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Abstract. Aerosol particles are an important part of the Earth climate system, and their concentrations are spa-
tially and temporally heterogeneous, as well as being variable in size and composition. Particles can interact
with incoming solar radiation and outgoing longwave radiation, change cloud properties, affect photochemistry,
impact surface air quality, change the albedo of snow and ice, and modulate carbon dioxide uptake by the land
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and ocean. High particulate matter concentrations at the surface represent an important public health hazard.
There are substantial data sets describing aerosol particles in the literature or in public health databases, but they
have not been compiled for easy use by the climate and air quality modeling community. Here, we present a new
compilation of PM2.5 and PM10 surface observations, including measurements of aerosol composition, focus-
ing on the spatial variability across different observational stations. Climate modelers are constantly looking for
multiple independent lines of evidence to verify their models, and in situ surface concentration measurements,
taken at the level of human settlement, present a valuable source of information about aerosols and their human
impacts complementarily to the column averages or integrals often retrieved from satellites. We demonstrate a
method for comparing the data sets to outputs from global climate models that are the basis for projections of fu-
ture climate and large-scale aerosol transport patterns that influence local air quality. Annual trends and seasonal
cycles are discussed briefly and are included in the compilation. Overall, most of the planet or even the land
fraction does not have sufficient observations of surface concentrations – and, especially, particle composition –
to characterize and understand the current distribution of particles. Climate models without ammonium nitrate
aerosols omit∼ 10 % of the globally averaged surface concentration of aerosol particles in both PM2.5 and PM10
size fractions, with up to 50 % of the surface concentrations not being included in some regions. In these regions,
climate model aerosol forcing projections are likely to be incorrect as they do not include important trends in
short-lived climate forcers.

1 Introduction

Intergovernmental Panel on Climate Change (IPCC) reports
(IPCC, 2021; Gulev et al., 2021; Szopa et al., 2021) and other
community assessments have highlighted the role of uncer-
tainties in human-induced changes in aerosol concentration
and composition in limiting our ability to project future cli-
mate. Aerosol particles are also a major contributor to air pol-
lution, which reduces life expectancy and quality of life (Bur-
nett et al., 2018). Aerosol particles are suspended liquids or
solids in the atmosphere originating from diverse natural and
anthropogenic sources and are composed of a wide variety of
chemicals (e.g., sea salts, dust, sulfate, nitrate, black carbon,
organic carbon). Particles interact with incoming solar radi-
ation and outgoing longwave radiation, change cloud prop-
erties and lifetimes, and modify atmospheric photochemistry
(Mahowald et al., 2011; Kanakidou et al., 2018; Bellouin et
al., 2020). Once deposited on the surface, they can modify
land and ocean biogeochemistry, as well as the albedo of
snow and ice surfaces (Mahowald et al., 2017; Hansen and
Nazarenko, 2004; Skiles et al., 2018). Satellite remote sens-
ing retrievals provide important information about the tem-
poral and spatial distribution of aerosol particles, but chal-
lenges remain in quantifying the aerosol size and chemi-
cal composition (Kahn et al., 2005; Tanré et al., 1997; Re-
mer et al., 2005; Castellanos et al., 2024; Marshak et al.,
2021). In addition, the AERONET surface remote sensing
network provides some information about the loading, size,
and absorption of aerosol properties in relation to compo-
sition (Holben et al., 2001; Dubovik et al., 2002; Schuster
et al., 2016; Gonçalves Ageitos et al., 2023; Obiso et al.,
2024). Both the magnitude of the aerosol effects on climate
and, sometimes, their sign are dependent on the composition
and size of particles (Mahowald et al., 2011, 2014; Bond et

al., 2013; IPCC, 2021). In addition, one cannot understand
the impact of humans on aerosol particles without identify-
ing the sources of particles, which determine their chemical
composition. Obtaining information about the composition
and size of particles in many cases requires in situ observa-
tions, which are often limited in space and time (Hand et al.,
2017; Philip et al., 2017; Yang et al., 2018; Collaud Coen et
al., 2020).

The climate and aerosol modeling community, especially
under the auspices of AeroCom, has compiled data sets and
organized comparison projects that have provided substan-
tial information to improve aerosol models (Huneeus et al.,
2011; Textor et al., 2006; Dentener et al., 2006; Schulz et
al., 2006, 2012; Gliß et al., 2021) or knowledge of aerosol
impacts like cloud condensation nucleation (Laj et al., 2020;
Fanourgakis et al., 2019). However, most of the available data
come from North America and Europe (e.g., Szopa et al.,
2021; Reddington et al., 2017). In addition, previous compi-
lation studies have focused primarily on understanding fine-
aerosol particles (here defined as particles with a diameter
of less than 2.5 µm) and on improving model simulation of
these particles because of their importance for air quality,
respiratory health, cloud interactions, and shortwave forcing
(Collaud Coen et al., 2020; Bellouin et al., 2020; Fanour-
gakis et al., 2019; Reddington et al., 2017). Coarse-mode
particles (defined as those particles with a diameter larger
than 2.5 µm) are important for longwave radiation interac-
tions, cloud seeding, and biogeochemistry, but these interac-
tions have received less attention (Jensen and Lee, 2008; Ma-
howald et al., 2011; Karydis et al., 2017; Chatziparaschos et
al., 2023). In contrast to the many fine-aerosol compilations
and comparisons (usually considering particles with aero-
dynamic diameters of less than 2.5 µm or PM2.5), there are
fewer studies focusing on aerosol compilations for both fine
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and coarse particles and their comparison to models (Kok et
al., 2014b; Albani et al., 2014; Huneeus et al., 2011; Gliß et
al., 2021; Kok et al., 2021). Nonetheless, there are many ob-
servations of the coarse-particle mass with diameters of less
than 10 µm (PM10) (e.g., Hand et al., 2017), and most climate
models include these particles (e.g., Huneeus et al., 2011).
Compilations of in situ data are available for dust and iron
particles (Kok et al., 2014b; Albani et al., 2014; Mahowald
et al., 2009) and for sea salts (Gong et al., 1997). Other stud-
ies have focused on the important topics of wet deposition
(Vet et al., 2014) or trends in aerosol properties (e.g., AOD,
surface PM) (Mortier et al., 2020; Aas et al., 2019). Obser-
vations of PM10 or coarse and fine particles are available for
many regions and individual sites (e.g., Malm et al., 2007;
Hand et al., 2019; Maenhaut and Cafmeyer, 1998; Artaxo
and Maenhaut, 1990; McNeill et al., 2020) but have not pre-
viously been compiled into one database that would facilitate
the evaluation of global climate models that are an important
tool for projections of future climate change, air quality, and
their impacts upon human society. Aerosol modelers need as
much information as possible about the observed composi-
tion of the particles and their transport. Thus, there is a need
to compile both PM2.5 and PM10 in situ concentration data
into one database to make it easy for modelers to compare
global model results with observations. One goal the aerosol
community should work towards is making aerosol measure-
ment data sets publicly and conveniently available while ac-
knowledging the principal investigators who produced these
data sets; we hope this paper serves as a step towards achiev-
ing this.

The current generation of Earth system models used for
the IPCC simulations tends to include the dominant aerosol
species (desert dust, sea spray, black carbon (BC), organic
matter (OM), and sulfate) while omitting other potentially
important aerosol constituents. For example, some Earth sys-
tem models ignore ammonium nitrate particles despite the
fact that these are known to be important for climate and bio-
geochemistry and are impacted by human activities (Paulot et
al., 2016; Adams et al., 1999; Thornhill et al., 2021). In this
study, we use available observations to compare to a global
model estimate of the total PM10 and PM2.5, and we deduce
the importance of these often-neglected aerosol species. We
also propose a method for comparing species that are often
not directly measured (such as dust or sea salts) using their
elemental composition. Note that we exclude super-coarse
(> PM10) particles here because of the sparsity of available
measurements, although studies have suggested their impor-
tance for climate interactions (e.g., Adebiyi et al., 2023).

Climate modelers are constantly looking for multiple inde-
pendent lines of evidence to verify their models, and in situ
surface concentration data present a valuable source of infor-
mation about aerosols that are often near human society. Un-
derstanding spatial variability in aerosols and the composi-
tion of those aerosols is key to understanding how aerosols in
different regions have evolved in the past and how they will

evolve in the future. Some regions are dominated by fossil-
fuel-derived aerosols, which may have peaked in magnitude,
even as greenhouse gas concentrations continue to increase,
while, in other regions, aerosols are driven by agriculture or
by natural aerosols (Bauer et al., 2016; Turnock et al., 2020;
Kok et al., 2023). In addition, different aerosol species have
different impacts on climate: for example, knowing whether
aerosols are scattering or absorbing changes the sign of the
interaction (Li et al., 2022). Some aerosols also serve as
better cloud or ice nuclei than others, while biogeochemi-
cal impacts are very sensitive to composition (Mahowald et
al., 2011). Knowing even the order of magnitude in regions
with aerosols (e.g., contrasting 0.1 to 0.001) is important for
aerosol–cloud interactions that can be non-linear, especially
at low aerosol levels (Carslaw et al., 2013). Having surface
concentration observational data sets with large spatial cov-
erage based on independent data can be valuable for aerosol
model comparisons, especially for models with a global do-
main. We focus most of this paper on the spatial distribution
of the climatological mean as this is easily obtained from
models and is the most important variable for many climate
impacts like radiative effects or aerosol-0cloud interactions,
except for aerosols dispersed by large infrequent events (e.g.,
Clark et al., 2015; Fasullo et al., 2022). Since aerosols are
thought to cause between 2 and 10 million deaths per year
(Landrigan et al., 2018; Lelieveld et al., 2019; Murray et al.,
2020; Vohra et al., 2021), understanding and being able to
model correctly the annual mean aerosol concentrations in
the surface layer are vital; thus, this data set provides valu-
able information for understanding aerosol contributions to
mortality. Nonetheless, there have been trends in emissions,
especially of anthropogenic aerosols, over the last 40 years
(Quaas et al., 2022; Bauer et al., 2022), and we consider these
as well.

For this study we focus on the following: (a) identifying
and compiling available PM2.5 and PM10 aerosol data, in-
cluding aerosol composition, into a new publicly available
database (AERO-MAP) for the modeling community across
as much of the globe as possible; (b) presenting a methodol-
ogy to compare the spatial distribution of the climatological
mean observations to the aerosols in an Earth system model;
(c) briefly presenting some temporal trends and comparisons
available from this data set; and (d) identifying the measure-
ment and modeling gaps from this comparison. While our
model evaluation is not exhaustive, we hope that the conve-
nience of this observational compilation enables an expan-
sion and a more thorough set of comparisons by future in-
vestigators.

2 Description of methods

2.1 Observational data

PM observations are made by multiple networks or during
specific field campaigns and for different size cut-offs, with
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Figure 1. Distribution of observations in the database showing the number of observations of PM2.5 (a) and PM10 organic carbon (OC) (b)
(with the colors indicating different numbers according to the top color bar), as well as the number of stations within each 2× 2 grid
locations for PM2.5 (c) and PM10 OC (d) (using the second color bar), illustrating that there are much more PM2.5 or PM10 data compared
to speciated data. (e) The number of observations (bars) for total particulate matter (PM) or speciated data is summarized for the PM2.5
(blue) and PM10 (orange) fraction using the left-hand-side y axis. The number of stations included in the study is shown as a dotted line (e)
and uses the right-hand-size y axis. (f) Normalized (1 standard deviation over the mean) observational uncertainty for PM2.5 based on
measurement errors, interannual variability, measurement method, within-grid variability, and within-year variability at the same station.
Interannual variability and within-grid uncertainty are defined as the normalized standard deviation in the variability for stations that have
more than 10 years of data. Within-grid variability is the normalized standard deviation of 2× 2 grid cells that have more than 10 stations.
Measurement errors are the normalized standard deviation of the reported measurement errors for PM2.5. Measurement method error is
derived from the differences between different measurement methods (e.g., Prank et al., 2016; Burgos et al., 2020; Hand et al., 2017).
The stations included are derived from the following sources (see the Supplement for more details): Alastuey et al. (2016), Almeida et
al. (2005), Amato et al. (2016), Andreae et al. (2002), Arimoto et al. (2003), Artaxo et al. (2002), Barkley et al. (2019), Barraza et al. (2017),
Bergametti et al. (1989), Bouet et al. (2019), Bozlaker et al. (2013), Chen et al. (2006), Chuang et al. (2005), Cipoli et al. (2023), Cohen
et al. (2004), da Silva et al. (2008), Dongarrà et al. (2007, 2010), Engelbrecht et al. (2009), Formenti et al. (2003), Fuzzi et al. (2007),
Hand et al. (2017), Heimburger et al. (2012), Herut and Krom (1996), Herut et al. (2001), Hsu et al. (2016), Hueglin et al. (2005), Furu et
al. (2022, 2015), García et al. (2017), Gianini et al. (2012a, b), Kalivitis et al. (2007), Kaly et al. (2015), Kubilay et al. (2000), Kyllönen
et al. (2020), Laing et al. (2014b, a), Lucarelli et al. (2014, 2019), Mackey et al. (2013), Maenhaut et al. (1996c, a, b, 1997a, b, 1999,
2000a, 2000b, 2002a, b, 2005, 2008, 2011), Maenhaut and Cafmeyer (1998), Malm et al. (2007), Marticorena et al. (2010), Mihalopoulos
et al. (1997), Mirante et al. (2010, 2013), Mkoma (2008), Mkoma et al. (2009), Morera-Gómez et al. (2018, 2019), Nava et al. (2015,
2020), Nyanganyura et al. (2007), Oliveira (2009), Oliveira et al. (2010), Pérez et al. (2008), Pio et al. (2022), Prospero et al. (1989, 2012,
2020), Prospero (1996, 1990), Putaud et al. (2004, 20100), Rodríguez et al. (2011, 2015), Salma et al. (1997), Savoie et al. (1993), Silva
et al. (2010), Smichowski et al. (2004), Swap et al. (1992), Tørseth et al. (2012), Uematsu et al. (1983), Vanderzalm et al. (2003), Virkkula
et al. (1999), Xiao et al. (2014), and Zihan and Losno (2016). Data from several online networks are also included (e.g., https://www.
airnow.gov/international/us-embassies-and-consulates/, last access: 10 June 2022, https://quotsoft.net/air/, last access: 10 August 2022; https:
//app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data, last access: 20 September 2022, https://sinca.mma.gob.cl/index.php/, last
access: 3 June 2022; https://tenbou.nies.go.jp/download/, last access: 25 November 2023). See the Supplement for more details and the DOI
links for the data sets.

https://doi.org/10.5194/acp-25-4665-2025 Atmos. Chem. Phys., 25, 4665–4702, 2025

https://www.airnow.gov/international/us-embassies-and-consulates/
https://www.airnow.gov/international/us-embassies-and-consulates/
https://quotsoft.net/air/
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data
https://sinca.mma.gob.cl/index.php/
https://tenbou.nies.go.jp/download/


4670 N. M. Mahowald et al.: AERO-MAP: a data compilation and modeling approach

and without a description of chemical composition. Data
sets were identified by advertising at international meetings
(Wiedinmyer et al., 2018), searching the literature, contact-
ing principal investigators, and accessing publicly available
data sets. As expected, most of the observations are over
North America or Europe, with many of the rest of the land
areas and most of the ocean being much more poorly ob-
served (Fig. 1; Data set 1 in the Supplement). For this study,
we include data sets of both PM2.5 and PM10 daily (or multi-
day) averages that were made available by the investigators
or that are available from public web sites (Fig. 1; Data set 1
in the Supplement). Some measurement sites measure PM2.5
and coarse (PM2.5 to PM10) aerosols. For those sites, we con-
vert the latter to PM10 for comparison. Some measurement
sites have only a few observations of composition or mass,
while others have multiple years: we included less complete
data sets for sites in regions with limited data (e.g., field data:
these are identified as station data sets with less than 1 year of
data in the data sets in the Supplement). In some poorly mea-
sured regions, we include total suspended particle (TSP) data
sets (information on the size fraction measured is in the data
set in the Supplement). The time period for different data sets
is included in Data set 1 in the Supplement.

Detailed studies have shown that PM10 and PM2.5 sam-
plers can differ in the sharpness of their size cut-off (Hand
et al., 2019). As an example, comparisons between data from
the US Environmental Protection Agency (EPA) Federal Ref-
erence Method sites and data from the Interagency Monitor-
ing of Protected Visual Environments (IMPROVE) network
show that the coarse matter from collocated sites in both net-
works was offset by 28 % (Hand et al., 2019). There was a
bias when data were compared (slope of 0.9), but the corre-
lation coefficient was high (0.9), suggesting good agreement
overall. Here, we focus on surface station measurements of
PM10 and PM2.5 since our model and most models only con-
sider mass up to PM10. For that reason, our model deposition
is not directly comparable to observational bulk and/or total
atmospheric deposition since larger particles may dominate
the deposition close to the source areas (Kok et al., 2017;
Mahowald et al., 2014; Neff et al., 2013). Measuring abso-
lute dry- and wet-deposition rates is also technically more
challenging (especially for dry deposition since the particles
can be re-entrained into the atmosphere) but worthwhile (He-
imburger et al., 2012; Prospero et al., 1996). In regions with
little data (e.g., outside of North America and Europe) we
include measurements of total suspended particulates (TSPs)
with the PM10 because of the lack of size-resolved data. Data
from the Japanese air quality network use a different inlet
for the PM10 cut-off as well, which will include a slightly
larger size fraction (https://tenbou.nies.go.jp/download/, last
access: 25 November 2023).

In addition to particulate matter in the PM10 and PM2.5
size fractions, we also compile the following observations to
compare to the model: black carbon (BC), elemental carbon
(EC), organic carbon (OC) (or particulate organic material

or OM, which, here, is considered to be 1.8× OC in mass;
Aiken et al., 2008; Font et al., 2024; Turpin and Lim, 2001),
sulfate, nitrate, aluminum, sodium, and chloride. To include
both BC (based on light absorption measurements) and EC
(based on thermal-oxidation-induced combustion measure-
ments) data is also a source of uncertainty; both are prox-
ies of the soot combustion particles since they are based on
different measurement techniques, and there is no accepted
equivalence between them (Mbengue et al., 2021). Details on
the measurement methods and types are shown in Table 1 and
vary between measurements of fine and coarse versus PM2.5
and PM10, with different measurement types for elemental
and chemical analysis (Table 1). Details on how the model is
compared to data for different elements are in Sect. 2.3.

For this paper, we focus on the climatological means for
1986–2023 and the decadal means for 2010–2019. The first
period is chosen as the full durations of the individual data
sets comprising the compilation are available; the second
is chosen to recognize decadal variations in anthropogenic
emissions within the longer period and to isolate a particular
decade when data are most plentiful. In addition, the annual
means for each year the data are available are also calcu-
lated, as well as the climatological monthly means. The tem-
poral means are calculated for all values at each station that
are above the detection limit and are reported here. At some
stations or times, concentrations can be below the detection
limit, and excluding these data or time periods could bias our
average values. We focus on the stations that have more than
50 % of the data above the detection limit and exclude other
sites. For those included stations, if the values were reported
to be below the detection limit, we include in the average
one-third of the minimum detection limit. The reported de-
tection limits should bound the upper limit of aerosol mass
and allow us to include sites whose observations were other-
wise too low to include while reducing the potential biasing
of our compilation towards higher values (Data set 1 in the
Supplement).

Our goal is to create easy-to-use data sets for model–data
comparisons. Included in this data set are several files with
different levels of description and analysis. One file pro-
vides traceability information, including a detailed citation;
the types and numbers of measurements included; and the
time period, climatological and decadal (2010–2019) means,
and standard deviations for each time period (Data set 1 in
the Supplement). For each station data set included in the
database, there will be one line in this file. This means that,
for some stations (for example, K-puszta), there are multi-
ple lines in the file in the Supplement indicating the two
different time periods where measurements were made, as
well as the two sizes that are measured during each time
period. For each station data set, there are latitude values,
longitude values, annual mean values, the number of ob-
servations, the year extent of the observations, standard de-
viations, etc., along with the citation and where to obtain
the data. There are also several NetCDF files available at
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Table 1. Aerosol measurement types.

Composition Measurement method Variables Example networks Example citations

Fine and coarse Stacked filter unit
(SFU)

Fine, coarse UGent Maenhaut et al.
(2002a)

PM2.5 and PM10 Federal Reference
Method and Federal
Equivalent Method
(FRM/FEM)

PM2.5, PM10 IMPROVE,
CASTNET, EMEP

Hand et al. (2019);
Putaud et al. (2004)

PM2.5 and PM10 Hi-volume sampler EMEP, SINCA Putaud et al. (2004)

Elemental Particle-induced X-ray
emission (PIXE)
spectrometry,
instrumental nuclear
activation analysis
(INAA)

Al, S, Na UGent, EMEP Maenhaut et al.
(2002a)

Elemental Inductively coupled
plasma mass
spectrometry (ICP-MS)

Al, S, Na EMEP, SPARTAN Putaud et al. (2004);
Philip et al. (2017)

Elemental XRF (X-ray
fluorescence)

Al, S, Na IMPROVE, CASTNET Hand et al. (2019)

Chemistry Ion chromatography SO−4−, NO−3 , NH4 IMPROVE,
CASTNET, EMEP

Hand et al. (2019);
Putaud et al. (2004)

Carbonaceous Thermal optical
reflectance

EC, OC IMPROVE, CASTNET Hand et al. (2019)

Evolved gas analysis
non-dispersive infrared
(EGA+NDIR)

OC, EC EMEP Putaud et al. (2004)

https://doi.org/10.5281/zenodo.10459653 (Mahowald et al.,
2024) for this data set. The most useful is likely to be the
Allobservation.AEROMAP.nc file, which contains the same
quantitative data for each station data set as the Supplement,
except the data are processed to be only PM2.5 and PM10
(with some TSP data in places with little data, as discussed
above). This means that PM2.5 and coarse aerosol mass are
added together if the station data sets are collocated to cre-
ate a PM10 data set (e.g., see Table 1). In addition, this file
contains climatological monthly means and annual means for
each year for each station data set so that temporal infor-
mation is also easily available. Another file includes the cli-
matological mean observations averaged for a 2°× 2° grid
that is used for plotting the figures shown in the paper (Al-
lobservation.AEROMAP.2x2.nc). As indicated in the “Data
availability” section, only the time means are available, and
the underlying data for some data sets cannot be openly pub-
lished; however, one should contact the authors (identified by
the citation) if other time periods are desired.

The location of each site is as accurate as possible and,
for most sites, is accurate to less than 1 km. Some data
sets provided more limited information, and those loca-

tions are accurate only to less than 10 km (data down-
loaded from the following air quality networks: Mex-
ico City – http://www.aire.cdmx.gob.mx/default.php?opc=
’aKBh’, last access: 3 November 2022; South Africa – https:
//saaqis.environment.gov.za/, last access: 8 September 2022;
India – https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/
caaqm-landing/data, last access: 20 September 2022; and
Chile – https://sinca.mma.gob.cl/index.php/, last access:
3 June 2022).

2.2 Model description

Most of the simulations of aerosol particles were conducted
using the aerosol parameterizations within the Community
Atmosphere Model version 6 (CAM6), the atmospheric com-
ponent of the Community Earth System Model (CESM) de-
veloped at the National Center for Atmospheric Research
(NCAR) (Hurrell et al., 2013; Scanza et al., 2015; Liu et al.,
2012). The aerosol module in this version is closely related
to the module used in the Energy Exascale Earth System
Model (Golaz et al., 2019; Caldwell et al., 2019). Simulations
were conducted at approximately 1°× 1° horizontal resolu-
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tion with 56 vertical layers for 4 years, with the last 3 years
(2013–2015) being used for the analysis (Computational and
Information Systems Laboratory, 2019). The model simu-
lates three-dimensional transport and wet and dry deposition
for gases and particles by nudging toward MERRA2 winds
(Gelaro et al., 2017).

The model included prognostic dust, sea salts, BC, OM,
and sulfate particles in the default version, using a modal
scheme based on monthly mean emissions for the year 2010
(Liu et al., 2012, 2016; Li et al., 2021). The model includes
separate primary and secondary organic species which are
both emitted directly, but the primary organic- and black-
carbon aerosols are allowed to age in the model from hy-
drophobic to hydroscopic, and their optical properties also
change (Liu et al., 2016). The coarse mode is included for
sulfate, dust, and sea salts. For this study, the coarse size
mode (mode 3) was returned to the size parameters used in
the previous version of the model, CAM5 (geometric stan-
dard deviation of 1.8), to better simulate coarse-mode par-
ticles and to improve the dry-deposition scheme and optics
used in the model for simulating coarse-mode particles like
dust as described in Li et al. (2022).

Desert dust is entrained into the atmosphere in dry,
sparsely vegetated regions subject to strong winds. We use
the Dust Entrainment and Deposition scheme (Zender et al.,
2003), with the emitted size distribution given by the updated
brittle fragmentation theory (Kok et al., 2014b, a) and with
improved incorporation of aspherical particles for optics and
deposition (Li et al., 2022; Huang et al., 2021; Kok et al.,
2017). Anthropogenic emissions of sulfate, OM, and BC fol-
low the Climate Model Intercomparison Project 6 historical
data for 2010 (Gidden et al., 2019). Emissions and mean con-
centrations for each of these constituents are included in Ta-
ble 2.

Modeling of additional aerosol sources and types

Ammonium nitrate aerosol particles are not included in the
standard CAM6 but are thought to be important for aerosol
optical depth and surface concentrations (Paulot et al., 2016;
Adams et al., 1999; Thornhill et al., 2021; Bauer et al., 2007,
2016), and so they are included in this study. Nitrate can also
react with dust particles, for example, but that is ignored in
this study (Dentener et al., 1996). Ammonium nitrate parti-
cles require tropospheric chemistry interactions because the
nitrogen-containing particles are both a source and a sink
for gaseous nitrogen species, which are key elements of tro-
pospheric photochemistry, and the particles are in chemi-
cal equilibrium with the gas phase (e.g., Nenes et al., 2021;
Baker et al., 2021; Bauer et al., 2007, 2016), and so simula-
tions using the CAM-CHEM model with tropospheric pho-
tochemistry are used, covering the same time period (Vira
et al., 2022). Simulations with chemistry were conducted at
2°×2° resolution and are linearly interpolated to 1°×1° res-
olution as used for the other modeled particles. Sulfate in the

Table 2. Global aerosol modeling budgets. Global modeled deposi-
tion (Tg yr−1), percentage of aerosols that are PM2.5, and globally
and annually averaged surface concentration (µg m−3) and aerosol
optical depth for each of the sources used in the model. An aster-
isk indicates that there are additions to the model from the default
CAM6.

PM10 PM2.5

Deposition % Conc AOD
(Tg yr−1) (µg m−3) (unitless)

Sulfate 121 100 2.1 0.018

Black carbon 10 100 0.5 0.009

Primary organic 34 100 1.6 0.008
aerosol

Secondary organic 37 100 1.0 0.007
aerosol

Sea salts 2520 3 13.0 0.045

Dust 2870 1 19.4 0.030

NH4NO3* 20 100 0.4 0.013

CAM6 is assumed to be in the form of ammonium sulfate,
and the nitrate is assumed to be in the form of ammonium
nitrate for these studies, and so, as a rough approximation,
only the model ammonium nitrate is compared to the ob-
served nitrogenous aerosol optical depth. Ammonium nitrate
is assumed to only form when there is surplus ammonium
(and nitrate) after the ammonium sulfate is formed. While
aerosol amounts are simulated, ammonium nitrate aerosol
optical depth is not calculated within the model but rather is
calculated offline. The model does calculate sulfate aerosol
optical depth, which has a roughly similar increase in size
with humidity compared to nitrates and similar optical prop-
erties as long as the nitrates and sulfates are in similar size
fractions (Paulot et al., 2016; Bellouin et al., 2020). There-
fore, the aerosol optical depth from ammonium nitrate (per
unit mass) is assumed to be proportional to the sulfate aerosol
optical depth per unit mass in each grid box at each time in-
terval. A detailed comparison of the nitrate and ammonia par-
ticles and other species was conducted in Vira et al. (2022).
Overall, the model can simulate some of the spatial distribu-
tion but overestimates the nitrate aerosol amounts (Vira et al.,
2022).

2.3 Model–observation comparison methodology

Comparisons of the observations to model concentrations
were done using BC, OC, SO2−

4 , Al, NO−3 , NH+4 , and
Na composition measurements. Some of these elements or
compounds map directly onto model constituents (BC, OC,
SO2−

4 , NO−3 , and NH+4 ), while others serve as proxies for
modeled constituents (Al for dust, Na for sea salts, S for
sulfate, etc.). We summarize the relationships used to ob-
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tain the values from the model (Table S1 in the Supplement)
and to establish what observations should be combined to
include as much information as possible from the observa-
tions. (Table S2). We use non-sea-salt sulfate in ocean re-
gions for estimating sulfate. We use the mean Na amounts
in sea salt (31 %; Schlesinger, 1997) to characterize the Na
amounts, and we include the soluble-Na measurements as
well (Na+), if available, when Na measurements are not
available. Note that Cl cannot be used to evaluate sea salts
as the Cl is degassed from aerosols, primarily due to sulfate
interactions (e.g., Pio and Lopes, 1998). Some observing net-
works like IMPROVE use a composite of elements to deduce
dust amounts (e.g., Hand et al., 2017). We do not choose to
do this for two reasons: (1) at some sites, not all the elements
are available, and (2) these elements are derived not only
from desert dust but also from industrial sources. Note that
model values come from the midpoint of the bottom level of
the model (∼ 30 m), while the observations are usually taken
at heights of 2 or 10 m. There are several sources of measure-
ment differences between different networks, as well as be-
tween model and observations. Modeled values of PM con-
tent, which assume dry particles, are used here, while gravi-
metric measurements in some networks are equilibrated at
50 % relative humidity; thus, 5 %–25 % of the mass of mea-
sured PM can be water (Prank et al., 2016; Burgos et al.,
2020). In addition, comparisons of coarse-mode composition
at co-located sites in the US show that the inlet type can cause
∼ 30 % difference in measured mass (Hand et al., 2017). We
include these differences in our error estimate in Sect. 3.2.

For the most part, we use model outputs for which there is
a one-to-one relationship with what is being measured (BC,
sulfate, etc.). However, for dust, this is not straightforward as
dust is composed of multiple elements. Here, we use Al as a
proxy for dust as it is relatively constant (∼ 7 %) in dust (as
opposed to Ca, which varies highly, or Fe, which varies mod-
erately) (Zhang et al., 2015). Al sources are primarily from
dust (Mahowald et al., 2018). Assumptions about the model
composition and how they are compared to observations are
summarized in Table S1. For example, OM is assumed to be
1.8 times OC if OC measurements are available but not OM
measurements. Different ratios of OM to OC appear in the
literature, but 1.8 appears to be the best average for a mix-
ture of aged and fresh plumes (Aiken et al., 2008; Font et al.,
2024; Turpin and Lim, 2001).

Harmonizing models with different types of measurements
is a critical and yet difficult task (Huang et al., 2021). Models
operate with the geometric or aerodynamic particle diameter,
whereas, in practice, the measurements are done with a va-
riety of particle-equivalent diameters, e.g., optical, volume
equivalent, projected-area equivalent, or aerodynamic diam-
eter, depending on the instrument used (Hinds, 1999; Reid et
al., 2003; Rodríguez et al., 2012). In the inlets of the samplers
used for the mass measurements and collection of PM2.5 and
PM10 particles for subsequent chemical analysis, a size cut-
off such as at 2.5 and/or 10 µm is defined in terms of aero-

dynamic diameter (i.e., Stokes diameter (involving size and
shape) weighed by the square root of the particle density;
Hinds, 1999). The sharpness of the cut-off of such inlets in-
fluences the PM2.5 and PM10 mass concentration (Hand et
al., 2019; Wilson et al., 2002). The PM10 size cut-off aero-
dynamic diameter is equivalent to the PM6.3 geometric diam-
eter for spherical dust particles (Hinds, 1999; Rodríguez et
al., 2012) and to PM6.9 in the case of dust elliptical particles
(Huang et al., 2021). Similarly, for dust, PM2.5 (aerodynamic
diameter) is equivalent to PM1.6 (geometric diameter). These
differences are important to keep in mind, but the information
is not available for all networks, and so we include the size
cut-off as an uncertainty in the model–data comparisons as
described in Sect. 3.2.

For ease of viewing the data from the densely sampled
regions in this paper, as well as to compare model outputs
to more representative spatial scales, observational records
from different sites were combined into a mean within a grid
cell that is 2 times the model resolution or approximately
2°×2°. This process averages the observations over a spatial
scale appropriate for comparison with the chemistry model
(Schutgens et al., 2016). We provide both the climatological
annual average data at each site and the 2°×2° grid-averaged
data (the modeled data can be found at the following DOI:
https://doi.org/10.5281/zenodo.10459653, Mahowald et al.,
2024). In this data set, the number of station data sets in-
cluded in the average is included (stations), and the num-
ber of observations add up across all the station data sets in-
cluded.

Notice that we include both urban regions and rural or re-
mote sites in the same data set. Some of the original metadata
did not include the resolution of the location to better than
0.1°, and so the coordinates of the locations provided here
with the gridded data should not be used for finer-resolution
studies. Because of the importance and size of megacities,
which cross multiple grid boxes, as well as the difficulty in
separating urban vs. rural sites, we include urban and rural air
quality data in the same data set, and previous studies show
the expected differences between urban and rural concentra-
tions and trends (e.g., Hand et al., 2019).

Statistical comparisons across the globe and different re-
gions are included in the tables in the Supplement. These in-
clude model and observational averages, Kendall correlation
coefficients (rank correlations), linear regression slopes and
uncertainties, and root mean squared differences. We also in-
clude the fraction of the model–data comparison which is
outside the error bounds defined in Sect. 3.2. These results
are included in the tables in the Supplement and are referred
to in the text as is appropriate.

There are multiple sources of uncertainties in the obser-
vations used in the model–data comparisons of PM concen-
trations at the global model grid scale: errors in the mea-
surements, differences in measurement methods, variability
in aerosol concentrations during events versus background
conditions, spatial variability within a model grid box, and
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interannual variability. To assess the size of these uncertain-
ties, we look at the normalized standard deviation (defined
as the standard deviation over the mean) in the observations
due to these factors for a year, within a 2°× 2° degree grid,
and for interannual variability. To evaluate within-year and
between-year variability, we focus on stations that have more
than 10 years of data. To evaluate spatial variability within
grid boxes, we use grid boxes that have more than 10 sta-
tions within them. Notice that these grid boxes are likely to
lie close to cities and fossil fuel source regions because the
measurement network is more dense there, perhaps exagger-
ating the importance of spatial variability. In addition, differ-
ent measurement methods (dry vs. moist aerosol mass, dif-
ferent inlet geometries) complicate the comparison of data.
Here, we assume a measurement method uncertainty of 30 %,
which is on the high side of that used in previous studies
(Prank et al., 2016; Burgos et al., 2020; Hand et al., 2017).
Many of the measurements also include an assessment of
their uncertainty or of the minimum detected limit: we use
that to assess the average uncertainty of individual measure-
ments (measurement errors).

2.4 Temporal aerosol variability

While the main goal of this study is to highlight and
compile in one place the many surface concentration ob-
servational data sets available to compare against models,
and while we focus on the climatological annual mean,
the data sets also include temporal variability. Annual
means, standard deviations, and the number of observa-
tions for each station for each year are included to allow
for the analysis of interannual variability or trends. In ad-
dition, the climatological monthly mean, standard devia-
tion, and number of observations are also available in or-
der to assess the seasonal cycle. These values are all avail-
able in the Allobservvations.AEROMAP.nc file available at
https://doi.org/10.5281/zenodo.10459653 (Mahowald et al.,
2024).

To illustrate the included data, the trends in the PM2.5 and
PM10 aerosols are calculated over 2000–2023 over eight dif-
ferent regions: North America, South America, Africa, Eu-
rope, Asia, and the high latitudes. Only data after 2000 are
included because there are much more data after 2000 than
prior to 2000 (see Sect. 3.1). All station data sets with more
than 8 years of data are included in the calculation. In order
to decrease the bias and uncertainty due to the large tempo-
ral and spatial variability (similarly to Hand et al., 2024), we
divide the annual mean at each station by the climatologi-
cal annual mean over the two time periods, and we average
this with the other stations within the region. We then use a
Theil regression which calculates the slopes excluding dif-
ferent data points and takes the median slope to reduce de-
pendence on outliers (Hand et al., 2024). The median and the
33rd- and 66th-percentile slopes are calculated to show the
median and 1σ uncertainties for each region.

The seasonal cycle of aerosols can provide important in-
formation about the source strength and variability, as well as
the meteorological constraints (Gui et al., 2021; Rasch et al.,
2000). To illustrate the value of the evaluation of the seasonal
cycle in models, we calculate the climatological monthly
mean in the observations and model and compare the corre-
lation of these values, as well as the standard deviation of the
12-month means in the model versus the observations. This
method allows us to separately evaluate the seasonal cycle
from the spatial distribution. The correlation is only calcu-
lated at stations where the seasonal cycle is large enough: in
math terms, our criteria is where the observed standard devia-
tion across months is larger than half of the average observed
within-month variability.

3 Results

3.1 AERO-MAP observational data set

First, we assessed the amount of data and the number of sta-
tion data sets within each∼ 2°×2° gridded area (Fig. 1). The
observational data set provides coverage predominately over
North America and Europe for PM2.5 and PM10, as noted by
previous studies (e.g., Szopa et al., 2021); however, in addi-
tion, we provide here a synthesis of more air quality data in
other regions, especially Asia (Fig. 1). This compilation data
set comprises most of the individual observations (at daily
or longer time periods) of total PM2.5 (Fig. 1a, e: blue bars)
and most of the observing stations (Fig. 1e and blue line).
Approximately 15 000 stations and over 20 million observa-
tions are included in this compilation.

Notice that there are more individual observations by 2 to
3 orders of magnitude for the total mass (PM) of particles
compared to information about the composition of particles
(Fig. 1e), which is also shown also by contrasting the spatial
distribution of measurements between PM2.5 and measured
amounts of OM (Fig. 1a versus b), as well as by the large
difference between the number of station data sets measur-
ing the total mass versus the speciated aerosol particles like
OM (Fig. 1c versus d). While this data set presents a huge
increase in the amount of data available to the aerosol mod-
eling community (for example, an 8-fold increase compared
to the data sets included in Reddington et al., 2017), still, the
dominant proportion of the total PM2.5 or PM10 data are clus-
tered over a few industrialized land regions, and there is little
composition information over most of the globe (Fig. 1).

3.2 Uncertainties in model–data comparisons

Our goal in this study was to identify observational data sets
and to compile them into one easy-to-use data set for climate
and air quality modelers. To do that, we collected all avail-
able data sets, prioritizing long-term stations with composi-
tion data; however, in regions with few measurements, we in-
clude only PM data or data collected during field campaigns,
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which may last for only 1 or 2 months. Previous studies have
shown that even 1 d average aerosol measurements, carried
out on cruises, can constrain aerosol concentrations within 1
order of magnitude (1σ ) for phosphorus in dust, which varies
spatially by 4 orders of magnitude (Mahowald et al., 2008).
Other studies have highlighted that, even for particles that
have highly variable sources, such as dust, only a few months
of observations are enough to characterize the mean and stan-
dard deviation in most places across the globe (Smith et al.,
2017). However, the latter study highlighted that, for places
where dust events do not occur every year or in varying num-
bers, like near South America, several years are required to
characterize the mean (Smith et al., 2017).

Uncertainties in the observation–model comparisons can
include both uncertainties in the observations and interan-
nual variability in both the model and the observations that
are temporally averaged. Uncertainties used in the compar-
isons of aerosols at the global model grid scale come from
multiple sources, e.g., errors in the measurements, differ-
ences in measurement methods, variability in aerosol con-
centrations during events versus background conditions, spa-
tial variability within a model grid box, and interannual vari-
ability, as discussed in Sect. 2.3. To assess the size of the
variability contribution to the uncertainties, we look at the
normalized standard deviation (defined as the standard devi-
ation over the mean) in the observations due to these factors
for within a year and within a grid and for interannual vari-
ability. Nonetheless, our estimate of spatial variability will
underestimate the true value in the absence of sufficient spa-
tial coverage. In addition, different measurement methods
(dry vs. moist aerosol mass, different inlet geometries) com-
plicate the comparison of data (Sect. 2.3 discusses sources
of uncertainties in more detail). We assume here a measure-
ment method uncertainty of 30 %, which is on the high side
of that used in previous studies (Prank et al., 2016; Burgos
et al., 2020; Hand et al., 2017). Many of the measurements
also include an assessment of their uncertainty: we use this
to assess the average uncertainty of individual measurements
due to measurement errors.

We focus on the uncertainties in the PM2.5 measurements
first. The largest uncertainties are associated with within-year
variability (0.53) (Fig. 1f; Table S3). This is because most
of the aerosol mass can sometimes come with a few pollu-
tion events. Uncertainties due to combining different mea-
surement methods (0.3) and from spatial variability within
a model grid cell (0.24) are also important (Fig. 1g). Both
interannual variability (0.18) and measurement errors (0.08)
are smaller but important contributions to uncertainty. The
importance of within-year variability (which is similar to
within-month variability; see Table S4) is consistent with
studies showing that, in most places, there are a few pollu-
tion events carrying much of the mass with, otherwise, much
lower background concentrations (Luo et al., 2003; Fiore et
al., 2022). Obviously, interannual variability is important for
secular trends (Gupta et al., 2022; Watson-Parris et al., 2020;

Mahowald et al, 2010), but, in this compilation, the interan-
nual variability is much smaller than the 2–4 orders of mag-
nitude of the spatial variability across the globe and thus can
be neglected for understanding global spatial distributions
(Fig. 1f).

These sources of uncertainty occur simultaneously, and, if
we sum them assuming orthogonality, we obtain a normal-
ized uncertainty of ∼ 0.68 (Table S3), which was interpreted
as meaning that model–data comparisons within a factor or
3 should be considered to be adequate. To ease the visual
evaluation of the comparison, we show in the following scat-
terplots both the 1 : 1 line and the range within a factor of
3. We discuss an example of uncertainties in more detail in
Sect. 3.3. Notice that, if we use the same metric (normal-
ized standard deviation) to evaluate the variability across the
climatological concentrations measured in the observations
at different locations (Fig. 3a) or across the grid averages
in the model, we obtain 1.0 and 2.2, respectively, which are
much larger than the uncertainties (0.6): there is much more
variability across different grid boxes (4–5 orders of magni-
tude; see Fig. 2d) than across different years (up to 50 % nor-
malized standard deviation; Fig. 2f). As expected, the model
contains more spatial variability than the observations as the
model reports concentrations in very high (North Africa) and
very low (Antarctica) aerosol regions where we have no data,
although, where we have data, the model simulates a simi-
lar range (Fig. 3a). For composition measurements, there is
larger uncertainty in some individual species (e.g., BC and
Al) than for PM. However, there are many fewer composi-
tion observations (Table S3). Since the statistics of the un-
certainty calculations are likely to be more robust with the
bulk PM measurements due to the fact that there are more
data, by 1 order of magnitude, for the bulk PM data, we use
the uncertainty estimate derived for PM for all of the compo-
sition data in this paper.

There is a time variation in how much data is available
for both PM2.5 and PM10 data (Fig. 2a and b), with the most
data being available between 2010 and 2020. Different re-
gions have slightly different trends in terms of the amount
of data (Fig. 2). For much of this paper, we will discuss
global and regional comparisons, and the regions we focus
on are Africa, Asia, Australia, Europe, North America, South
America, and the high latitudes (Fig. 2c).

Trends in aerosols are an important scientific topic, al-
though, for most of this paper, we use the climatological an-
nual mean. What if there were strong trends in the aerosols?
Would that lead to differences between our climatological
means and what we expect for some decades? In order to as-
sess this, we look at the individual annual means for each sta-
tion with more than 8 years of data and see if the individual
annual mean is ever outside of the 3× uncertainty calculated
here. Out of the 13 320 station data sets for PM2.5 or PM10
which have more than 8 years of data, only 175 (1.3 %) have
an annual average outside the uncertainty estimated here. Of
those with a value outside the uncertainty, only 10 (< 0.01%)
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Figure 2. The temporal change in the number of observations of PM2.5 (a) and PM10 (b) available in this study (black) and by region. Dark
blue: Australia; blue: Asia; light blue: Europe; yellow: Africa; orange: South America; dark orange: North America; red: high latitudes. The
regions are shown in (c) and are used throughout this study. Scatterplots compare the climatological mean versus the decadal (2010–2019)
mean surface concentration for PM2.5 (d) and PM10 (e) using symbols which indicate the region of the data set point plotted.

have a statistically significant trend. This suggests that, for
the temporal interval we have chosen for the climatology,
long-term trends are not a significant source of differences in
the spatial climatological data set presented here. Nonethe-
less, we acknowledge that, in regions where aerosol emis-
sions increase and then decrease over our multi-decadal ob-
servational records (e.g., China), our test for trends will not
reveal where the climatology over the full period is less rep-
resentative of individual decades. We also supply in the com-
piled data set a decadal mean for the time period of 2010–
2019, which is made publicly available. A comparison of the
climatological mean versus the decadal mean for the PM2.5
and PM10 concentrations shows that, for almost all locations,
there is a small difference between the two values, and they
lie on a one-to-one line (Fig. 2d and e; Table S4). There are
a few station data sets (< 5%) which have a difference be-
tween the climatological mean and the decadal mean that is
larger than 20 %, and very few (< 0.05%) have a difference

which is larger than the uncertainties described in this section
(factor of 3; Table S4). The biggest difference between the
climatological and decadal average values is the number of
station data sets and observations and, thus, the spatial cov-
erage: we lose between 20 % and 100 % of the station data
sets, depending on the size and composition, when we use
the decadal means (Table S5). This is because, even though
this is the most observed decade, still, some data sets are out-
side of this time period. In order to emphasize the spatial
distribution of the data sets and because the climatological
values are so similar to the decadal means, we will show just
the climatological values in the next few sections, although
both are available (Data set 1 in the Supplement; see also
https://doi.org/10.5281/zenodo.10459653, Mahowald et al.,
2024).

Atmos. Chem. Phys., 25, 4665–4702, 2025 https://doi.org/10.5194/acp-25-4665-2025

https://doi.org/10.5281/zenodo.10459653


N. M. Mahowald et al.: AERO-MAP: a data compilation and modeling approach 4677

Figure 3. Model results and gridded observations for PM2.5 in µg m−3: spatially mapped globally (a) and focused on only Asia (b); the
model is plotted as the background, and the observations are circles, with the colors indicating the amount of PM2.5 using the same scale. A
comparison of the model (x axis) to the observations (y axis) is shown for the gridded data (c) and including all stations (d). In the scatterplots,
the colors and symbols indicate the regions, the bold black symbols are the average across each region (indicated by the symbol), the dotted
line is the 1:1 line, and the dashed lines are the factor-of-3 uncertainty estimates. More statistics are shown in Table S7, and maps focused on
different regions are available in Fig. S1 in the Supplement.

3.3 PM2.5 model–data comparison

Modeled concentrations of PM2.5 are compared against ob-
servations more often than for PM10 or other size fractions
and comprise an important portion of the particulate matter
associated with human activities. Therefore, we describe first

the observational synthesis and comparison to model results
for PM2.5. Because the high number of observations in some
parts of the world would make the figures unreadable, the ob-
servations are gridded onto an approximately 2°×2° grid for
comparisons with the model, although individual data points
are still difficult to read (Fig. 3a). The maps illustrate where
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the observational comparison in the scatterplot is made, and
focused maps of each major region are available in the Sup-
plement (Fig. S1), along with global and regional statistics
(Table S5). As expected, in the model, the highest concentra-
tions are over the desert dust regions, such as North Africa,
and over heavily industrialized regions in Asia. For the heav-
ily industrialized regions in Asia, these high values are con-
sistent with the observations, but the regions in North Africa
with the highest modeled values do not have similar observa-
tional validation for high concentration values due to a lack
of data (Fig. 3a).

Overall, the model is able to simulate much of the spa-
tial variability in PM2.5 that is over 2 orders of magnitude
(Fig. 3a and c); however, there is a tendency to overesti-
mate the PM2.5 over India and China (Fig. 3b), although the
mean over all the regions is within the factor-of-3 uncertainty
(Fig. 3c, bold symbols). In addition, there are some observa-
tions (globally∼ 6 %, Table S6) that are outside the factor-of-
3 uncertainty estimates (Fig. 3c and d). The scatterplots show
the comparisons of the model to the observations using the
gridded data (Fig. 3c) and all original data (Fig. 3d), and the
correlation coefficients are similar (0.60 vs. 0.67 in Fig. 3c
and d, respectively). It is interesting that the correlation us-
ing the ungridded data (Fig. 3d) is slightly higher, perhaps
because the model does better in regions with more data, al-
though this is not a statistically significant result. The aver-
ages over different regions show that, on average, the model
simulates the regions within the uncertainty (bold black sym-
bols in Fig. 3d; Table S5).

As an example of the source of the uncertainties discussed
in Sect. 3.2, we discuss the differences over India and China
in the Asian region in more detail. It seems likely that at
least some of these errors are due to an overestimation in
the emission databases since satellite-based remote sensing
has suggested that models overestimate SO2 over China (Luo
et al., 2020). In addition, these discrepancies could be due
to an error in the aerosol transport or chemical modeling,
such as incorrect reaction rates or deposition rates, or, al-
ternatively, could be due to differences in the time period:
the observations are more recent, while the assumptions for
the emissions are for the year 2010 (Quass et al., 2022). The
comparison using the decadal averages (2010–2019) shows
similar biases (Fig. S2), as expected, since the decadal aver-
ages are so similar to the climatological averages (Fig. 2d),
which suggests that the time differences may not be the
most important factor. In addition, notice that, once aver-
aged over the 2°× 2° grids, more observations are within a
factor of 3, our uncertainty bound (contrast Fig. 3c and d).
However, there could also be methodological and analytical
differences relating to which group or network did the ob-
servations or the exact locations of the different monitors.
Much of the data in those regions are not usually included in
routinely used previous compilations of data (e.g., Redding-
ton et al., 2017), and so the fact that previous model studies
have not been able to assess emission data sets in these re-

Figure 4. Comparison of PM2.5 observations from the US Em-
bassy’s AirNow network (https://www.airnow.gov/international/
us-embassies-and-consulates/, last access: 10 June 2022) versus
observations from the Chinese air quality network (downloaded
from https://quotsoft.net/air/, last access: 10 August 2022) (Beijing:
39.9° N, 116.4° E; Guangzhou: 23° N, 113° E; Shanghai: 31° N,
121° E); from the Indian network (https://app.cpcbccr.com/ccr/{#}/
caaqm-dashboard-all/caaqm-landing/data, last access: 20 Septem-
ber 2022) (Chennai: 13° N, 80° E; Kolkata: 23° N, 88° E; New
Delhi: 27° N, 77° E); and from Santiago, Chile (Barraza et al., 2017)
(23.7° S, 70.4° W), from the Chilean air quality network (https:
//sinca.mma.gob.cl/index.php/, last access: 3 June 2022). The num-
bers after each city name are the number of stations found within 1°
distance from the AirNow (or Chile observation) station.

gions could also partially explain this discrepancy. Compar-
ison between different observations in some cities (Fig. 4)
shows that, in these grid boxes, there can be very large dif-
ferences (∼ factor of 3) between the annually averaged val-
ues reported at nearby stations within 1° distance radially.
Notice that the AirNow measurements (https://www.airnow.
gov/international/us-embassies-and-consulates/, last access:
10 June 2022) tend to be higher than those reported from gov-
ernment air quality networks. The sites compared are in large
cities and, thus, are likely to have strong local sources and in-
tense gradients in pollutants. For now, we keep in mind this
large difference but continue to use the observations. As indi-
cated below, in these regions, we do not have measurements
of composition, and so we do not know which constituents
are poorly simulated in our emissions or transport modeling.
More statistics describing the model data comparisons are
shown in Table S5.

Next, we consider the composition of the PM2.5 aerosol
in the model versus the observations. The model simulates
high and low values of sulfate, observed with a correlation
coefficient of 0.64. Sulfate particle concentrations are on the
high side in the model in several regions, more so in North
America and Africa but less so for Europe and other regions
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Figure 5.

(Figs. 5a and b; S3; Table S5), although all of the regional
means are within the factor-of-3 uncertainty (bold symbols
in Fig. 5b). Previous studies have compared SO2−

4 aerosol
observations to some model simulations and have not noted
this bias (e.g., Barrie et al., 2001; Aas et al., 2019), but this

bias was seen in this model and was attributed to the simple
chemistry included in the model (Liu et al., 2012; Yang et al.,
2018). About 18 % of the climatological mean model values
are outside the factor-of-3 uncertainty, and a larger fraction
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Figure 5. Model results and gridded observations for different types of PM2.5 in µg m−3, spatially mapped globally, where the model is
plotted as the background, and the observations are circles, with the colors indicating the amount of PM2.5 using the same scale for (a) SO2−

4 ,
(c) BC (black carbon), (e) OM (organic material, equating to 1.8 times organic carbon (OC)), (g) Na, (i) Al, (k) NO−3 , and (m) NH+4 . A

scatterplot comparison of the model (x axis) to the observations (y axis) is shown for the gridded observational data for (b) SO2−
4 , (d) BC,

(f) OM, (h) Na, (j) Al, (l) NO−3 , and (n) NH+4 . In the scatterplots, the colors and symbols indicate the regions, the bold black symbols are
the average across each region (indicated by the symbol), the dotted line is the 1 : 1 line, and the dashed lines are the factor-of-3 uncertainty
estimates. More statistics are shown in Table S5, and the maps focused on specific regions are available in Figs. S3–S9 for SO2−

4 , BC, OM,
Na, Al, NO−3 , and NH+4 , respectively.

is outside of the uncertainty for Africa, Australia, and South
America, where there are less data (Table S5).

BC comparisons suggest that the model results are roughly
able (r = 0.63, within the factor-of-3 uncertainty) to capture
the spatial dynamics of this aerosol across more than 2 or-

ders of magnitude, although, in some regions, model values
are on the low side (Europe and Asia) (Figs. 5c and d; S4; Ta-
ble S5). This is similar to previous model intercomparisons
(Koch et al., 2009; Bond et al., 2004, 2013; Liu et al., 2012,
2016). About 18 % of the model values are outside the un-
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certainty bounds, and many of these values come from Eu-
rope, where 36 % of the values are outside of the uncertainty
bounds (Table S5). Simulations of OM in the default model
(Fig. 5e) suggest that the model is within the uncertainty of
most of the data, and the regional averages are close to the
1 : 1 line (Fig. 5f). Correctly modeling organic material is
very difficult due to both the sparsity of data for compari-
son and the importance of both primary and secondary OM
in PM (Heald et al., 2010; Kanakidou et al., 2005; Olson et
al., 1997; Tsigaridis et al., 2014), and previous studies with
this model have noted an overestimation in comparison with
surface observations (Liu et al., 2012).

As a proxy for sea salts, we use the elemental data of the
major component, Na, and we see the highest values over
oceans and lower values over land, as expected and seen in
the observations (Fig. 5g). Although most of the data are
within the uncertainties (30 % are outside the uncertainties;
Table S5), the model tends to be too high at low Na and too
low at high Na in North America, where much of the data
are available (Fig. 5g and h; also seen in the slopes in Ta-
ble S5), which has been seen previously with this model (Liu
et al., 2012). Notice that we do not include industrial emis-
sions of Na, but the concentrations far inland include some
Na, suggesting land-based natural or industrial sources. As
a proxy for dust, we use Al amounts (Fig. 5i and j), which,
globally and over dust regions, are dominated by dust, al-
though there are few observational data sets in high-dust re-
gions. The comparisons suggest the model is able to simulate
dust (correlation coefficient of 0.5, Table S5) across 4 orders
of magnitude, similarly to previous studies (Liu et al., 2012;
Albani et al., 2014; Li et al., 2022; Huneeus et al., 2011), al-
though there is a tendency towards a high bias in the models
over low-dust regions and a low bias in high-dust regions,
similarly to sea salts (Fig. 5i and j; also seen in the slopes in
Table S5). One reason for this overestimate of PM2.5 aerosol
mass for constituents like sea salt and dust, which are pre-
dominantly in the coarse mode, is that the coarse mode in
this model has a wide enough standard deviation that it con-
tributes significantly to the PM2.5 size fraction (Ke et al.,
2022; Li et al., 2025). A better resolution of the coarse-mode
aerosol may be required to better simulate these aerosols (Ke
et al., 2022; Li et al., 2025).

Next, we consider the ammonium nitrate that requires
complicated gas-phase–aerosol-phase equilibrium to be cor-
rectly simulated (e.g., Bauer et al., 2007; Thornhill et al.,
2021; Adams et al., 2001; Regayre et al., 2018; Seinfeld and
Pandis, 2006; Wolff, 1984). To summarize these complicated
interactions, because SO2−

4 is a stronger acid than NO−3 in
the atmosphere, the basic NH+4 is preferentially found with
SO2−

4 . Thus, NO−3 particles will only form if there is suf-
ficient NH+4 available. As described in the “Description of
methods” section, to include these particles, we added the
aerosol mass simulations from a different version of the same
model which includes chemistry (Vira et al., 2022) and a

more process-based source of ammonia (Vira et al., 2020)
since the default CESM2 version used here does not include
chemistry. Note that, even in the chemistry version of the
model for CESM2, the complicated gas-phase–aerosol-phase
thermodynamic equilibrium calculations are not included,
which causes errors in the simulation of the amounts of nitro-
gen aerosols (e.g., Bauer et al., 2007; Thornhill et al., 2021;
Adams et al., 2001; Regayre et al., 2018; Nenes et al., 2021).
Thus, while the NH3 agricultural emission scheme used in
this model is state of the art, the lack of an adequate gas-
phase–aerosol-phase separation may lead to biases, as dis-
cussed in Vira et al. (2022). In addition, recent studies have
suggested that emissions of NH4 from vehicles should be
1.8× higher than previously estimated (Toro et al., 2024),
highlighting the difficulty of obtaining adequate emission
data sets for nitrogenous aerosol precursors. NO−3 particles
compared against available observations show that, over 2
orders of magnitude, the model results are able to simulate
the spatial variability (correlation coefficient= 0.55), but the
model tends to overestimate the observations by about a fac-
tor of 2 (except in South America), similarly to what was
seen in Vira et al. (2022) (Fig. 5k and l, Table S5). The model
surface concentration NO3 values are, with most of the data,
within the uncertainties (Fig. 5k and l; 46 % are outside the
uncertainty bounds in Table S6). The model and data distri-
butions of NH+4 show high values of NH+4 over agricultural
regions in particular (e.g., Vira et al., 2022), like the mid-
western US or central Europe (Fig. 5m and n; correlation
coefficient of 0.52). The NH+4 in the simulation used here
compares well to the available observations across the dif-
ferent regions, with the regional averages being close to the
1 : 1 line (Fig. 5n) and with most of the individual model–
data comparisons being within the uncertainties at most ob-
servational sites (Fig. 5m and n; 16 % of the data are outside
the uncertainty bounds in Table S5).

How would these comparisons change if we used the
decadal 2010–2019 averages instead of the climatological
averages of the observations? As expected from the similar-
ity between the observations averaged over these two time
periods (Sect. 3.2; Table S4), the results do not change sub-
stantially (> 20%) in most regions where there is a simi-
lar amount of data (Fig. S2a; Table S6). However, for some
regions and composition data sets, there is much less data
(> 25% less data), and, in those cases, there can be large
differences between using the decadal averages versus the
climatological averages (Table S6). This suggests that using
the climatological averages for our comparisons for PM2.5
allows us to include more data and evaluate more regions
without including much bias since interannual variability is a
small source of uncertainty compared to other uncertainties
(Table S4).
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Figure 6. Model results and gridded observations for PM10 in µg m−3, spatially mapped globally (a). A comparison of the model (x axis) to
the observations (y axis) is shown for the gridded data (b) and including all stations (c). In the scatterplots, the colors and symbols indicate
the regions, the bold black symbols are the average across each region (indicated by the symbol), the dotted line is the 1 : 1 line, and dashed
lines are the factor-of-3 uncertainty estimates. More statistics are shown in Table S7, and maps focused on different regions are shown in
Fig. S10.

3.4 PM10 model–data comparison

PM10 was the first size selective standard for particu-
late air quality until more studies showed that smaller
particles (PM2.5 or PM1) were more relevant for health
impacts, following which PM2.5 standards were added (e.g.,
https://www.epa.gov/pm-pollution/timeline-particulate-
matter-pm-national-ambient-air-quality-standards-naaqs,
last access: 4 October 2023). However, there are still many
PM10 measurements being routinely made (Figs. 1d, 7a).
The model is able to simulate PM10 concentrations across
2 orders of magnitude with some skill (correlation of 0.55;
Figs. 7a and 6b) as most of the data are within the uncertain-

ties (Fig. 5a, b, and c; 8 % of data are outside the uncertainty;
see Table S7). Gridding the data before comparing to the
model results in a slightly higher correlation across space
with the inclusion of all data (0.55 vs. 0.72; Fig. 5b vs. c).
More statistical comparisons are shown in Table S7. The
regional averages are all within the uncertainty bounds for
all regions.

There are fewer comparisons with PM10 composition data
available in the literature: usually only sea salts and dust
are compared to observations that include the coarse mode
(Gong et al., 2003; Ginoux et al., 2001; Albani et al., 2014;
Mahowald et al., 2006). Comparisons for SO2−

4 suggest that
the model can estimate the distribution of the high and low

Atmos. Chem. Phys., 25, 4665–4702, 2025 https://doi.org/10.5194/acp-25-4665-2025

https://www.epa.gov/pm-pollution/timeline-particulate-matter-pm-national-ambient-air-quality-standards-naaqs
https://www.epa.gov/pm-pollution/timeline-particulate-matter-pm-national-ambient-air-quality-standards-naaqs


N. M. Mahowald et al.: AERO-MAP: a data compilation and modeling approach 4683

Figure 7.

concentrations (correlation coefficient of 0.43) but tends to
overpredict PM10 values across most regions (Africa, Aus-
tralia, Europe, North America, and South America) as many
observations are too high and are outside the uncertainty
bounds (Fig. 7a and b; Table S7 indicates that 48 % of the
model values are outside the uncertainty bounds). For BC,
the PM10 simulation captures the range of values (correla-

tion coefficient of 0.47), with most of the model results be-
ing within the uncertainty bounds of the observations across
all the regions (Fig. 7c and d; 16 % outside the uncertainty
bounds in Table S7). There is the suggestion in the obser-
vations that there may be some fraction of BC in the coarse
model since there is more BC in PM10 than in PM2.5, but
in the simulations used here, there is no mass in the coarse
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Figure 7. Model results and gridded observations for different types of PM10 in µg m−3, spatially mapped globally, where the model is
plotted as the background, and the observations are circles, with the colors indicating the amount of PM10 using the same scale for (a) SO+2

4 ,
(c) BC (black carbon), (e) OM (organic material, equating to 1.8 times organic carbon (OC)), (g) Na, (i) Al, (k) NO−3 , and (m) NH+4 . A
scatterplot comparison of the model (x axis) to the observations (y axis) is shown for the gridded observational data for (b) SO2

4, (d) BC,
(f) OM, (h) Na, (j) Al, (l) NO−3 , and (n) NH+4 . In the scatterplots, the colors and symbols indicate the regions, the bold black symbols are
the average across each region (indicated by the symbol), the dotted line is the 1 : 1 line, and the dashed lines are the factor-of-3 uncertainty
estimates. More statistics are shown in Table S7, and the maps focused on specific regions are available in Figs. S11–S17 for SO2−

4 , BC,
OM, Na, Al, NO−3 , and NH+4 , respectively.

mode (compare Fig. 7c versus 5c). The model–data compar-
ison simulations for OM suggest a good spatial distribution
of OM (correlation coefficient of 0.43), and the modeled re-
gional averages are similar to the observations. Again, the
model currently does not simulate coarse-mode OM and does
not include primary biogenics (Jaenicke, 2005; Mahowald
et al., 2008), and, yet, it can match the observations. The
limited Na (indicating sea salt) data suggest that the model
can simulate the spatial distribution (correlation coefficient

of 0.49) but tends to overestimate and has many observations
outside the error bound (Fig. 7g and h; 50 % of the observa-
tions are outside the uncertainty bounds in Table S7), as was
seen previously (Liu et al., 2012). Most of the regional aver-
ages, however, are just on the line of the uncertainty bounds
(Fig. 7h). Comparisons with Al (used here as a proxy for
dust) show that the spatial variability is correlated between
the model and observations (correlation coefficient of 0.46),
but the model overpredicts the concentrations in high-dust
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regions and underestimates them in low-dust region (Fig. 7i
and j; 54 % of the observations are outside the uncertainty
bounds in Table S7). The largest overestimates are in Asia
and Africa (Fig. 7i and j). Dust models are compared against
aerosol optical depth, deposition, and surface concentrations,
and it is currently not possible to simulate all of these dif-
ferent types of measurements at the same time, consistently
with previous studies with this model (Li et al., 2022; Kok
et al., 2014b; Albani et al., 2014; Matsui and Mahowald,
2017; Zhao et al., 2022), and, indeed, across most dust mod-
els (Huneeus et al., 2011).

The model simulations of NO−3 suggest too-high values in
high-NO−3 areas and too-low values in low-NO−3 regions, es-
pecially in the limited data for the South American region
(Fig. 7k and l; Table S7 shows that 69 % of the data are out-
side the uncertainty bounds). NH+4 shows a slightly better
comparison to the limited available data (Fig. 7m and n), as
seen in Vira et al. (2022). As discussed earlier, the model
does not include other forms of nitrate aerosols which may be
important, such as the reaction of nitrate with dust aerosols
(Wolff, 1984; Dentener et al., 1996; Xu and Penner, 2012).

If, instead, we compared to the decadal averages rather
than the climatological averages, we would obtain similar re-
sults in many cases (Fig. 2b; Table S8), but being limited
to decadal averages substantially reduces the number of ob-
servations available for comparison. The few regions which
lose less than 25 % of the data sets when we temporally limit
our comparison have similar statistics compared to the PM2.5
comparisons. Again, this suggests that using the climato-
logical averages includes more regions in the comparisons
without evidence to suggest that it increases bias because of
the small amount of interannual variability in this data set
(Sect. 3.2).

3.5 Temporal variability

This paper emphasizes the expanded spatial coverage in this
compiled data set with the spatial comparisons in Sect. 3.2–
3.5, but the data set also contains temporal variability as
well. To illustrate the type of temporal data within this data
set, we present briefly some common metrics. First, we con-
sider what trends these data suggest in the surface concen-
trations for PM2.5 and PM10. Because most of these data
come from after 2000 (Fig. 2a and b), we focus on the
trends between 2000–2023. We also average by region in
order to obtain a large-scale trend in surface concentrations
(see details of methods in Sect. 2.5). Overall, the observa-
tions suggest that there is a statistically significant (1σ ) de-
crease in aerosols over this time period of about 1 % yr−1

for PM2.5 in North America, South America, Africa, and Eu-
rope, but the changes over Asia and Australia are not statis-
tically significant (Fig. 8a). These downward trends are sim-
ilar to those seen in other studies including North America
and Europe (Hand et al., 2024; Gui et al., 2021; Gupta et al.,
2022; Mortier et al., 2020) and South America (Mortier et al.,

Figure 8. Trends in the observations of aerosols in different regions
during the 1980–2000 and 2000–2024 time periods for PM2.5 (a)
and PM10 (b). Error bars indicate the 1σ uncertainty using a Theil
regression approach.

2020), and the more ambivalent signals over Asia and Aus-
tralia have also been seen (Gui et al., 2021; Gupta et al., 2020;
Mortier et al., 2020). For PM10, there are different trends:
North America and Europe have a statistically significant
downward trend of about 1 % yr−1, while Asia has a larger
downward trend of about 3 % yr−1, but the error bar overlaps
the 0 line for the South American, African, and Australian
regions, indicating that those regions do not have statistically
significant downward trends. There are no other studies we
know of that looked at trends in PM10 specifically. Note that
we do not compare against the model results here as our ex-
ample model simulation does not include emission trends,
but these data sets include each station’s annual average so
that more detailed comparisons could be conducted. In addi-
tion, apparently, these trends do occur for a long enough time
to cause a large bias in the climatology (Sect. 3.2).

Next, we use the climatological monthly mean data for
PM2.5 and PM10 and compare against the model to see how
well the models simulate the seasonal cycle. There are many
ways to evaluate the seasonality in the literature (Gleckler
et al., 2008; Henriksson et al., 2011; Huneeus et al., 2011;
Rasch et al., 2000). We chose one way here, but this data set
could be used in other ways as well. The models can simu-
late the timing of the seasonal cycle well across most regions,
as seen in correlations between the climatological monthly
mean in the model and observations (Fig. 9a and b), but there
are several regions where the model does not capture the tim-
ing of the seasonal cycle (e.g., northern India, Türkiye, New
Zealand). The spatial distribution of the size of the seasonal
cycle (defined here as the standard deviation in the clima-
tological monthly mean) is less well simulated than the an-
nual mean (contrast Fig. 8d with Fig. 3c and Fig. 8f with
Fig. 6c: the correlation coefficients are smaller, and there is
more spread in the comparisons with the scatterplot). Exam-
ining whether this is a model-specific result or one that oc-
curs more generally in the models would help discriminate
between errors in the input emission data sets and meteoro-
logical errors in the model (e.g., Huneeus et al., 2011).
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Figure 9. Model data comparison for the seasonal cycle. The correlation coefficient between the 12 climatological monthly means in the
observations and the model for those station data sets with a larger seasonal cycle than within-monthly variability (see Sect. 2.5 for more
details) averaged to a 2°× 2° grid for plotting for PM2.5 (a) and PM10 (b). A spatial comparison of the magnitude of the seasonal cycle in
the observations versus the model (defined as the standard deviation of the 12 climatological monthly means) for (c) PM2.5 and (e) PM10
and a scatterplot for PM2.5 (d) and PM10 (f). The correlation coefficient is only calculated in locations where the standard deviation from
the seasonal cycle is stronger than the within-month variability (see Sect. 2.5 for details).
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Figure 10. Observational coverage (%) for gridded observations, showing within each grid box (2°× 2°) the percentage of the constituents
that are measured assuming that PM, SO2−

4 , BC, OM, Na, Al, NO−3 , and NH+4 are required to constrain the PM distribution for (a) PM2.5
and (b) PM10.

3.6 Data and model coverage

The compilation shown here is the most comprehensive one
currently available for describing the spatial variability of the
total mass and composition of in situ particulate surface con-
centration data, and yet it highlights the lack of sufficient
data to constrain the current global distribution of particles
and their composition (Fig. 10a and b). Only 3 % of the grid
boxes (2°× 2°) have PM2.5 data (about 10 % of land grid
boxes), and only 0.3 % have sufficient data to constrain most
of the composition (defined as having 90 % of the variables
considered here: total mass, SO2−

4 , BC, OM, Na or Cl, Al
or dust, NO−3 , and NH+4 ). There are even less data available
to characterize PM10 (Fig. 10b), which is less important for
air quality and aerosol–cloud interactions but more impor-
tant for aerosol–biogeochemistry interactions and longwave
interactions (Mahowald et al., 2011; Li et al., 2022; Lim et
al., 2012; Kanakidou et al., 2018). Because of the high spa-
tial and temporal variability of coarse aerosols and the lack of

satellite or other remote sensing data to characterize coarse
sizes, this lack of data is a severe handicap in constraining
aerosol radiative forcing, its uncertainties, and other impacts
of particles in the climate system. Indeed, many of these
regions have also been identified as regions lacking suffi-
cient remote sensing data for climate and air quality purposes
(Millet et al., 2024).

In this paper, we included nitrate aerosols, which are not
included in the default CESM simulations conducted for cli-
mate, and represent about 10 % of the globally averaged sur-
face concentration mass (Table 2; Figs. S18 and S19). When
we look spatially, the default particles are the dominant par-
ticles over most of the planet (Fig. 11), but, in many regions
for both PM2.5 and PM10, the default aerosol scheme in-
cludes less than 50 % of the aerosol particles (Fig. 10a and c),
with substantial contributions from the nitrate particles that
we add to the simulation (Fig. 10b and d). The CESM2 (and
some other climate models) does not include nitrogen parti-
cles (NO−3 and NH+4 ) because of the substantial complexity
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Figure 11. Modeled estimates of what percentage of the surface concentration of PM2.5 is considered in the default CAM6 climate model
(a) or is new in this study (b). Similarly PM10 is shown for the default model (c) and new sources in this study (d). The new sources added
in this study are the nitrogen oxides as described in Sect. 2.3.

and computational load of chemistry and gas–aerosol equi-
librium (Bauer et al., 2007; Thornhill et al., 2021; Adams et
al., 2001; Regayre et al., 2018). Previous studies have high-
lighted the importance of nitrogen particles for climate, air
quality, and ecosystem impacts (e.g., Adams et al., 2001;
Bauer et al., 2007, 2016; Kanakidou et al., 2016; Baker et
al., 2021). Changes in nitrogen aerosol precursor emissions
are likely to follow different future trajectories than SO2−

4 ,
BC, or OC, whose anthropogenic sources are mostly fossil
fuel derived and should decrease in the future as renewable
energy resources expand (Gidden et al., 2019). Ammonia
has substantial sources from agriculture, which is likely to
stay constant or expand (Gidden et al., 2019; Klimont et al.,
2017; Bauer et al., 2016). This suggests that there could be a
substantial bias, especially regionally, in both historical and
future aerosol forcings due to the exclusion of these impor-
tant sources (e.g., Bauer et al., 2007; Thornhill et al., 2021;
Adams et al., 2001; Regayre et al., 2018).

4 Conclusions

In this study, we collect aerosol surface concentration data
sets and present a new aerosol compilation (AERO-MAP)
designed to evaluate the spatial and temporal variability of
particulate matter in Earth system and air quality models.
The in situ surface measurements complement the column
totals typically retrieved by satellites. This data set includes
both total mass and composition, where available, including
15 000 station data sets and over 20 million daily to weekly
averaged measurements. Climatological and decadal aver-
ages (2010–2019) are presented, and we recommend that the

climatological averages be used because they include more
data sets, and multi-decadal and decadal means are extremely
similar when compared (Sect. 3.2). The spatial variability of
aerosols (Fig. 1f and Sect. 3.2) is important to simulate ac-
curately in models as a prerequisite to identifying the human
impacts. In addition, we make available annual means across
time, along with the climatological monthly means, so that
temporal trends can be assessed. Here, we expand beyond
the usual limited coverage of North America and Europe to
present a more global view for observations of both PM2.5
and PM10 (Fig. 1). Unfortunately, there are still very lim-
ited data characterizing the surface concentration, size, and
composition of aerosol particles (Fig. 10), and the locations
where we lack data have also been identified as lacking suf-
ficient remote sensing data (Millet et al., 2024). While satel-
lite remote sensing can indicate the total atmospheric loading
during cloud-free conditions, it cannot yet provide informa-
tion about the size or composition of particles (Kahn et al.,
2005; Tanré et al., 1997; Remer et al., 2005). Surface-based
remote sensing may provide more information about size and
absorption properties (Holben et al., 2001; Dubovik et al.,
2002; Schuster et al., 2016; Gonçalves Ageitos et al., 2023;
Obiso et al., 2024), but single scattering albedo, for exam-
ple, is only available under very high (> 0.4 AOD) aerosol-
loading conditions and thus is not available most of the time
and in space (Dubovik et al, 2002). Knowing the size and
the composition of aerosols is key to knowing their impacts
on air quality and climate (Mahowald et al., 2011). Knowing
what particles are dominant in a region is required as fossil-
fuel-derived aerosols will likely be reduced, while agricultur-
ally based aerosols may well increase (Gidden et al., 2019).
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We also present a method that is generalizable to other mod-
els that use this data set to evaluate both mass and compo-
sition for intercomparison projects and improvements in air
quality and Earth system models. The novel aspect of this pa-
per is the presentation of this compilation in an easy-to-use
NetCDF format and some example comparisons that can be
used in the future to evaluate and improve model simulations
for individual models or for AeroCom intercomparisons. The
underlying data could also be used for data assimilation ef-
forts or for estimating from the observations what the contri-
butions are from different aerosols (e.g., similarly to Prank et
al., 2016).

This study has highlighted the value of surface concen-
tration data by showing that these data can identify where
models do well or poorly, not just for total mass but also for
different compositions and sizes, complementing other data
sources, such as remote sensing. A recent, independent, and
complementary effort collects all atmospheric composition
data (not just aerosols) from many networks into one easy-
to-use framework called GHOST (Globally Harmonised Ob-
servations in Space and Time; Bowdalo et al., 2024). The
approach used in GHOST includes presenting the data in
NetCDF format at the original resolution, with metadata re-
garding the measurement type and so on included, and is an
important step forward (Bowdalo et al., 2024). At this point,
GHOST only includes a subset of the data available in this
study: we hope that the GHOST effort can be expanded to
include more spatial variability and that it can be maintained
into the future.

This study also highlights the importance of including all
aerosol components into the models and shows that, in the
CESM2, approximately 10 % are missing. In many places,
there is 50 % of the particulate mass missing due to lack
of the nitrate particles (Fig. 10; Paulot et al., 2016; Adams
et al., 1999; Thornhill et al., 2021). Because these particles
are largely driven by agricultural sources and not fossil fuels,
their concentrations will hardly be affected by the transition
to renewable energy and may increase if agricultural pro-
duction expands with populations. Therefore, these nitrate
aerosol particles represent important air quality and climate
impacts that should be represented more accurately in future
studies.
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