but an important difference arises: the characteris-
tic time needed to reach a stable flow grows dramatically
as the outlet diameter decreases. This feature is related to
the fact that an increasing number of bubbles appear in
the system, inducing an intermittent flow in the silo. Un-
der these circumstances, strong velocity gradients can be
observed near the exit orifice. This implies that some as-
sembly of particles can have a relatively low velocity that
may enable them to form an arch near the outlet, and
stable jamming events can arise if the particles arrest the
flow. This intermittent regime will be studied anywhere.

We measured the displacements of individual grains
during the discharge. In order to compare our results with
those obtained experimentally, we chose a sampling time
such that the mean displacement of the particles during
it is of about 0.01 d (which is approximately the same
than in the experiments). The particles were tracked in a
window with different dimensions (10×10, 15×15 and 20×
20 d) at the center of the silo. We obtain the same results
regardless of window size. When computing the PDFs of
the vertical displacements we subtract the corresponding
component of the mean flow velocity.

In Figure 2 we show the PDFs corresponding to the
fully developed flow in semilogarithmic scale. The dis-
placements in each direction are normalized by their stan-
dard deviation. We see that the PDFs are essentially the
same for the vertical and horizontal displacements. Be-
sides, they are clearly non-Gaussian, with apparent differ-
ences both in the central region and in the tails, which are
fat. As reported in [8], the fluctuations in the horizontal
direction evolve toward a Gaussian profile when the dis-

placements are larger than the diameter of the particle.
On the other hand, the PDF corresponding to the fluc-
tuations in the vertical direction remains long-tailed even
for longer periods of time (see Fig. 3b) wich is consistent
with the experimental result reported by Moka et al. [9].

In Figure 4 we show the mean squared displacements
in each direction as a function of particle displacement
(normalized by the particle diameter d) for a small and
a large orifice. In the case of the largest orifice (Fig. 4a),
a well-defined crossover between two different regimes is
displayed. For displacements up to about one particle di-
ameter, the variance displays a ballistic behavior, as in
molecular fluid transport [19]. A normal diffusive regime
can be used to describe particle fluctuations equal to or
larger than one diameter for big orifices.

On the contrary, for the small orifice (Fig. 4b) there
is not a well-defined transition from ballistic to diffusive
regime. Furthermore, subparticle displacements are su-
perdiffusive. This is consistent with the fact that the cor-
responding PDF (Fig. 3) remains fat tailed at all scales.
Remarkably, a subparticle superdiffusive regime was re-
ported in the experiment [8] for all the outlet orifices stud-
ied. Such an effect would be associated to the strong in-
fluence of the lateral wall on the particle dynamics where
the particle tracking is performed.

It is remarkable that a single parameter like the one
introduced by the kinematic model [10] or the jumping
length introduced by Mullins [7] can be used to obtain
the shape of the velocity profile, at least for large enough
orifices. Unfortunately, the diffusive length B introduced
by simple phenomenological arguments cannot be easily
associated with the microscopic grain dynamics. The dif-
fusive model also predicts a Gaussian velocity profile that
depends on a single parameter. Seemingly the meaning
of this parameter is the same: a “characteristic diffusive
length”; but care is needed in order to compare them with
one another. The parameter introduced by Mullins is the
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Fig. 5. Normalized PDFs for (a) horizontal and (b) vertical displacements at the early stages of the discharge. These distributions
have been obtained in a temporal window spanning from the beginning of the discharge to the moment when the mean
displacement is twice the diameter of the beads. The dotted line is a Gaussian. The continuous line is equation (10).

ratio between diffusivity and the characteristic velocity of
the grains (or the voids, for that case) during a “jump”
comparable to its own diameter, whereas B is just a phe-
nomenological parameter introduced to link the two ve-
locity components (as no prediction is provided by the
model, it must be obtained from experiments). But there
is not any a priori reason to consider both parameters
equivalent from a theoretical point of view.

Admittedly, the predictions of the diffusive models (in-
cluding the void model, which assumes the unrealistic sit-
uation of the voids executing a simple Bernoulli random
walk in a regular lattice) do not match quantitatively the
fitting parameter for the velocity profile found in numer-
ical simulations or experiments. As noted above, a new
model was introduced to tackle this discrepancy [12]. This
model proposes a cooperative mechanism or “cage effect”
to represent the particle void interaction. This effect gives
a correct estimation of the velocity fitting parameter but
does not explain the microscopic diffusive regime.

The spot model infringes one of the most important
hypothesis of the diffusive models: void and particle dis-
placement are no longer symmetrical. The symmetry plays
a crucial role in the calculation of particle diffusivity by
determining the time that a grain needs to migrate a dis-
tance equal to its own diameter. When a void enters the
silo, the particle must perform a ballistic flight in a time
scale comparable to the free-fall time. The numerical sim-
ulation confirms the ballistic flight in the fully developed
flow (Fig. 4) but in a temporal scale considerable larger
than a free fall. In our simulations the flight time is three
or four times longer than the free-fall time, depending
on the position in the silo. This spatial dependence also
agrees with experimental results [11] that reveal a varia-
tion of the parameter B with the particular place of the
silo where it is measured. Work is in progress in this line
and results will be discussed elsewhere.

4 A non-linear diffusive approach for the

beginning of the discharge

Let us now describe the particle dynamics at the begin-
ning of the discharge. This is important in order to un-
derstand the origin of jamming and the existence of a
critical radius [13] beyond which the flow is never inter-
rupted. In Figure 5 the normalized PDFs for the displace-
ments in each direction are displayed. They are clearly
non-Gaussian and differ a little bit from the ones obtained
for a stationary flow. This is indeed as expected. At the
early stages of the discharge, the particle motions should
be more correlated than afterwards. The material needs
to dilate in order to flow, and the dilation takes place
preferably along the regions where more empty volume is
available. Under these circumstances, contact network or
force chains can persist for a finite time and eventually
block the outlet orifice. At the beginning of the discharge,
the packing fraction will be lower than the correspond-
ing to the ideal close packing of a hexagonal lattice and
an important number of arches [20] will introduce long-
range interactions between particles. At the same time,
each particle will be affected by nontrivial stresses along
the vertical and horizontal directions.

The mean squared displacements scale approximately
as 〈∆x2〉 ∼= 〈∆z2〉 ∝ t4/3 for all the orifices studied
(Fig. 6). Moreover, there is not a clear crossover be-
tween superdiffusive to diffusive regime even for big ori-
fices. These results agree with the experimental observa-
tion that even for large orifices is necessary to wait an eas-
ily mensurable time before reaching the stationary regime.
Clearly this time strongly depends on the orifice size.

The anomalous scaling and the PDFs obtained at the
beginning of the discharge seem to be universal and sug-
gest that it is necessary to introduce a generalized ex-
pression to describe the “walk” or displacements of the
particles.
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Fig. 6. Mean squared displacements for the horizontal (a) and vertical (b) displacements at early stages of the discharge. The
horizontal component shows clearly a superdiffusive behavior in all the cases. The vertical component displays a similar behavior
although it is not as obvious. The curves plotted would become smoother if the number of averaged discharges is increased.

Some theoretical models have been introduced to de-
scribe these familiar features of granular media using alter-
native non-standard thermodynamical descriptions, which
resort to concepts like granular temperature [21]. But
these dynamical states are in fact quasi-stationary [14,
15] whereas in our case it would not be pertinent to apply
a concept like temperature at the beginning of the dis-
charge. Besides, recent numerical [16] and experimental
works [22] have shown that when a system of grains is af-
fected by shearing effects, anomalous scaling relationships
are general. As argued by many authors, any transport
mechanism where the variance of particle displacements
scales with time as tγ with γ 6= 1 is connected to anoma-
lous diffusion [23,24]. A great variety of physical systems
can display fluctuating transport mechanisms where such
anomalous scaling can be found [25]. The paradigmatic
example is a random walk performed in a disordered net-
work [23]. In such a case, randomness in the lattice in-
duces inhomogeneous transition rates and as consequence
the diffusive process is anomalous. In our simulations, the
PDFs for the displacements indicate that the particle dif-
fusion at the beginning of the discharge is anomalous. We
will now introduce a formal framework to describe the
anomalous behaviors.

There are two important attempts to generalize the
normal diffusive equation to include anomalous dynam-
ics. The first one remains linear but introduces the con-
cept of fractional derivative in its formulation [26]. This
formalism will be not discussed here due to the fact that it
does not display a transition to normal diffusion at longer
times. The second one is to switch to a nonlinear equation
(NLDE) [27]; in the simplest version it reads

∂p (x, t)

∂t
= D

∂2 [p (x, t)]
ν

∂x2
, (8)

where ν is a real number. One of the consequences of
this functional dependence is that the diffusivity has now
a complex dependence on the density probability func-

tion p(x, t). The microscopic origin of such an equation
has been discussed by many authors [27–29], specially in
the framework of the Tsallis entropy formalism [24,25].
Such formalism was proposed to analyze long-range in-
teracting systems and its non-extensive properties. Since
its introduction, Tsallis statistics has been used in a broad
range of physical problems where non-Gaussian PDFs and
anomalous diffusive behaviors appeared [30–32], even in
the framework of a granular gas [33].

Tsallis formalism is important here because it gives
an analytic solution to equation (8) introducing a new
parameter q called entropic parameter [24]. Considering a
1D, case the solution for this equation is given by

p(x, t) =
Aq√

3 − q(Dt)1/(3−q)
e−x2/[(3−q)(Dt)2/(3−q)]
q , (9)

where q = 2−ν < 3. It has been shown [24] that the scaling
between time and mean square distance can be expressed
as a function of q through the expression 〈x2〉 ∝ t2/(3−q),
provided that the second moments of the displacement
distribution remain finite, which is our case.

Let us consider the case where 〈x2〉 ∼= 〈z2〉 ∝ t4/3

(Fig. 6). Comparing this numerically obtained relationship
and the former equation, we can estimate the value for
the q parameter: q = 3/2. With this value, we can write
the analytical expression for the solution of equation (8)
normalized by its standard deviation [25] as

p (x) =
2/π

(1 + x2)
2 . (10)

This function corresponds to the solid line plotted in
Figure 2. The agreement between the numerical result and
the analytical prediction indicates that a NLDE like equa-
tion (8) represents fairly well the evolution of the particles’
fluctuations both in the vertical an horizontal directions
at the early stages of the discharge.
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Furthermore, as time increases the solutions provided
by the Tsallis formalism to equation (8) tend to a Gaus-
sian for values of q < 5/3 [25], as observed in our simula-
tions when the system reaches the stationary regime (for
the x-component). Although the meaning of the diffusivity
constant in normal diffusion can be related to well-defined
concepts like temperature and mobility, the diffusivity in-
troduced in equation (8) lacks any obvious physical mean-
ing. At this stage of the discharge, the diffusivity D would
be determined by the complex interactions between flow-
ing particles. They give rise to a transport coefficient with
a physical meaning unavoidably more complex than just a
characteristic length obtained from a well-defined particle
velocity.

5 Discussion

We have studied the temporal fluctuations of particle dis-
placements in the discharge of a silo by gravity. We show
how at the early stages of the discharge the particle dis-
placement presents distinctive features, as previously sug-
gested by many authors. For that regime, it is possible
to derive the PDFs for the displacement fluctuations of
the particles from the non-extensive entropy theory intro-
duced by Tsallis. We have shown that this formalism al-
lows the treatment of diffusive systems presenting anoma-
lous behavior through the introduction of a nonlinear dif-
fusive equation. This equation would then provide a for-
mal framework to represent the dynamical evolution of the
PDFs from the beginning of the discharge to the fully de-
veloped regime. The introduction of this formalism might
also offer an explanation for the jamming probability in-
troduced in previous works [13,2].

For the stationary regime, we corroborate the non-
Gaussian features of the particle fluctuations for small
displacements. Nevertheless, we found that the subparticle
diffusive motions are ballistic, as is usual for the molecular
fluids. In our opinion, the superdiffusive regime reported
in some experiments [8] could be related to the effects of
lateral walls on the particle mobility. It is a widely ac-
cepted fact that the typical boundary layer in granular
material spans around 10 particle diameters, so the lateral
size of the silo could cause strong effects on the particle
displacement.

The transition between ballistic to normal diffusive
regime validates the applicability of diffusive models. The
discrepancy observed between the characteristic length
used to fit the velocity profile and the one predicted by
the model is caused by a wrong estimation on the scale
for the typical subparticle displacement velocity. The non-
Gaussian nature for the PDFs for the vertical coordinate
should be certainly linked with this scales and will be stud-
ied in the future.

This work has been supported by project FIS2005-03881
(MEC, Spain), and PIUNA (University of Navarra). R.A.
thanks Friends of the University de Navarra for a scholarship.
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