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We present experimental results of the jamming of noncohesive particles discharged from a flat bottomed
silo subjected to vertical vibration. When the exit orifice is only a few grain diameters wide, the flow can be
arrested due to the formation of blocking arches. Hence, an external excitation is needed to resume the flow.
The use of a continuous gentle vibration is a usual technique to ease the flow in such situations. Even though
jamming is less frequent, it is still an issue in vibrated silos. There are, in principle, two possible mechanisms
through which vibrations may facilitate the flow: �i� a decrease in the probability of the formation of blocking
arches and �ii� the breakage of blocking arches once they have been formed. By measuring the time intervals
inside an avalanche during which no particles flow through the outlet, we are able to estimate the probability
of breaking a blocking arch by vibrations. The result agrees with the prediction of a bivariate probabilistic
model in which the formation of blocking arches is equally probable in vibrated and nonvibrated silos. This
indicates that the second aforementioned mechanism is mainly responsible for improving the flowability in
gently vibrated silos.
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I. INTRODUCTION

Granular materials present interesting and unusual physi-
cal properties �1,2�. As the collisions among grains are
highly dissipative, dynamical states �such as a granular flow�
need a continuous energy supply. Otherwise, dissipation
quickly stops the motion. Even with a sustained energy in-
put, granular flows can—in some cases—get jammed and
halt �3,4�.

A classical example of a system prone to jamming is a
silo discharged by gravity. The flow of particles may be sud-
denly arrested by the formation of a blocking arch �or vault�
if the size of the outlet does not exceed a few times the size
of the particles �5–11�. Controversy still goes on about
whether or not there exists a certain size of the orifice above
which jamming is not possible. It seems that such a critical
size can be found for a three-dimensional �3D� silo �9� but
not in a quasi-two-dimensional �2D� setup �10,11�. Whatever
it may be, in many cases it is interesting or unavoidable to
reduce the size of the orifice in order to limit the flow rate
and the price to pay is an increased jamming probability.
Hence the significance of the methods used to improve the
flowing of grains, among which vibrations �either local or
global� applied to the silo are quite common �12–19�. Unfor-
tunately, clogging still occurs. During the discharge of a vi-
brated silo through a small orifice, blocking arches may
form. These structures can stop the flow even when the silo
is being vibrated. However, the flow may be spontaneously
restarted thanks to the destabilization of a blocking arch in-
duced by the continuous excitation. Eventually, some robust
jam will develop in the sense that the continuous vibration is
unable to restart the flow. A stronger external perturbation is
then needed to unjam the system.

Previous works �8,9� in nonvibrated silos characterized
the jamming by measuring the amount of grains delivered
between two consecutive jams. For lack of a better term to

designate this quantity, it was called an avalanche. We have
borrowed this word because it conveys the idea of a granular
flow that starts and stops abruptly, but should not be con-
fused with the rapid landslide or flood of material along a
slope, and in particular, on the surface of granular piles
�20,21�. In the discharge of a silo, the avalanche size is the
number of grains that flows through the orifice from the mo-
ment when the outpouring starts until the formation of a
blockage that arrests the flow. In the absence of vibration, the
avalanche size is a well defined quantity, as the arches or
vaults that block the orifice are robust: once the flow is
stopped, it does not resume by itself even after a long wait-
ing time. It has been shown that in silos of two and three
dimensions the avalanche size distribution displays an expo-
nential tail. This can be understood if each grain has a prob-
ability p of passing through the outlet without forming a
blocking arch that is constant during the avalanche �8,9�. In a
recent paper Janda et al. �11� related the value of this prob-
ability in a quasi-2D silo to the arch size distribution within
a 2D static granular layer.

When vibrations are applied, the notion of avalanche is
further complicated due to the fact that arches blocking the
orifice can break down after a certain time. This results in an
intermittent flow; in this case, in order to conclude that the
flow has stopped permanently, one has to wait for a long time
after grains cease to come out from the silo. The avalanches
can contain themselves short lapses during which the flow
has temporarily stopped due maybe to arches that blocked
the exit and were broken apart by the vibrations shortly af-
terward. In Sec. III we will explain how we choose a mean-
ingful waiting time for the jams.

In this work, we present experimental results on the ava-
lanche size distribution that allows for a comparison between
vibrated and nonvibrated silos. We are able to provide the
jamming probability in vibrated silos and formulate a simple
model that extends previous results and allows us to quantify
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the effect of vibrations. It can be conjectured that the appli-
cation of vibrations to a silo may lead to two mechanisms
that could cause a reduction in robust jamming events: �i� a
decrease in the probability of the arch formation, which is
the cause of blockages, and �ii� the loss of stability of these
arches after they are generated. We will show that the second
mechanism is responsible for the appearance of larger ava-
lanches when a gentle vibration is applied.

II. EXPERIMENTAL SETUP

The experimental setup �Fig. 1� comprises a flat bottomed
cylindrical silo with a circular hole of diameter D in its base.
The part making the outlet orifice can be replaced and in this
way D can be changed. The silo is filled with Delrin spheres
�diameter d=3.00�0.01 mm and weight w
=18.9�0.03 mg�. The dimensionless size R of the orifice is
defined as R�D /d. The diameter of the silo is more than 30
times the particle diameter in order to prevent the lateral
walls influencing the jamming probability �22�. The silo is
routinely refilled so that the height of the granular material is
always more than twice the diameter of the silo. A pass-
through photosensor was placed just below the outlet in or-
der to detect whether beads are flowing or not at every time;
the resolution is such that one single bead cannot go through
it undetected. At the bottom of the silo, a box collects the
grains that fall from the exit. This box is placed on an elec-

tronic scale, with an accuracy such that a single bead can be
resolved. When the flow is arrested �see below the criterion
we use to define that the flow has stopped permanently�, the
weight of the avalanche is obtained from the scales and its
size in number of beads is calculated. Then, a new avalanche
is triggered with a jet of compressed air from beneath the
orifice, a technique used in previous works �8,9�.

The whole silo is continuously shaken by a pneumatic
vibrator actuating in the vertical direction. In order to facili-
tate the vibrating movement and to isolate it from the mea-
suring devices, the structure is supported by three air cush-
ions controlled through mechanical valves. We have carried
out the measurements at a fixed effective dimensionless ac-
celeration �=aef f /g=0.22 and at a frequency of 110 Hz.
Here aef f is the rms value of the acceleration as measured by
an accelerometer attached to the silo base, averaged over 200
cycles. In fact, this experimental setup is quite similar to
another used in previous works �see �9�� with the addition of
the pneumatic vibrator and the air cushions on which the silo
rests.

III. AVALANCHE SIZE DISTRIBUTION AND JAMMING
PROBABILITY

It is interesting to begin by inspecting a typical signal
from the photosensor, which is binarized to one or zero de-
pending on whether or not a particle is blocking the light
beam. Two signals �each one registered over the duration of
a single avalanche� are displayed in Fig. 2: one of them was
obtained when the silo was being vibrated �Fig. 2�b�� and the
other was taken with the vibration off �Fig. 2�a��. In the latter
case, there are short interruptions of the flow; but once the
orifice gets jammed, the flow is arrested permanently. On the
other hand, when the silo is being vibrated, there are
stretches during which grains are flowing separated by time
intervals when the flow is interrupted. These can be signifi-
cantly longer than in the nonvibrated case. This means that a
jam has developed, but the vibrations are able to restart the
outpouring. Eventually a blockage is formed that stops the
flow permanently because the external vibration cannot
break down the blocking arch, at least within our experimen-
tal time scales. In this sense, Fig. 2�b� could be described as
if there were avalanches inside the avalanche. Figure 2�c� is
a zoom of Fig. 2�b� that reveals that the form of the signal of
the vibrated silo, in a short interval during which the material
is flowing, is similar to the one displayed by the nonvibrated
silo.

As we mentioned in Sec. I, the avalanche size s is the
number of particles fallen between two consecutive jams.
For the nonvibrated silo, the end of the avalanche is easily
detected, as once the silo is jammed the flow does not restart
by itself. In the vibrated case, we consider that the silo is
jammed whenever the outflow stops for a time longer than
100 s. We have seen that is extremely rare, for the vibrations
used in our experiments, that the silo resumes its discharge
after being jammed for more than this amount of time. Up to
a certain point, this value is arbitrary �in the sense that one
could have decided to wait for a longer time�. However, the
choice was made because the results presented here do not

FIG. 1. Experimental device. S: silo; V: pneumatic vibrator; N:
damping and isolation system �air cushions and valves�; P: photo-
sensor; A: compressed air duct; B: box; S: scales. The inset shows a
photograph �from the bottom� and a sketch of the cross section of
the changeable part in which the hole is bored.
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change significantly if a sufficiently long time cutoff is taken.
Of course, it must be understood that this value can change a
little with experimental conditions, such as �.

For each value of R, the size of about 3000 avalanches has
been measured for the vibrated and the nonvibrated silo. We
define ns�R ,�� as the probability of finding an avalanche of s
grains in a vibrated silo with an opening of size R and accel-
eration �. As can be seen in Fig. 3, the probability density
function of the avalanche size displays an exponential tail for
large avalanches. The comparison between the PDFs for the
vibrated and nonvibrated cases �shown in the same figure for

a particular value of R� reveals that the use of vibrations
increases the size of the avalanches. However, the shape of
the distribution remains exponential for large avalanches. We
have found this behavior for all the outlet sizes explored
�1.7�R�4.0�. We emphasize here that jamming has not
been observed for R�5 in the nonvibrated silo �9�.

The jamming probability JN�R ,�� is defined as the prob-
ability that the silo jams before N particles fall through the
orifice for given R and �. In other words, JN�R ,�� is the
probability of finding an avalanche smaller than N, i.e.,
JN�R ,��=�s=0

N ns�R ,�� �8�. In Fig. 4 we show the instance
J100�R ,�� obtained from the experiments with both the vi-
brated and the nonvibrated silo. J100�R ,�=0� is close to one
for small values of R and falls to zero rather sharply in the
interval 2.8�R�4.0. In 3D silos it has been shown that for
N→� the fall tends to a Heaviside function centered in R
�5 �8,9�.

The vibrated case displays the same trend; however, the
sharp decrease in J100�R ,�=0.22� occurs at lower values of
R �2.5�R�3.5�. It is clear that the vibration particularly
reduces the jamming probability in the range of opening
sizes where the transition from high to low jamming prob-
ability occurs.

For a stationary silo, the functional dependence of the
mean avalanche size �s	 with R was shown to be compatible
with a power-law divergence �9�:

�s	 =
C

�Rc − R�� . �1�

Let us assume this dependence also for vibrated silos. The
experimental data can be fitted with this equation, as shown
in Fig. 5. The values obtained for the fitting parameters are
C=2.3�0.7�105, Rc=5.52�0.03, and �=8.62�0.19 for
the nonvibrated case, whereas C=1.21�0.3�104, Rc
=4.6�0.1, and �=7.56�0.52 for the vibrated case.

The functional form of the jamming probability JN�R ,��
can be related to �s	. This was done for a nonvibrated silo as
explained in �11�. Hence, using Eq. �1�, an expression of
JN�R ,�� can be obtained:

FIG. 2. Signal from the photosensor at the silo exit: a value of 1
indicates that a particle is blocking the beam, zero means that the
beam is unobstructed. �a� Nonvibrated silo. �b� Vibrated silo. �c� A
zoom of the signal shown in �b� during the first three seconds, the
same time stretch as in �a�. All the data shown have been obtained
for an orifice size R=3.05.

FIG. 3. Probability ns�R ,�� of finding an avalanche of size s for
an orifice size R=3.02, without vibration ��=0, �� and with vibra-
tion ��=0.22, ��. The solid lines correspond to fits using Eq. �4�.
For the nonvibrated silo, the fitting parameters are p=0.981 and q
=0. For the vibrated silo p=0.981 and q=0.836.

FIG. 4. Jamming probability J100�R ,��, i.e., the probability that
the silo gets jammed before 100 particles flow through the outlet, as
a function of R, for the vibrated �� � and the nonvibrated �� � silo.
The lines correspond to a fit using Eq. �2�. The “weak jamming”
probability J100

w �R� for the avalanches within an avalanche is also
shown �� �.
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JN�R,�� = 1 − e−N�Rc − R��/C, �2�

which reveals an excellent agreement with the experimental
data �see Fig. 4� if the values of the fitting parameters ob-
tained from Eq. �1� are used.

IV. PROBABILISTIC MODEL FOR ARCH FORMATION
AND BREAKAGE

In order to describe the intermittent flow in a vibrated
silo, one can assume that arches may form at the exit just as
if the vibrations were absent. If the vibration breaks down
the arch, the discharge resumes. Eventually, an arch strong
enough can appear such that the vibration is not able to break
it, at least for a considerable amount of time. As explained
above, if an arch lasts for more than 100 s, it is assumed that
it is robust enough and the flow is then said to have been
stopped. Alternatively, it could also be conjectured that
somehow the vibration inhibits the formation of arches. A

reduced probability of arch formation would also result in
longer avalanches. We now focus on answering the question
of whether a gentle vibration diminishes the arch formation
probability or, instead, operates by destabilizing blocking
arches formed at the exit. Of course, a mix of the two mecha-
nisms may be in place; we can still investigate if one of them
dominates.

Let us extend a previous model �8� to the case of a vi-
brated silo. We introduce a bivariate probability distribution
to represent the behavior of a vibrated silo. We define p�R ,��
as the probability that a single grain passes through the outlet
without forming a blocking arch along with its neighbors
during continuous flow. �In the following we will drop the
functional dependence of p in the notation.� Therefore 1− p
accounts for the probability that a particle does get involved
in the formation of an arch as it reaches the outlet. This
probability p is assumed to be the same for all grains and
independent of discharge history.

Now, we introduce a variable q�R ,��, which represents
the probability that, once a blocking arch is formed, a par-
ticle flows through the exit as a consequence of the destabi-
lization of the arch due to the continuous vibration. The
probability q is a measure of the “arch breakage probability”
and does not take into account the time that destabilization
may require for a given arch. Therefore, the probability that
a blocking arch remains stable—i.e., no more particles will
ever flow out of the silo— will be 1−q. We assume that all
arches blocking a given orifice have the same breakage prob-
ability q for a given vibration intensity. This is a fair approxi-
mation since, for a particular R, the blocking arches are ex-
pected to have a typical size. Notice that this might not be
true in hoppers, where arches form at different positions
along the hopper walls, and hence a wide distribution of arch
sizes may be present for a given exit size.

The probability ns�R ,�� that an avalanche consists of s
grains can be obtained as

ns�R,�� = ps�1 − p��1 − q�
s!

�s − 0� ! 0!
←a single blocking arch forms and remains stable.

+ ps−1�1 − p�q�1 − p��1 − q�
s!

�s − 1� ! 1!
←an arch forms and breaks, then a new arch forms and remains stable.

+ ps−2�1 − p�q�1 − p�q�1 − p� ←two arches form and break, an arch forms and remains stable.

��1 − q�
s!

�s − 2� ! 2!

+ ¯

+ ps−k��1 − p�q�k�1 − p��1 − q�
s!

�s − k� ! k!
←k arches form and break, an arch forms and remains stable.

+ ��1 − p�q�s�1 − p��1 − q�
s!

0 ! s!
←s arches form and break, an arch forms and remains stable.

�3�

FIG. 5. Mean avalanche �s	 versus the dimensionless radius R
for the vibrated �� � and nonvibrated �� � silo. The solid lines
correspond to fits using Eq. �1� with the parameters given in the
text. The dotted line and the dashed line correspond to the values of
Rc used in the fits.
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In Eq. �3� the factor s ! / �s−k� !k! in each term accounts for
the number of permutations with repetitions of the s−k
events of probability p �in which a grain flows through the
orifice when there is no blocking arch present� and the k
events of probability �1− p�q �in which a grain forms a
blocking arch with its neighbors followed by the flow of a
grain due to arch destabilization�. These events can happen
in any order but always add up to the desired number s of
grains flown. Each of these permutations will correspond to a
set of k jams that are unstable under the applied vibration
separated by the continuous flow of grains. For example, the
last term in Eq. �3� corresponds to the extreme case where
the flow of every single particle is followed by the formation
of an arch that then breaks due to the vibration. As men-
tioned above, the avalanche finishes when the last clogging
happens and remains stable �probability �1− p��1−q��. From
Eq. �3�, ns�R ,�� can be written as

ns�R,�� = �1 − p��1 − q��
k=0

s

ps−k��1 − p�q�k s!

�s − k� ! k!

= �1 − p��1 − q��p + �1 − p�q�s. �4�

It is simple to show that p+ �1− p�q�1. Therefore, ns�R ,��
is a decreasing exponential function of s, in excellent agree-
ment with the experimental results shown in Fig. 3. We can
see that ns is properly normalized, i.e., �s=0

� ns�R�=1, since
this sum is a geometrical series with ratio r�1 and it con-
verges to one.

Thus, we can calculate the mean avalanche size defined as

�s	�R,�� = �
s=0

�

sns�R� . �5�

By inserting Eq. �4� in Eq. �5� we obtain a Gabriel’s staircase
�23�. Therefore

�s	�R,�� =
p + �1 − p�q

�1 − p��1 − q�
. �6�

V. ESTIMATE OF THE ARCH BREAKAGE
PROBABILITY

Equations �4� and �6� reduce to the expression for the
nonvibrated case �11� setting q=0. Equation �4� yields an
exponential form of ns for both vibrated �q�0� and nonvi-
brated �q=0� silos. In Fig. 3 we show the fit of the results for
the nonvibrated case using Eq. �4� with q=0 and p=0.981.
For the vibrated case the data are fitted using Eq. �4� with the
same value of p but q=0.836. This suggests that p may well
be independent of �, at least for gentle vibration, which in
turn implies that the probability 1− p of arch formation is not
affected by vibration. Hence, the enlarged sizes of the ava-
lanches obtained for the vibrated silo would be due solely to
the appearance of a probability q associated to arch destabi-
lization.

In what follows we estimate q assuming that p does not
depend on the external vibration. According to Eq. �6�, we
can obtain p�R ,�=0� from the mean avalanche size of the

nonvibrated silo as p�R�� p�R ,�=0�= �s	R,�=0 / �1+ �s	R,�=0�.
Thus, from Eq. �6�, q can be calculated for ��0 with the
mean avalanche size for both cases as

q�R,� � 0� =
�s	R,��0 − �s	R,�=0

�s	R,��0 + 1
. �7�

In Fig. 6 we represent with solid circles the values of q
obtained through Eq. �7� by using the measured values of �s	
for a vibrated and a nonvibrated silo. It is not surprising that
q increases with R, since big arches—needed to block big
orifices—are expected to be less robust against small pertur-
bations than small arches. The open squares in Fig. 6 corre-
spond to an independent estimate of q measured as explained
below.

VI. INTERNAL STRUCTURE OF AVALANCHES

It is possible to obtain an additional independent estimate
of the arch breaking probability, motivated by the observa-
tion of a behavior that has already been pointed out �Fig. 2�:
during the flow of an avalanche, short clogs are registered.
We have measured the time intervals �t during which no
beads cross the exit orifice. We represent in Fig. 7 the nor-
malized distribution of �t for two different values of R, and
these for a vibrated and a nonvibrated experiment. Let us
remark that it is not judicious to consider intervals much
shorter than the time it takes for a bead to traverse the orifice
due to gravity �which is t=
	 /g, about 0.02 s for the grains
considered here�.

The first noticeable feature in Fig. 7 is that for a nonvi-
brated silo, the probability of finding a time interval during
which the flow is temporarily stopped decreases abruptly
with �t �note the logarithmic scale in the plot�. With vibra-
tions, things are different. The histograms of Fig. 7 display a
finite number of events for large �t indicating that within the
avalanches longer intervals are present during which no
grain comes out from the exit orifice. These events were not
observed in the nonvibrated silo �nor in recent results ob-

FIG. 6. Probability q that a blocking arch is destabilized due to
the vertical vibration as a function of the opening size R. Results
obtained with the probabilistic model, in which p does not depend
on � �solid circles�. Results obtained from the analysis of the weak
jams �open squares�. The data correspond to several sets of experi-
ments; for some of them both methods were implemented, while for
others only one of the measurements was performed.
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tained in a 2D silo �24��. These long events suggest that there
are flow interruptions that might have resulted in the end of
an avalanche should the silo had not been vibrated. The dis-
tribution of �t smaller than 0.1 s shows similar behavior for
vibrated and nonvibrated silos. Clearly, this part of the dis-
tribution corresponds to the temporal scales associated with
the “interparticle” time intervals in the continuous flow �24�.
Figure 7 suggests that a temporal cutoff can be established to
separate the vibrated and the nonvibrated dynamics of a few
tenths of a second �where the distributions for the vibrated
and nonvibrated cases begin to differ�. We decided to take
�t=0.5 s as this cutoff. Although this choice is somehow
arbitrary, we checked that the results presented below do not
depend strongly on this value �for example, �t=0.25 s and
�t=1 s yield similar outcomes�.

Following this line of reasoning, let us call a weak jam all
the events corresponding to �t�0.5 s. Then we can readily
count the number of weak jams �jw� and take that value as an
indication of the number of times an arch has been formed
and broken due to vibration. Since the number of robust jams
�jr� corresponds to the total number of avalanches studied for
given R and �, q�R ,�� can be obtained by dividing the num-
ber of weak jams jw by the number of total jams �weak plus
robust�: q�R ,��= jw / �jw+ jr�.

In Fig. 6 the results for q�R ,�=0.22� obtained with this
direct measure are reported �open squares�. The agreement
with the values of q obtained from the probabilistic model
under the assumption of the independence of p from � is
reasonable. We then claim that the probability 1− p that a
particle forms a blocking arch along its neighbors at the time
of passing through the exit during the continuous flow does
not depend on the external vibrations applied to the system,
at least for the gentle vibration intensity we used. Therefore,
the main role of vibration is to break blocking arches once
they are formed.

It is now possible to measure the size of the avalanches
inside the avalanches, with which we refer to the amount of

material unloaded in the vibrated silo between two weak
jams, as explained above. From these results we obtain the
avalanche size distribution inside an avalanche and the cor-
responding weak jamming probability JN

w�R ,��. Since we as-
sumed that the cutoff chosen to identify weak jams is such
that these truly correspond to the jams that would be stable if
vibrations were absent, we expect the probability distribution
of those avalanches in a vibrated silo to display the same
properties as normal avalanches in a nonvibrated silo. In Fig.
4 we can see this is indeed the case, since J100

w �R ,�
=0.22��� � coincides with J100�R ,�=0� �� � .

VII. CONCLUSIONS

We have reported experimental results of the avalanche
size distribution and jamming probability in the discharge of
a vertically vibrated silo. The first result that becomes appar-
ent is that the presence of vibrations significantly increases
the size of the avalanches. Additionally, we have shown that
in a vibrated silo the discharge of grains is intermittent due to
the appearance of temporary blockages of the exit orifice.
Taking as a starting point a previous model for a nonvibrated
silo, we have extended it and explained the results by intro-
ducing a bivariate probability distribution taking into account
�a� the probability p that a particle passes through the outlet
without forming an arch with its neighbors during continu-
ous flow, and �b� the probability q that a particle flows
through the exit—once and arch has been formed—thanks to
the destabilization promoted by vibration. Assuming that p
does not depend on the presence of vibrations, which is a fair
assumption for gentle vibrations, the values of the mean ava-
lanche size for vibrated and nonvibrated silos provide a
straightforward estimation of q for different values of R. Be-
sides, a direct measure of q has been carried out by recording
the time interval within each avalanche during which grains
do not flow through the exit. The two measurements agree
remarkably well, indicating that the main effect of vibration
is the breakage of arches once they are formed without af-
fecting significantly the arch formation probability.

Additionally, the result of the monotonic increase in q
with respect to the outlet size displays an expected behavior:
the greater the arch, the more unstable against small pertur-
bations. Further measurements of the stability of arches must
be carried out for different vibration frequencies and strong
amplitudes to assess the full range of vibration parameters
for which this explanation is valid, i.e., a rigorous definition
of what a gentle vibration means must be provided.
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FIG. 7. Normalized histograms of the time intervals ��t� within
an avalanche during which there are no particles flowing through
the orifice. Closed �open� symbols represent the data obtained with
the nonvibrated �vibrated� silo for the values of R indicated in the
legend. For each R, measurements have been carried out within, at
least, 3000 avalanches.
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