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The existence of a transition from a clogged to an unclogged state has been recently proposed for the
flow of macroscopic particles through bottlenecks in systems as diverse as colloidal suspensions, granular
matter, or live beings. Here, we experimentally demonstrate that, for vibrated granular media, such a
transition genuinely exists, and we characterize it as a function of the outlet size and vibration intensity. We
confirm the suitability of the “flowing parameter” as the order parameter, and we find out that the rescaled
maximum acceleration of the system should be replaced as the control parameter by a dimensionless
velocity that can be seen as the square root of the ratio between kinetic and potential energy. In all the
investigated scenarios, we observe that, for a critical value of this control parameter Sc, there seems to be a
continuous transition to an unclogged state. The data can be rescaled with this critical value, which, as
expected, decreases with the orifice size D. This leads to a phase diagram in the S-D plane in which
clogging appears as a concave surface.
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Introduction.—When a system of particles passes
through a constriction, the flow may become arrested by
the formation of clogs. This feature, known since the mid-
20th century [1,2] and recently corroborated [3–5], can be
observed if the outlet size is a few times larger than the
particle size. In particular, it has been proposed [5] that a
critical outlet size exists above which clogging is not
possible (around five particle diameters for spherical
beads). This idea was challenged by K. To and coworkers
[6], who demonstrated that experimental data could be also
fitted by other rapidly growing but nondivergent expres-
sions. An explanation was put forward by Janda et al. [7]
for two-dimensional systems and by Thomas and Durian
for three-dimensional ones [8]. According to the latter, the
clogging transition would be similar to the glass and
jamming transitions, which are defined by an observation
threshold. Then, clogging could happen irrespective of the
outlet size, although in practice the transition may still be
defined for the hole size above which clogging is so
unlikely that it becomes unobservable.
In parallel to these arguments, a new debate arose

concerning clog destruction under an external excitation.
The question is whether there exists a perturbation level
below which it cannot be guaranteed that the clogging arch
will be destroyed. According to several works [9,10] based
on the statistical analysis of the flowing (tf) and clogging
(tc) times, the answer is in the affirmative. The former
correspond to the time periods during which the system is
flowing, and they are always exponentially distributed, i.e.,
PðtfÞ ∼ e−t=τ [5,11,12]; whereas the latter is the time that

arches endure the perturbation before collapsing, and they
display distributions with the power law tail PðtcÞ ∼ t−α.
The physical origin of the broad tails in the clogging

times’ distribution is still a topic under active debate
[13–15] and, from a practical point of view, the distribu-
tion’s nature raises a major issue. If α is smaller than two,
the average htci ¼

R
tcPðtcÞdtc will not converge. In this

case, htci is dominated by the largest event, and the mean
will depend on the experiment duration. For very long
experiments, htci grows unboundedly, and the mean flow
rate vanishes [9]. Accordingly, the system is said to be in a
clogged state if α ≤ 2, while α > 2 characterizes an
unclogged scenario where an intermittent flow is often
observed [10]. Considering this, the “flowing parameter”Φ
was proposed as the order parameter to characterize the
clogging transition:

Φ ¼ htfi
htfi þ htci

: ð1Þ

As Φ represents the fraction of time that the system is
flowing, the mean flow rate of an intermittent flow can be
obtained by multiplying Φ by the instantaneous flow rate
during a flowing interval (i.e., when there are no clogs). As
htfi is always well defined, Φ ¼ 0 in clogged systems and
Φ > 0 in unclogged ones (with 0 > Φ > 1 for intermittent
flows and Φ ¼ 1 for continuous flows).
Apart from granular media [9,10,13,14,16,17], the

power law distribution of htci has also been reported in
the flow through bottlenecks of microswimmers [18],
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suspensions [19], self-propelled particles [20], sheep herds
[10], human throngs [21,22], and active matter in general
[23]. In some of these cases, the clogging transition also
seems to exist as the tail exponents decrease from α > 2 to
α ≤ 2 when a certain parameter is varied. However, a
proper analysis of the transition has not been implemented
yet, and a lack of knowledge exists even about the best
choice of the control and order parameters.
In this work, we fill this gap by implementing an in-

vestigation of the clogging transition using a new 2D silo
that allows us to carry out very long experiments. Instead of
the adimensional acceleration Γ used before [10]—and
inspired from previous works on vertically shaken silos
[24] and granular packings in general [25–28]—we use as a
control parameter a dimensionless velocity S that provides
a nice way to account for all the results obtained in the
range of vibration amplitudes and frequencies explored. We
demonstrate that there is a critical value Sc where the
clogging transition occurs and discover that it only depends
on the orifice size.
Experimental system and methods.—The experiment

[29] consists of a two-dimensional silo (300 mm wide
and 800 mm high) containing a monolayer of stainless steel
spheres of 1 mm diameter. The orifice is made with two
movable flanges, 20 mm in length each, that can be moved
in the horizontal direction to change the exit size D (which
is the ratio between the orifice and the particle diameter).
The flanges are isolated from the rest of the silo, and they
are vertically oscillated by means of an electromagnetic
shaker (TiraVib model 52110), which is in turn driven by a
waveform generator. The sinusoidal vibration is continuous
during all the run, with the amplitude A and the frequency f
varying from one experiment to another in the range of a
few microns and 100 Hz, respectively [29].
The orifices are small in the sense that, without vibration,

a stable clog would quickly develop and last forever. With
the vibration, an intermittent flow is established in which
flow intervals are interspersed with arrest ones. The flow is
characterized by real-time analysis of the images captured

by a standard video camera at 25 frames per second.
A snapshot is taken of a region about 4 × 8 mm just below
the orifice and analyzed to discern whether or not beads are
passing through it. Both the camera and the devices are
connected to a computer and controlled with LABVIEW.
Single beads cannot pass the orifice undetected, but an

image without beads does not necessarily imply the
formation of a clog due to the discrete character of the
medium; therefore, interruptions shorter than 0.2 s are filled
in (they are assigned a flowing state). In summary, the
procedure is such that we can get a binary time series
(consisting of 1 and 0, representing, respectively, the
conditions of flow and no flow) at a sampling rate of
25 Hz. Very long flow interruptions are bound to occur; we
have therefore set an arbitrary time of tm ¼ 100 s for the
longest clog. If this time is reached without any bead
crossing the detecting area, the experiment is halted. We
have performed several series of experiments for several
orifice sizes and vibration strengths (A and f), each one
lasting for as long as needed to reach about 3000 clogging
and flowing intervals.
Results.—We first obtained the statistical distributions

of the flowing and clogging times. As expected, exponen-
tial decays for PðtfÞ and power law tails for PðtcÞ [29]
were systematically found. Two examples are provided in
Figs. 1(a) and 1(b), respectively. Then, in a set of tests with
constant D, we varied the vibration parameters, modifying
both the amplitude A and frequency f, and investigated
their effect on α. In previous works concerning vibrated
silos [9,10], the vibration intensity was characterized by the
maximum acceleration rescaled by the gravity g, i.e.,
Γ ¼ Aω2=g, where ω ¼ 2πf. Here, by implementing sev-
eral experiments at the same Γ but at different values of A
and f [red dots in Fig. 1(c)], we evidence that α is a
multivalued function of Γ. In the language of thermody-
namics, one would say that Γ is not a good state variable.
Indeed, the fact that α takes values both above and below
two implies that for a given value of Γ, the system could be
clogged (α ≤ 2) or unclogged (α > 2), hence proving that

FIG. 1. (a) Distribution of flowing intervals, tf, in semilogarithmic scale. (b) Survival function of clogging intervals, tc, in logarithmic
scale. Data in (a) and (b) correspond to D ¼ 2.3 at S ¼ 0.0065, and the values of τ and α are obtained from the displayed fits (solid
lines). (c) α for two sets of experiments, one at constant Γ (red circles) and another for constant S (blue squares), for D ¼ 2.3. (d) α as a
function of S for different D as indicated in the legend; the error bar is about the size of the dots.

PHYSICAL REVIEW LETTERS 127, 148002 (2021)

148002-2



this variable is unsuitable as control parameter of the
clogging transition.
Aiming to find an alternative characterization of the

vibration intensity, we tested another dimensionless vari-
able that was already used in previous works [24,25]. This
variable can be interpreted as the square root of the ratio
between kinetic and potential energy: S ¼ Aω=

ffiffiffiffi
gl

p
, where

l is a characteristic length for which we chose the bead
diameter. We found that S is univocally related to α: in
Fig. 1(c), we display the values of α obtained for different
values of A and f, while keeping the same S (blue squares).
All data are the same irrespective of A and f, suggesting the
appropriateness of this magnitude as a control parameter of
the clogging transition.
Using S as a control parameter, we can gather all the

experiments and plot α as a function of it, as displayed in
Fig. 1(d) for three different outlet sizes. With this choice, all
the data points obtained for different vibrations (changing f
and A) collapse in a single curve for eachD, supporting the
election of S as a state variable. Note, however, that these
statements must be taken with caution because the system
is out of equilibrium, and the definition of a phase can
arguably be contested.
Next, we use Eq. (1) to compute the value of the order

parameter Φ from htfi and htci. The former are readily
calculated from the data, as the distribution of tf is always
an exponential. Results are displayed in Fig. 2(a), revealing
a negligible dependence of htfi on S and a notable effect of
the outlet size. This was somehow expected as tf is only
related to the probability that a clog is formed and
independent of the probability that a clog is destroyed.
Indeed, the probability of clog formation has been shown to
be strongly dependent on the outlet size but very little

affected by the excitation, if at all. To obtain htci, as the
power law distributions may display heavy tails and our
data are right-censored at tm ¼ 100 s, we have to analyti-
cally integrate the distribution with an extrapolated power
law from tm to ∞. Note that in doing so we are neglecting
other possible phenomena related to the arch dynamics that
may only occur for very long times, such as ageing. So the
value of htci obtained includes the assumption that the
whole tail from tm on is described by PðtcÞ ∼ t−α. In fact,
we have made a few tests with other values of tm, up to
tm ¼ 200 s, and we did not notice any departure from
the power law tail or any change in our results. The
values obtained for htci are shown in Fig. 2(b). Of course,
htci → ∞ for small values of S because whenever α ≤ 2,
the integral diverges.
As a result of the dissimilar dependence of htfi and htci

on S, the order parameter Φ displays a clear transition from
Φ ¼ 0 to Φ > 0 as S is increased [Fig. 2(c)]. It seems that
below a critical value Sc the vibration supplied to the
system is not able to guarantee arch destruction. As could
be expected, the transition occurs for smaller values of S as
the outlet size is enlarged. Moreover, Fig. 2(c) suggests that
the transition is continuous as there is no evidence of any
sudden jump in the values of Φ at Sc.
In order to further characterize the transition, we tried to

identify Sc for each outlet size, with the highest reachable
precision [29]. To this end, we chose to look at the
crossover with α ¼ 2 from data series of clogging times
such as the ones shown in Fig. 1(d). From these results, in
Fig. 3(a) we represent Φ as a function of ðS − ScÞ=Sc
(called supercriticality in the context of bifurcation theory
[31] or reduced parameter in the context of phase tran-
sitions). Although the data dispersion is higher than
desirable, we can envisage a rough collapse that could
be compatible with an expression Φ ∼ ½ðS − ScÞ=Sc�1=2. Of
course, the exponent value should be further investigated as
the dispersion of our data does not allow to go beyond
drawing a line as a guide to the eye.
About this point, let us briefly discuss the possible origin

of the dispersion of our data. First, the error in the
determination of S is ΔS ¼ 0.0002 so the relative error
is around 10% in the worst case for the data reported in
Fig. 2(c). Similarly, the relative error ofΦ (mainly resulting
from the calculation of α) is about 10% (see error bars in
Fig. 2(c) as an example). From this, we can conclude that
the data dispersion is inherent to the experiment. In
particular, for small values of D, the shape (and strength)
of arches that may develop is very diverse, hence causing a
big dispersion in the breaking times. This could only be
remedied by implementing extremely long experiments. In
Fig. 3(a), the error on the calculation of Sc must be also
taken into account. This is specially detrimental for the case
of large orifices, where Sc is small. This is the reason why
the very few data points we have for D ≥ 3.5 are not
included in Fig. 3(a). Resorting to numerical simulations
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FIG. 2. (a) htfi as a function of S for different orifice sizes, as
indicated in the legend. (b) htci as a function of S for the same
orifice sizes as in (a). The arrow means that a point for D ¼ 3.5
lies outside the axis range. Note the logarithmic scale. (c) Φ as a
function of S for four orifice sizes [same colors as in (a) and (b)].
Just two error bars are given to avoid cluttering the figure.
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can be considered, but the fact that the arch breaking
dynamics is primarily ruled by frictional forces poses a big
challenge for this approach.
Aiming to further support the dependence of Φ on the

supercriticality, we have performed an alternative indirect
check that yields an exponent close to 1=2. Let us recall
that htci diverges at α ¼ 2. This can be roughly fitted with a
power law htci ∼ ðα − 2Þ−1.2, as shown in Fig. 3(b) (to be
more precise, the exponent is −1.23� 0.07 with a con-
fidence level of 95%). Moreover, (α − 2) can be fitted by
½ðS − ScÞ=Sc�0.4, as in Fig. 3(c) (the exponent is found
to be 0.38� 0.05). As htci ≫ htfi near the transition
point, Φ ∼ htci−1. Therefore, a dependence close to Φ ∼
½ðS − ScÞ=Sc�1=2 is deduced. In particular, with the fitting
curves shown in Figs. 3(b)–(c), the critical exponent would
be 0.47� 0.09.
Beyond the specific value of the exponent, it is important

to analyze the relationship between Sc andD [Fig. 3(d)]. As
expected, the larger the orifice, the smaller the vibration
needed to attain an unclogged state. Significantly, the data
points represented delimit the boundary among clogged
and unclogged states in the plane S-D: above the boundary,
the system would be unclogged whereas it would be
clogged below it. Interestingly, the shape of the boundary
is concave, in agreement with the current picture [32,33] of
the jamming diagram proposed by Liu and Nagel [34]. This
shape has two important implications: (i) when D is
reduced to very small values, S has to be dramatically
increased in order to attain the unclogged state, hence
evidencing the difficulty of designing a bead by bead
dispenser that does not get permanently clogged; and (ii) in
the limit for very low vibration intensities, an increasingly
augmented outlet size is necessary to reach an unclogged
system.
Disappointingly, the data trend displayed in Fig. 3(d)

does not allow one to discern if Sc takes a finite value for
D → 1þ (recall that D is the outlet size rescaled by the
particle diameter) or whether Sc ¼ 0 will be reached for a
finite value of D ¼ D�. Note that the latter would have

implied that above D� arches would not be able to endure
an infinitesimal perturbation, and therefore it would have
meant that stable arches could not be formed for D > D�,
even for a static silo. Nevertheless, taking into account that
small perturbations are unavoidable in real silos, it can be
reasonably argued that clogs might never be observed in a
nonvibrated 2D silo for sufficiently large orifices. Finally,
let us note that the smooth dependence between Sc and D
observed in Fig. 3(d) indirectly supports the validity of the
implemented method to determine Sc.
In summary, we have experimentally proven the validity

of the idea that a vibrated granular silo undergoes a
transition from an unclogged to a clogged state when
the excitation falls below a certain threshold. We evidence
the appropriateness of the proposed magnitude Φ as an
order parameter and we find that the rescaled vibration
acceleration Γ is not a good control parameter. Instead, we
demonstrate how S (an adimensionalized velocity) is more
suitable, as it is able to encompass the results obtained for
different vibration amplitudes and frequencies. Then, we
observe a seemingly continuous transition from Φ ¼ 0 to
Φ > 0 when the vibration intensity reaches a critical value
Sc, which is shown to decrease when increasing the outlet
size. Given the intrinsic noise of the data, a reasonable
collapse of all the data is obtained when representing the
flowing parameter versus the supercriticality ðS − ScÞ=Sc.
A plausible value of the critical exponent, close to 1=2, may
suggest that this transition could belong in the universality
class of a mean field Ising system or a 2D directed
percolation transition, but this must be corroborated in
future works. Moreover, it would be interesting to check if a
behavior analogous to the one reported here (i.e., a
continuous transition and a concave boundary separating
clogged and unclogged states) is observed in other discrete
systems in which, quite likely, additional control param-
eters will be needed.
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