
Clogging and unclogging of many-particle systems passing through a bottle-
neck

Iker Zuriguel1,�, Álvaro Janda2, Roberto Arévalo3, Diego Maza1, and Ángel Garcimartín1

1Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
2Particle Analytics Ltd, Alrick Building, Max Born Crescent, The King’s Buildings, Edinburgh, EH9 3BF, UK
3Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 25
Nanyang Link, 637371, Singapore

Abstract. When a group of discrete particles pass through a narrowing, the flow may become arrested due to the

development of structures that span over the size of the aperture. Then, it is said that the system is clogged. Here,

we will discuss about the existence of a phase diagram for the clogged state that has been recently proposed,

arguing on its usefulness to describe different systems of discrete bodies ranging from granular materials, to

colloidal suspensions and live beings. This diagram is built based on the value of a flowing parameter which

characterizes the intermittent flow observed in all these discrete systems provided that there is an external or

internal energy supply. Such requirement, which is necessary to destabilize the clogging arches, is absent in a

standard static silo, which is therefore examined as a particular case. This view will help to understand some a
priori inconsistencies concerning the role of driving force in the clogging process that have been found in the

last years.

Consider a container full of grains with an orifice at

the bottom which is continuously shaken up and down.

If the relative size of the outlet with respect to the parti-

cles is not too large, an arch can be spontaneously devel-

oped arresting the flow. If the shaking intensity is strong

enough, this clog could be eventually destroyed resuming

the flow [1]. As a result, we have an intermittent flow of

grains where avalanches of grains alternate with lapses of

time during which the orifice is blocked. In a series of pa-

pers, it has been reported that the avalanche duration distri-

bution decays exponentially suggesting a Poisson process

governed by a constant probability of clogging over the

whole duration of the avalanche [2, 3]. On the other hand,

the lapses of time during which the orifice is blocked have

been proved to display a power-law decay [3, 4] indicating

a temporal dependence of the probability that the arches

become destabilized. The origin of the power-law decay

for the unclogging process is still not fully understood [5]

although it could be related with creeping motion [6] due

to friction.

1 Flowing parameter

Considering the different distributions observed for the

clogging and the unclogging processes, the intermittent

flow of grains through apertures (Fig. 1) can be charac-

terized by the the flowing parameter Φ which is nothing

but the average fraction of time that the grains are flowing:

�e-mail: iker@unav.es

Φ =
〈t f 〉

〈tc〉 + 〈t f 〉 (1)

where 〈t f 〉 is the average duration of the avalanches and

〈tc〉 the average duration of clogs [4]. Note that 〈t f 〉 is
always well defined as it corresponds to the first moment

of an exponential distribution. Oppositely, 〈tc〉 may not be

defined: as stated above the clogging duration distribution

always exhibits a power law decay t−αc , the first moment of

which only converges if α > 2.

Having this in mind we can distinguish among three

different scenarios. When the flow is continuous, and the

silo never clogs, the flowing time is equal to the total mea-

suring time, hence Φ = 1 (Fig. 1a). When intermittencies

appear Φ < 1 and in this case, we can distinguish two

situations. If the distribution of clogging times has an ex-

ponent α > 2, then the average clogging time 〈tc〉 is well
defined and 0 < Φ < 1 (Fig. 1b). Otherwise, when α ≤ 2,

the average of this distribution is not defined. In practi-

cal terms the measured 〈tc〉 will increase with the temporal

window in which the measurements are performed. In an

hypothetical infinitely long measurement, one would ob-

tain Φ = 0 (sketched in Fig. 1c). At this point it should

be stressed that differentiating among the scenarios repre-

sented in Fig. 1b and Fig. 1c is not straightforward unless

the distribution of clogging times is obtained with suffi-

cient statistical significance. To this end, the method in-

troduced by Clauset et al. [7] has been employed in all

the cases reported here. The flowing parameter Φ has an

additional advantage from a practical point of view: if we
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Figure 1. Scheme of the different flow situations that can be observed in the discharge of a vibrated silo. At each time the system is

either flowing (signal = 1) or arrested (signal = 0). On the right, the value of the flowing parameter Φ that characterizes the type of

flow. Φ = 1, continuous flow; 0 < Φ < 1, intermittent unclogged flow; and Φ = 0, clogged system. Note that, as explained in the

text, the differences among the two last scenarios cannot be recognized unless a statistical analysis of the clogging time distribution is

performed.

consider the flow rate during the flowing interval (Wi) we

can straightforwardly obtain the average flow rate (consid-

ering intermittencies) as W = ΦWi. This is so because

the flow rate during the flowing interval seems to be prac-

tically independent on the vibration amplitude (assuming

that this is not too large) [2]. In addition, this Wi corre-

sponds to the flow rate it will be obtained in an static silo,

a topic that has been largely studied from Beverloo [8] un-

til very recently (see [9] and references therein).

In Fig. 2 we show results of the flowing parameter

versus the outlet size for a hopper vibrated continuously at

the base and discharged eccentrically as explained in [3].

Different symbols are used for different vibration intensi-

ties Γ. The excitation can be approximated to a sinusoidal

oscillation which intensity is:

Γ =
A4π2 f 2

g
(2)

where A is the amplitude, f the frequency, and g the
gravity acceleration. In our works, we typically set a con-

stant frequency and change A. In Fig. 2 the flowing param-

eter was calculated by measuring the average of both, the

flowing and the arrest intervals. In all the cases, special

attention was paid to the distribution of clogging times.

For the case of α ≤ 2 the value for Φ was set to zero

even though, in the finite temporal window in which the

measurement was performed, some flowing intervals were

observed, as in Fig 1c.

2 Unclogging diagram

From the results displayed in Fig. 2 it becomes evident

that for all the intensities of vibration studied, a transition

from Φ = 0 to Φ > 0 occurs for a given outlet size. As it

could be anticipated, the smaller Γ is, the larger the outlet

at which the transition takes place. From these data, we

can sketch a 2D phase diagram such as in Fig. 3 where

we use stars to represent points where Φ = 0 and open

circles for Φ > 0. The dashed curve suggests the possible

transition between two phases: a clogged one whenΦ = 0,

and an unclogged one whenΦ > 0. Note that the latter can

be intermittent or continuous depending on wether Φ < 1

or Φ = 1. The study of such intermittent to continuous

flow transition is not the aim of this manuscript; instead

we will focus in the transition from unclogged to clogged

based on the properties of the intermittent flow.

Indeed, the same features of the intermittent flow de-

scribed above have been observed in other bidimensional

silos, and also in disparate systems such as colloids flow-

ing through an orifice, sheep passing through a narrow gate

and pedestrians evacuating a room through a narrow door.

In all cases, the distribution of flowing times is exponen-

tial and the one of the clogging times displays a power law

decay. Of course, depending on the system, the variables

affecting the value of the exponent α are different (table

1).

In a 2D flat bottomed silo vibrated as a whole we found

that the transition from clogged to unclogged state can be

achieved by increasing the outlet size and increasing the

external vibration [4]. This confirmed the results presented

above for the 3D case and enlarged the scope of this phe-

nomenon, which seems to occur independently of the di-

mensionality of the problem, the geometry of the outlet

(symmetric orifice in a flat bottom or asymmetric hopper)

and the nature of the vibration (local or global). In ad-
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dition, in this 2D flat bottomed silo we observed that the

transition from clogged to unclogged can be also attained

by reducing the amount of grains above the orifice. This

suggests that the weight of the material above the arch pre-

vents the clog destruction (for a given vibration intensity

and outlet size). To confirm this idea, we performed in-

dependent experiments in a tilted 2D hopper which incli-

nation (measured by the angle that the silo plane makes

with the gravity direction) could be varied at will. Inter-

estingly, for a given value of shaking intensity and outlet

size, the system was clogged when the silo was vertical

and the transition to unclogged appeared when the incli-

nation became more horizontal. This confirms that arches

with smaller load above them are broken easier than the

ones with more load.

As stated above, another system in which the intermit-

tent flow was observed was a suspension of colloidal par-

ticles passing through a small orifice. Simulations were

performed with the lattice-Boltzmann method, incorpo-

rating 128 discrete solid spherical particles (more infor-

mation about the numerical method can be found in [4]).

The fluid was submitted to a uniform force perpendicular

to a wall with a circular orifice at the center, mimicking

a pressure driven flow that pushes the colloidal particles

through an opening. As a consequence, an accumulation

of the colloidal particles was observed in the neighbour-

hood of the orifice which eventually caused the formation

of a clog. Long time simulations were required to obtain

sufficient statistics of the clogging events. To this end,

in each simulation the colloidal particles were allowed to

cross several times the system size, being reinjected at the

backwards of the system each time they crossed the outlet.

For each simulation conditions, the passage time of around

105 colloidal particles was registered. Two different sce-

narios were simulated with different temperatures (which

controls the interplay between colloidal particle fluctua-

tions and the intensity of the driving force). The flow was

observed to be intermittent, displaying (as in the case of

silos) power law decays for the clogging times and expo-

nential distributions for the flowing intervals. As expected,

low temperatures lead to clogged states (φ = 0, α ≤ 2), and

high temperatures to unclogged states (φ > 0, α > 2).

With the idea of further extending this description to

other systems, we performed experiments of sheep enter-

ing a barn through narrow gates. Details of these tests

can be found in [4, 10–12] but they basically consisted

on registering the entrance (one per day) of 100 sheep to a

barn where food is placed. The recording was performed

with two videocameras (one inside the barn and the other

outside). From the movies, spatiotemporal diagrams were

made in which the passage time of each sheep was mea-

sured. Again, the intermittent flow was studied evidencing

power law decays for the clogging times and exponential

distributions for the flowing intervals. For safety reasons,

we never observed a transition to a clogged phase, but sev-

eral parameters were shown to affect the exponent of the

power law. The first one was the gate size: the smaller the

gate, the lower the exponent, hence suggesting that for a

sufficiently small door, it would be possible to reach α ≤ 2.

Figure 2. Flowing parameter Φ versus the rescaled outlet size D
for different values of vibration intensity Γ in a locally vibrated

eccentrically discharged hopper as the one described in [3].

Figure 3. Phase diagram for the plane Γ − D obtained for a lo-

cally vibrated eccentrically discharged hopper [3]. Stars indicate

points where Φ = 0 (clogged phase) and circles show positions

where Φ > 0 (unclogged phase). The dashed line is a guide to

the eye suggesting a possible boundary between the two phases.

Another one was the presence of an obstacle in front of the

door. Interestingly, if the obstacle is placed at an appropri-

ate position the exponent increases and the flow improves

(there are fewer clogs and they last less time). Of course,

if the obstacle is too far from the door, its effect is negli-

gible and if it is too close it could be even detrimental as

clogs appear between the obstacle and the door (instead of

at the very door) [11]. The effect of the obstacle in the flow

rate through narrow doors has been traditionally attributed

to the waiting-room effect: the obstacle controls the in-

flow of animals preventing overcrowding the constriction

region. Interestingly, we show that it also has an effect

on facilitating resuming the flow, surely due to a pressure

reduction at the door which may also be linked to an in-

crease of sheep mobility that can lead to a raising of sheep

"temperature". The final variable that was shown to af-

fect the exponent is the competitiveness of the sheep [12].
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Table 1. Parameters that have been observed to affect the exponent α of the power law decay of clogging times in the different systems

studied. Arrows indicate the direction in which the variables have to be modified in order to increase α and improve the flow. The

variables marked in bold are the ones in which the transition from clogged (α ≤ 2, φ = 0) to unclogged (α > 2, φ > 0) has been

observed. In the other ones, we expect such transition but it cannot be attained experimentally for safety reasons. All the variables in

each column have been grouped with a single name following the spirit of [15]. Italics are used to denote that the obstacle effect is not

definitively proved to be linked with a reduction of compatible load or an increase of the temperature.

Typical length (Λ) Incompatible Load (IL) Compatible Load (CL)

2D granular silo ↑ outlet size ↑ external global vibration ↓ height of the layer of grains
2D granular hopper ↓ inclination
3D granular eccentric hopper ↑ outlet size ↑ external local vibration
colloids ↑ temperature
sheep ↑ gate size placing an obstacle placing an obstacle & ↓ motivation

pedestrians (simulations) ↑ gate size ↑ internal noise ↓ motivation
pedestrians (experiments) ↑ gate size ↓ motivation

Indeed, tests performed during warm conditions (summer

time at 3 pm Spanish time) lead to a reduction of clogging

events compared with standard measurements carried out

in cooler circumstances (in the morning during the rest of

the year). This was attributed to a noticeable reduction of

the eagerness of sheep in warmer days which implies that

the higher the competitiveness of the animals the less ef-

ficient is the entrance. Indeed, this behavior was already

predicted for human evacuation through narrow doors by

Helbing et al. [13] and was given the name of "Faster is

Slower" suggesting that the faster the pedestrians aim to

escape, the slower is the process.

In other series of experiments performed in the Univer-

sity of Navarra, this "Faster is Slower" effect was proved

experimentally with real people [12]. A group of around

80-90 volunteers were instructed to evacuate a room with

different competitiveness. This was quantified by mea-

suring the velocity of the people at the beginning of the

evacuation (before the density in front of the door built up

and clogs started to appear) and a good correlation was

observed: the higher the competitiveness, the higher the

initial velocity. In addition, pioneer pressure measure-

ments were performed at the doorjamb, also showing an

increase of the registered values as the competitiveness

grew higher. As in previous cases, intermittencies in the

flow rate were analysed and the outcomes evidenced an

exponential tail of bursts sizes and a power law decay for

the clogging times. Moreover, pedestrian evacuations also

evidenced that the larger the door size the higher the expo-

nent of the power law tail [14] as it happens for sheep and

granular media.

Finally, numerical simulations of pedestrian evacua-

tions were used to confirm that both, reducing competi-

tiveness and enlarging the door size, improve the flowa-

bility (as they lead to an increase of the exponent of the

power law decay). In addition, these simulations revealed

that increasing the internal noise of the simulated bodies

did also produce an increase of the exponent of the power

law decay. Contrary to the experiments, these simulations

could be extended to situations where clogs were much

more stable, and the transition to α ≤ 2 (φ = 0) attained.

All the findings concerning the ways in which different

variables affect the exponent value in such disparate sys-

tems are summarized in table 1. The arrows indicate the

direction in which the variables should be tuned to increase

α and bold letters are used to stress the cases where the

transition from clogged to unclogged has been obtained.

Considering these outcomes, we have grouped the differ-

ent specific variables in three general groups. In the first

column of table 1, we place those variables that are related

to the size of the orifice (or the relation between the size of

the orifice and the size of the particles). In the second col-

umn we find parameters that are related to the excitation

that particles intrinsically have or at which they are sub-

mitted. This is a kind of temperature or, more generally

speaking, an Incompatible Load (IL) in the sense that it is

a stress made in a direction which is different from that

of the force that caused the blockage. Finally, in the third

column we have grouped variables related to a Compati-
ble Load (CL) indicating that there are forces acting in the

same direction that the one driving the system towards the

clogged situation. Note that the terminology of Compati-

ble Load and Incompatible Load has been taken from [15]

which was indeed the work that inspired A. Liu and S. R.

Nagel to propose the groundbreaking idea of the jamming

phase diagram in [16].

Considering the grouped variables in table 1 and the

shape of the phase diagram obtained for the plane Γ−D in

Fig. 3, we can speculate about the existence of a clogging

phase diagram as the one sketched in Fig. 4. The variables

at play will be the ones mentioned above: a lengthscale,Λ;

the Incompatible Load, IL; and the Compatible Load, CL.

Increasing Λ and IL, and reducing IL leads to a transition

from the clogged to the unclogged phase. Therefore, in

analogy with the packing fraction in the jamming diagram

[16], the compatible load is written as 1/CL in the clogging

phase diagram. It is important to remark that this clog-

ging phase diagram is just a concept which is proposed

based on the findings obtained in many different systems.

Now, it becomes necessary to characterize quantitatively

each of the diagram planes with the aim of assessing the

kind of transition that clogging is. It would not be sur-

prising that the specific nature of the transitions depend

on the system. However, the unified proposed scenario al-

lows to point out some generic issues that are, in our opin-

ion, relevant. The presence of a characteristic length scale
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Figure 4. Clogging phase diagram proposed in [4]. Within the

light surface the system would be in a clogged phase and outside

it, in an unclogged phase. The generic variables are the Length

Scale, Λ; the Incompatible Load, IL; and the Compatible Load,

CL.

stresses the finite-size nature of clogging, where the out-

let size competes with the scale of the structures formed

near the outlet. Surely, such a scale will strongly depend

on the specific properties of the many-body system we are

dealing with: cohesive or faceted grains [18–22], for ex-

ample, will imply a larger characteristic size. The insight

gained in this work also allows us to explain the increased

stability of clogs exhibited by suspensions when are sub-

jected to higher fluid velocities [17] or helps to understand

the origin of Faster is Slower effect found in pedestrian

dynamics.

3 The static silo as a special case

Up to now, we have described the intermittent flow in a

vibrated silo and defined a phase transition depending on

whether the first moment of the distribution of clogging

times converges or not. Then, we have extended the anal-

ysis of this property of the intermittent flow to other differ-

ent systems leading to the proposal of a generic clogging

phase diagram. Now, we can go back to the case of the

silo and study what it seems to be the simplest case of a

standard non-vibrated one. The first issue that becomes

evident is that, once there is an arch that blocks the out-

let, the flow becomes forever arrested. In practical terms,

this constitutes a drawback as the distribution of clogging

times is not accessible any more: all clogs last an infinite

time. Therefore, it could naively thought that the problem

is simpler and, in order to decide if we are in a clogged

phase or not, it suffices to build a silo with an orifice at

the bottom and see if, eventually, there is an arch that ar-

rests the flow. Paradoxically, the situation is much more

complex than expected and, despite the numerous efforts

devoted to unveil if there is a transition from clogged to

unclogged regimes, there is not a robust and definitive an-

swer yet.

At this time, it has been shown that both the avalanche

duration and the avalanche size distributions display an

exponential tail analogous to the flowing times interval

distribution observed in the vibrated silo [23–35]. This

exponential tail, which extends to other systems such as

fluid driven particle flow [36, 37] has been explained in

terms of the existence of a constant probability of clogging

[28, 38, 39]. Only for the case of very elongated orifices

(slits) a power law decay was observed which was justified

as a convolution of many exponential distributions with

different exponents [40].

Concerning the existence of a transition from a

clogged to an unclogged phase, the most studied variable

is the mean avalanche size 〈s〉 which has been shown to

abruptly increase with the outlet size [24]. Remarkably,

in a three-dimensional silo an augment of the outlet di-

ameter from D = 2 to D = 5 (measured in number of

particles’ diameters) leads to an increase of the avalanche

size in around 7 orders of magnitude. The first fitting pro-

posed to explain this sudden growth was a critical power

law that diverges at a given critical value DC . This im-

plies that, above this value, clogging events are not possi-

ble. Subsequently, it was proposed that other fittings were

equally valid. In particular it was suggested that 〈s〉 could
grow exponentially: eCD2

in a two-dimensional system and

eCD3

in a three-dimensional one (where C is a constant)

[30]. For the two-dimensional case there seems to be a

consensus about the appropriateness of both fittings, and

indeed there are models that justify only the nondivergent

approach [31, 32]. Otherwise, the three-dimensional silo

is still controversial as some results plea in favor of the

nondivergent scenario [32] whereas others [31] evidence

that the eCD3

fitting is not valid.

Having this controversy in mind and the methodolog-

ical difficulty we find to define the transition, we can still

see how the static silo could fit into the generic frame-

work presented in Fig. 4. Clearly, if such transition ex-

ists, it must be abrupt as the flowing parameter could only

take values of Φ = 0 (if there is clogging) or Φ = 1 if

there is not clogging. The intermittent unclogged regime

(0 < Φ < 1) does not exist as, once the silo clogs, nothing

can resume the flow. This is so because the Incompatible

Load (vibration) is 0 due to the absence of external vibra-

tion. At this point we would like to note that previous to

the arrest of the flow, the energy of the particles within the

silo can be considerably large. Therefore, if we want to

strictly explore the plane IL = 0, an experiment where the

grains are extracted without velocity (in a quasistatic way)

is necessary.

A possibility that has been explored in the recent years

is to increase the driving force (i.e. the gravity) and see

the effect on the clogging probability. This has been done

by means of numerical simulations [33, 34] in a 2D non-

vibrated silo. In both works, we used soft-particle molec-

ular dynamics simulations of equally sized disks. The

restoring force in the normal direction of collision depends

linearly on the particles overlap ξ = d − ri j, with stiffness
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Figure 5. Average avalanche size (in logarithmic scale) versus

the external field a measured in units of the gravity acceleration

g. Numerical results, obtained with the model explained in [34]

are displayed for for a 2D silo with D = 5.

kn = 105(mg/d), where d = 1 mm is the particle diameter,

m = 1 is the mass and ri j the distance between the centers

of the particles. Additionally, there is a dissipative force

proportional to the relative normal velocity of the collid-

ing grains, with damping parameter γn = 300(m
√
g/d).

We implement static friction placing a spring in the di-

rection tangential to the normal joining the centers of the

particles. The elongation of this spring is obtained inte-

grating the relative velocity of the surfaces in contact. The

parameters are kt = (2/7)kn and γt = 200(m
√
g/d). The

friction coefficient is set to μ = 0.5, and the gravity to a
times the value of g. In order to optimize the computing

time, we use a integration step δ = 10−4
√

d/g for simula-

tions with a � 1. For a � 3 the integration step is δ/3, and
for simulations at a � 6 and a � 10 we use a step of δ/6.
For simulations at a � 10−3 we increase the time step to

10δ to assure that collisions are simulated with sufficient

accuracy. Importantly, note that in the different simulated

scenarios the values of kn, kt, γn, and γt were constant (in-

dependent on the value of a). Also, it should be stressed

that the selected value of kn assures that in all the simu-

lations the elastic deflections are very small compared to

particle radii.

Despite that within this framework one may expect

that results obtained with different driving forces might

not depend on gravity (dimensionless results should only

depend on dimensionless combinations of the input pa-

rameters) it is observed that increasing gravity leads to an

increase of the mean avalanche size, i.e. a reduction of

clogging probability [33, 34]. Indeed, this increase of the

avalanche size with gravity depends on the outlet size (the

larger the outlet the stronger the effect) and is not very

pronounced: for the largest outlet size studied (Fig. 5)

an increase of 〈s〉 in one order of magnitude is obtained

by increasing the driving force a in four orders of magni-

tude (from a = 10−3 to a = 10 times the gravity value).

The origin of this increase was discarded to be caused by

Figure 6. Numerical results of the average avalanche size (in

logarithmic scale) versus the kinetic energy Ek within the whole

system for different outlet sizes as indicated in the legend.

the fact that the higher the external field, the stronger the

weight that the arches have to resist [33]. Instead, it was

argued that the origin was related to the increase of the av-

erage kinetic energy of the flowing grains caused by the

augment of the gravity which is, perhaps, not compen-

sated by a corresponding augment of the dissipation (re-

call that both dissipative terms γn and γt were chosen to

be constant). In this sense, it was proposed that two con-

ditions must be fulfilled in order to observe the clogging

phenomenon: 1) an arch should be formed at the orifice; 2)

the arch should resist until all the kinetic energy in the sys-

tem dissipates. Increasing the driving force leads to a lin-

ear increase of the kinetic energy of the grains that has to

be dissipated and therefore to an increase of the probabil-

ity that an arch gets destabilized before the whole system

comes to a rest. Based on this idea, in Fig. 6 we repre-

sent the mean avalanche size (in logarithmic scale) versus

the square root of the total kinetic energy of the grains

within the silo. Clearly, for all the outlet sizes the higher

the kinetic energy, the larger the avalanche size. In addi-

tion, it is observed that there seems to be a limit avalanche

size when the kinetic energy vanishes (for very low driving

forces). This limit avalanche sizes clearly depends on the

outlet size. Nevertheless, the growth rate of the avalanche

with the kinetic energy, seems to be rather independent on

the outlet size, yet a small dependence has been observed:

the higher the outlet size is, the faster is the growth rate.

From all these numerical outcomes, it was concluded

that in a static silo the higher the driving force the larger

the avalanche size. This somehow contradicts the be-

haviour expected from the clogging transition diagram

proposed in Fig. 4. Indeed, it can be definitively stated

that in a static silo, faster is faster, and also the faster the

grains flow, the less likely that a clog develops. Having

said that, it is also true that gravity does not play a crucial

role in clogging development if it is compared to the effect

that it has on the flow rate [41]. Indeed, the most important

parameter determining clogging is the outlet size: increas-
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ing the outlet size from 4.5 to 5 has a stronger effect in

the avalanche size than increasing the driving force from

a = 10−3 to a = 10. In any case, the fact that the driving

force effect is related to the kinetic energy of the grains

suggests that care should be taken when looking at the re-

sults of 〈s〉 vs the outlet size in the traditional way. And

this is so because when we modify the outlet size we are

increasing the required size of the clogging structures, but

we are also increasing the kinetic energy within the system

which is related with the above-mentioned probability of

destabilization of an arch.

4 Conclusions

In this manuscript we have explained the origin and fea-

tures of a recently proposed clogging phase diagram.

This phase diagram differentiates among clogged and un-

clogged phases based on a statistical property of the flow

intermittencies: in some situations the mean time of the

lapses during which the flow is arrested cannot be defined,

as the first moment of the distribution does not converge.

The origin of this non-convergence hinges on the distri-

bution of these clogging times which has been shown to

be compatible with a power law decay. Independently of

whether it is or not a power law, the distribution of clog-

ging times is undoubtedly not an exponential as it would

be expected if the probability that the arch becomes desta-

bilized were constant over time. Otherwise, the unclog-

ging probability decreases with time suggesting some kind

of aging of the blocking structure which is probably asso-

ciated to the dynamics of the particles behind it. Let us

note that in a recent paper where clogging was observed in

more diluted situations, the unclogging time distributions

were observed to decay exponentially [42]. This reflects

that the unclogging process in such a dilute situation is

different to the dense systems analysed here.

The clogging phase diagram is useful to understand

several features of the flow through constrictions of many

different systems, ranging from colloids to pedestrians. In

such systems, the common ingredients that are necessary

to observe the clogging transition seem to be: 1) a bot-

tleneck small enough in order to allow the formation of a

geometrical structure spanning over its size; 2) a force that

drives the system towards the outlet which is also neces-

sary to stabilize the clogging structures; and 3) an inter-

nal or external agitation that is able to break the clogging

structure and resume the flow. Paradoxically, if the latter

condition is not fulfilled the problem becomes more com-

plex as the arches cannot be destroyed and the strategy fol-

lowed to study the transition (which is basically focused in

the unclogging process) is not useful anymore. Otherwise,

in a static silo the only process that can be studied is the

clogging one.

At this point let us stress the importance of separating

both processes, clogging and unclogging, to fully under-

stand the dynamics of the flow of particles through bottle-

necks. Clogging seems to occur randomly, with a proba-

bility that does not depend on time, whereas unclogging

reveals temporal dependence. Indeed, distinct variables

may affect both processes in different ways. For exam-

ple, increasing the orifice size always improves the flow,

preventing clogging and facilitating unclogging. However,

the effect of increasing the driving force in the flow is not

unique: it is beneficial because it prevents the development

of clogging (as in the static silo), but it is also prejudicial

because it precludes unclogging as the formed arches are

stronger.

This different effect of the driving force in the clogging

and unclogging processes causes the Faster is Slower ef-

fect. For low driving forces, the flow rate augments with

it as the velocity of the particles increases (and clogging

decreases). But eventually, for a given driving force, the

arches that form become so strong that the dynamics be-

comes controlled by the unclogging process. Therefore,

increasing the driving force leads to a reduction of the

flow rate. From this reasoning, it becomes obvious that

in a static silo, Faster is Slower cannot be observed as this

effect is linked to the unclogging process.
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