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Dynamics of breaking arches under a constant vibration
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Abstract. Granular flow through an orifice can be suddenly halted by the formation of arches in the vicinity
of the outlet, which are stable under the action of gravity. They may be broken when an external driving (for
instance, vibration) is applied. With the aim of shedding light on the dynamics of arch destruction, we built an
experiment consisting of a vertical two-dimensional silo filled with monodisperse beads, to which a constant
vibration is applied. It was previously found that an important parameter to predict the robustness of the arch
is the angle between consecutive beads. We focus on long-enduring arches and study the angles among the
beads along time. We have found that in many cases the dynamics of the largest angle determines the breaking
of the arch; it does not only determine where the “weakest link” is, but also the process that leads to the final
destabilization. This is interesting because it can provide information about whether the flow will resume in a
well-defined time or not, which is especially useful for industrial processes that have to constantly deal with the

possible emergence of clogs.

1 Introduction

Clogging arches that stop the flow of grains at the exit ori-
fice of a silo are a nuisance in industry, and they are at
the same time a nice example of clogging in many other
systems [1]. It is known that under a sustained vibra-
tion, arches can be shattered alleviating the problem [2—4].
In that scenario flow becomes intermittent, alternating be-
tween clogs and flow intervals. Then, in order to character-
ize the flow, it becomes necessary to understand both the
clogging and unclogging processes. The first one has been
widely studied since 2001 [5] observing that the clogging
probability is constant over time yielding an exponential
distribution of the flowing times [6—11]. The unclogging
process, however, has shown temporal dependence and the
distribution of breaking times is compatible with a power
law decay [1, 2, 4]. The origin of this is still not fully un-
derstood but it could be related with aging, creeping mo-
tion or other complex slow dynamics [12]. Incidentally,
let us mention that this power law decay of the unclogging
times has been also observed in other systems such as col-
loids, sheep or pedestrians evacuating a room [1, 13, 14].
In previous works [4, 15], it was reported that the angle
¢ between adjacent beads of an arch (see Fig. 1) is an im-
portant variable to understand the unclogging process as it
affects the robustness of the mechanical structure. In fact
if the maximum angle in an arch ¢,,,, was larger than 180°
(that was called a defect) it was found a linear relationship
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between ¢,,,,» and the vibration intensity at which arches
break down [15].

Here we explore the dynamics of arches that collapse
when they are submitted to an external vibration. For the
vibration parameters used here, most of the arches collapse
in a very short time. We select those that last longer than a
certain threshold and break down before a temporal upper
bound set beforehand (mainly imposed by the experimen-
tal constraints). In Fig. 2, we show an example of how
much the beads have moved after 20 minutes of sustained
vibration; it can also be appreciated how the arch balls
move unevenly in space. This issue is important in deter-
mining how do arches evolve to resist the external forcing.

The paper is organized as follows, We initially sum-
marize the experimental methods. In the following section
we introduce the first results obtained. Finally, we make a
few concluding remarks about the future research.

Figure 1. Sketch which illustrates the definition of the angle
between adjacent beads ¢. It is the inner angle formed between
the straight lines connecting the center of a bead with the centers
of the two adjacent beads, all of them belonging to the arch. The
maximum angle ¢ in the arch is called ¢,,,,.
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Figure 2. The subtraction of two images of an arch, one before
and the other after enduring a sustained vibration for 20 minutes
(bright zones correspond to displacements of the beads).

Figure 3. Photograph of the experimental setup: A, shaker; B,
silo (the line points to the orifice); C: camera and lens; D: motor
to rotate the silo; E: led lighting; F: devices and computer (a
photograph of the arch is visible on the computer screen).

2 Experimental set-up and methods

The experimental set-up is the one used by Lozano ef al.
[4]. Tt consists of a two dimensional silo mounted on
top of an electromagnetic shaker (see Fig. 3). The silo
is filled with monodisperse steel beads that have a diam-
eter of 1 mm. It has an orifice in the middle, and so an
electric motor can turn the container to start anew with
another run. A camera records the zone near the orifice,
detecting the arches. The automated procedure starts with
grains flowing through the orifice; when an arch is formed
it is detected by a real time image analysis, the vibration
is switched on and the image acquisition begins. The run
stops when the arch breaks (or after 20 minutes of sus-
tained vibration if the arch has not been shattered by that
time).

The improvement and novelty needed for the present
measurements is both in the image acquisition stage and
in the image processing. In fact, we need as many images
as possible for long periods. We have written an ad-hoc

software to perform this task. With it, we are able to col-
lect snapshots with a standard video camera at a rate of
nearly 25 frames per second (the camera rate) for long pe-
riods of time. It should be noted that once in a while the
operating system flushes the buffer and a comparatively
long time lapse (up to a few seconds) between two con-
secutive images is found; but this only happens occasion-
ally after the experiment has run for many seconds, so this
is not really important because it only affects the descrip-
tion at long times —when fast processes are not important.
For short times, our temporal resolution is of about 0.05 s.
The longest time span during which we register images is
20 minutes, so the dynamic range covers four orders of
magnitude.

Images are time-stamped and stored in the hard disk,
where they are processed at another stage. We have imple-
mented a program for detecting the centres of the beads
with subpixel resolution. It was inspired in a code written
by M. Shattuck [16], in which the maxima of the convolu-
tion of a disk with the image provides the particles’ centres
(the disk size must be close to the size of the beads). With
our code a resolution of 0.1 pixels is attained; a better res-
olution is feasible, but we did not go further as the stability
of the silo during one run is about 1 micron (and 0.1 pixel
corresponds to 2 microns). The position changes of the
beads we track are typically two orders of magnitude big-
ger than this (see Fig. 2), so this resolution is enough four
our purposes. Note that the height of the base can slightly
shift up and down —this is barely visible in Fig. 2— due to
the vibration; this item has been dealt with in the image
processing stage.

3 Results

It was previously reported [4] that the time needed to break
an arch (¢,) follows a probability distribution displaying a
power law decay P(#,) « ¢,“. Incidentally, this means that
if the exponent « is smaller than two, the first moment of
the distribution does not converge and the average break-
ing time (#,) will depend on the size of the sample. It is
usually more convenient to work with the complementary
cumulative distribution function P(T > ¢,), because it is
less noisy; note that the power law tail for the cumulative
distribution has an exponent @ + 1.

Inspired by the fact that the force needed to break the
arches is related to the maximum angle found within the
arch at the beginning (when the vibration is switched on),
we have sought a dependence between #;, and this ¢,,,,.. We
have checked that the subpopulations of arches grouped by
Pmax also have such distributions [4]. For each one of these
classes, a power law tail can be fitted with an exponent that
is different for each group (see Fig. 4). Groups of arches
with a bigger ¢,,,, display both, a shorter breaking time
and a larger @. The fact that the distribution of #, is to a
great extent determined by ¢, at the moment of the arch
formation underscores the notion that the bead associated
to this angle will largely dominate the dynamics of the arch
breaking.

Assuming that this is so, and taking into account that
a larger ¢,,., leads to short-lived arches, one can further
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Figure 4. Complementary cumulative distribution function of
the breaking times (sometimes also called survival function): it
is the probability that an arch endures the vibration for a time
equal or longer than #,. Note the logarithmic scale. These data
have been obtained for R = 4.5 mm, f = 100 Hz and an accel-
eration of 2.6 g. The power law tails have been fitted (dashed
lines) using the method described in [17], giving the follow-
ing exponents (from left, bigger angles, to right, small angles):
a=4.1,4.1,2.6,2.05,2.1,2.1, 1.6.

hypothetise that

d¢
e M
(or alternatively, d¢/dt could be proportional to a growing
function of ¢, in which case Eq. 1 would be just a first
approximation). If this equation is valid, the dynamics of
dmax Will be the fastest. As changing the angle of one bead
would affect the angle of other beads, it can be concluded
that if the above statements hold, then the dynamics of the
arch is slaved to that of the bead associated to ¢, -

Some previous unpublished observations that we car-
ried out with a high speed camera suggest that indeed
arches break in a way that could be described as explained
above. In these inspections, we have seen that the bead
starting with ¢,,,, is usually the one that moves faster,
and the last stages of the breaking process give something
close to an exponential growth for ¢ vs. time. But only
weak arches (with a big ¢,,,,) were accessible to this sur-
vey, because the high speed camera is able to store just
a short time span —a few seconds. These are usually the
arches that have a big initial defect (a bead with a large
®max ), and consequently break after a short time span.

In the following we will consider the dynamics of
long-lived arches. We have fixed the size of the exit ori-
fice at 4.5 mm and recorded the formation of more than
three thousand arches, as explained in Sect. 2. Once the
arch was formed, the shaker was switched on, imparting
the whole silo a constant sinusoidal vibration with a peak
acceleration of 0.6 g (where g is the gravity acceleration)
and a frequency of 105 Hz. Of all these arches, 174 (just
over 5% of the total) withstood the vibration for more than

one minute and broke before 20 minutes; we selected these
for the following analysis.

After recording the images, we measured the angles
associated to each bead in the arch along time. As an ex-
ample, in Fig. 5, we plot the evolution of the angles of
the beads in two arches along time. The accuracy of ¢ at-
tained with our measurements is + 0.5°. Fig. 5 (a) depicts
the case of an angle with 5 beads that breaks slightly af-
ter two minutes (just after the photograph shown in Fig. 5
(b)). The bead associated to ¢,y is a defect (¢ > 180°),
and this angle increases monotonically during all the lifes-
pan of the arch, as shown in Fig. 5 (c¢). Moreover, the arch
breaks precisely there. Note also how d¢/dt grows bigger
as ¢ increases. This is a good example of an arch amenable
to be described with Eq. 1.

On the other hand, for the case displayed in Fig. 5 (d-f),
the bead starting with ¢,,,, is not the one where the arch
finally breaks down; another bead with smaller ¢ overtakes
it and governs the dynamics. Remark, however, that this
bead had already begun as a defect, and it is not the only
one; thus in this arch there is not a clearly dominant defect
governing the dynamics of the whole structure.

It is noteworthy that among the selected 174 arches,
138 (representing 79%) broke at the bead with ¢y, and
only 36 broke at a bead that was not the one sporting the
maximum angle when the vibration was switched on. Of
course, in these cases Eq. 1 does not hold (at least during
the whole lifetime of the arch). Note that this is in agree-
ment with the figures given in [15] which correspond to
another kind of independent experiments.

The dynamics of the beads in the zone close to the arch
(see Fig. 2) are also interesting. For example, although
there is an ordered arrangement due to the 2D geometry
(see Figs. 2 and 5), just over the arch this order seems
to be smaller. We cannot use bidisperse beads to avoid
this, but it would be interesting to study compaction in
that zone. We know from numerical simulations that flow,
stresses and local compaction does not change a lot if there
is a small amount of polydispersity. Particle shape should
not change a lot these results provided that the particles do
not have flat faces.

This opens a new landscape to be explored, namely,
how and why do some arches endure the vibration for a
long time. For instance, how many of the beads where
the arch breaks display the fastest dynamics? Do they all
begin as a defect? Are the motions of a// the beads corre-
lated and effectively slaved to the fastest one? Many more
data are needed to answer these questions, but the results
shown here demonstrate that the analysis developed can be
helpful to tackle them.

4 Conclusions

We have reported the first results of an experiment in
which we can record and analyze the dynamics of long-
lasting arches when submitted to an external vibration. We
have shown how in many cases the initial “weakest link”
(the bead with the maximum ¢) may determine the dynam-
ics of the whole arch. Moreover, it seems that at least in
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Figure 5. Evolution of the angles ¢ corresponding to the beads
in an arch along of time. (a) An arch just formed, before the
vibration begins. The maximum angle is indicated. Note that
the base of the arch (the beads at the left and right ends) are
not considered to belong to the arch. The white line joins the
centers of the arch beads. (b) The last photograph of the arch
before breaking. (c¢) The evolution of all the angles for the arch
shown in (a) and (b). Here the dynamics is “slaved” to ¢qy.
(d) Another arch just formed, before the vibration begins. The
maximum angle is indicated. (e) The last photograph of the arch
in (d) before breaking. (f) The evolution of all the angles for the
arch shown in (d) and (e). In this case, ¢, is not governing the
dynamics. Remark that cases like the latter are much scarcer than
the former. In plots (c) and (f), each shade corresponds to one
bead, and the thickness of the lines are approximately equal to the
experimental accuracy. The dashed horizontal line at ¢ = 180°
allows to identify defects.

some cases (see Fig. 5 (a-c)) the motion of the other beads
in the arch may be correlated to the motion of the fastest
one. In some other cases this is not so, and the dynam-
ics of these arches is not trivial and is not governed by the
biggest initial defect.

The analysis presented here may allow to identify
whether long-lived arches are born with a special configu-
ration, or whether they evolve to become more robust. And
it can also be helpful to determine if certain kind of mech-
anisms (for instance, stick-slip) are present in the process.
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