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Chapter 1

Introduction

If we look around us, we realize that synchronization phenomena appear in
nature and social life in different forms and situations: clocks, applauding
audience, different forms of behavior of insects [1; 2; 3]... The mechanisms
which bring to synchronization are clearly different, since the nature of the
objects is different, however they share the same principle: they acquire a
common regime.
Theoretical descriptions of these behaviors started in the sixteenth century
with Christian Huygens [4]. Observing two pendulum clocks hanging on a
wall, he justified the conformity of their rhythms by a motion of the beam.
After this seminal contribution many others have followed, bringing the
synchronization scenario in many situations. Recently several authors have
made synchronization getting closer to another colossal field of research:
Chaos[5; 6]. For many, one of the most promising field of research, it has
been the cause of many questions and debates: What is chaos? What are
the routes to chaos? Can you control chaos? Is it possible to synchronize
several chaotic systems?
As a first tentative definition, chaos is related with transition from periodic
motions, with high regularity and order, to irregular or erratic motions [7].
Both theoretical and experimental investigations have revealed that there is
not a unique way in which chaos arises. Landau [8] postulated that chaos is
caused by an infinite sequence of Hopf bifurcations. Each bifurcation adds
a new fundamental frequency. Thus, as more and more frequencies occur,
the motion gets more and more chaotic. However, others authors showed
that only two bifurcations are precursory to chaos. Period doubling route
is based on the original idea of Landau. If the sequence of period doubling

1



2 Chapter 1. Introduction

is infinite the period quickly approach infinity. Pomeau and Manneville
[9] also introduced the idea of intermittency, which add a new scenario for
the transition from periodic to chaotic dynamics. It refers to oscillations
that are periodic for time intervals and then interrupted by bursts of ape-
riodic oscillations of finite duration. Perora and Caroll [10] showed that it
is possible to synchronize chaotic systems, creating the fundamentals to a
possible control.
There are two ways for controlling chaos [11]: a (negative) feedback control
[12] and a non feedback one [13; 14; 15]. The first one stabilizes an un-
stable reference orbit by time-dependent perturbations. On the contrary,
the other one is not related to certain particular trajectory and in this case
controlling chaos means suppression of chaos.
Questions about synchronization in extended chaotic systems have been
the starting point of this thesis. The answers that one can give to this so
general subject depend on many factors: which systems do we consider,
which kind of chaos, which interaction do we apply or which state of syn-
chronization are we looking for. Very likely due to historical reasons in our
department, the investigation has been driven to possible synchronization
mechanisms in fluid systems. In particular, we have chosen the Hele-Shaw
cell [16]. This device is constituted of two transparent plates separated by
a small gap. In the interior of the cell, a fluid is heated from below. This
is a quite simple system, nevertheless, it is able to reproduce very complex
dynamics. The geometry of the Hele-Shaw cell has the advantage of reduc-
ing the problem to two spatial dimensions. The analogy of the Hele-Shaw
cell with a fluid saturated porous media permit to use important results in
the field of porous media for our analysis [17].
In most cases, studies of synchronization have considered external forcings,
bidirectional symmetric or unidirectional master-slave coupling configura-
tions. With a bidirectional coupling the trajectories of both systems will
change to follow a common new trajectory. With a unidirectional coupling,
the trajectories of the response system will converge to the same values as
the drive system, and they will remain in step with each other. However
recent research has also considered asymmetric coupling configurations [18],
due to the impossibility in practical situations to have purely unidirectional
or perfectly symmetrical couplings.
Depending of the final conditions of the synchronized systems, it is possible
to identify several states of synchronization [19]. In the following sections
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Figure 1.1: Bénard cells in spermaceti. A reproduction of Bénard’s original photograph

[21].

we formally introduce the concepts of thermal convection, Hele-Shaw cell
and synchronization.

1.1 Thermal Convection

The origin of the term convection [20], from the Latin “convectio”, gives an
idea of “carrying with” and it seems to have been used in physics, for the
first time, to denote the transport of heat through fluid motion. Earliest
description has been written around 1790 by Benjamin Thompson, Count
Rumford, who investigated the properties and management of heat. The
most significant and systematic experimental work has been carried out by
H. Bénard [21] at the beginning of the twentieth century. He studied a
seemingly simple convective system which he never knew being so compli-
cated. In fact, in many experiments he used fluid heated from below with
no confining plate on the top surface. In this arrangement the top surface
is free to move and deform. It was not realized until 1956 that this can lead
to an instability mechanism involving gradients in the surface tension. This
situation is now called Bénard-Marangoni convection. Bénard observed a
first phase in which the fluid formed cells of almost regular shapes, nearly
polygons of four to seven sides, which evolved to equal and regularly spaced
hexagons, as shown in Fig. 1.1. The circulation of the fluid in the hexago-
nal cells is generally upwards in the center (up-hexagons) and downwards
along the rim. In 1900, convection became the principal subject of inves-
tigation of Lord Rayleigh [22]. In one of his last article published in 1916



4 Chapter 1. Introduction

Figure 1.2: Schematic diagram of the organization of convective motions into rolls

cells.

he explained what is now known as Rayleigh-Bénard convection. A thin
layer of fluid, heated from below, is fully confined between two plates, so
that there is no gap (free surface) at the top of the fluid layer. In the case
of pure gravity-driven instability, there is an organization of ascending and
descending motions in the form of rolls, alternatively turning clockwise and
counter-clockwise in space, as shown in Fig. 1.2.

1.1.1 Instability mechanism: Rayleigh-Bénard convection

Let us consider a Newtonian and isotropic fluid layer confined between two
rigid horizontal plates, heated from below [20]. If the temperature gradient
is small, the temperature profile is purely conductive, and then linear. If
we consider a small ascending displacement of a fluid element, this will be
surrounded by denser regions producing a net buoyant force that will sus-
tain the initial displacement. Neglecting the molecular diffusion, the fluid
element continues to rise and the Archimede’s buoyant force amplifies. Con-
vective motion starts when the temperature difference goes beyond a critical
value. A fluid element, at height z, is subjected, per unit volume, to the
buoyancy force gδρ = gαρ0δT , where g is the acceleration of gravity and δT
is the temperature difference between the fluid element and its neighbors,
having assumed a linear variation of the density ρ = ρ0(1 − α(T − T0)),
where T is the temperature of the fluid particle, α is the volume expansion
coefficient and ρ0 the fluid density at the reference temperature T0. Since
the temperature profile is linear, the buoyancy force is αρ0g∆Tz/h, where
h is the height of the layer and ∆T is the temperature difference between
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the horizontal plates. The equation governing the motion of a fluid particle
admits an exponential solution as z ∼ et/τgrav [23; 24], where τgrav is the
time scale related to gravity

τgrav =

√
h

αg∆T
. (1.1)

This mechanism of instability does not develop suddenly. There exist in
fact, two inhibiting factors that tend to dampen this motion. The first one
is the viscosity of the fluid, µ, which slows down the motion of the particles.
It defines a characteristic time

τvisc =
ρ0h

2

µ
. (1.2)

The second inhibiting factor comes from the exchange of heat between fluid
particles at different temperatures. This factor increases as the fluid ther-
mal diffusivity, κ, is larger. We can also define an associated characteristic
time with this damping mechanism

τtherm =
h2

κ
. (1.3)

Comparing the characteristic times given by Eqs. (1.1)-(1.3), we can say
that the instability takes place when the destabilizing effects are faster than
the stabilizing ones, that is when τgrav

2 ¿ τviscτtherm or, in other form

Ra =
τviscτtherm

τgrav
2

=
ρ0gα∆Th3

µκ
À 1. (1.4)

The above relation defines the Rayleigh number as the dimensionless pa-
rameter which indicates the stability of a fluid layer subjected to a vertical
thermal gradient. The simpler parameter for controlling the convection is
the temperature difference across the fluid layer. Below a certain critical
value, the stabilizing effects drive the fluid back to a conductive rest state.
Beyond threshold, the Archimedean force dominates and fluid motion is
observed in the layer. For a critical value of the temperature difference, it
corresponds a critical value of the Rayleigh number. The critical Rayleigh
number is defined as the value of the Rayleigh number from which insta-
bility sets in
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Figure 1.3: Hele-Shaw experimental set up (d ¿ h), (H. Mancini).

Ra < Rac stable system (conduction),
Ra > Rac unstable system (convection).

1.2 Hele-Shaw cell and porous media

The Hele-Shaw cell, an assembly for fluid investigation and visualization,
was named from Henry S. Hele Shaw, the British engineer who devised it
around the turn of the twentieth century. This device has recently attracted
great interest, due to its simple geometry and its various applications. The
cell consists primarily of two transparent plates separated by a small gap,
so that one dimension is much smaller than the other two, as shown in
Fig. 1.3. In particular, the Hele-Shaw flows have been studied for their
potential applications to coastal engineering, water resources, oil industry
drilling and more recently in micro-mechanical-electrical systems and bio-
medical engineering. The success of the Hele-Shaw cell is also coming for its
contribution to the understanding of thermal convection in porous medium,
the latter being important for a wide range of applications in industrial and
geological researches.
In a fluid saturated porous medium, low-Reynolds number flow of an in-
compressible fluid is described by a linear pressure-velocity relation, called
Darcy law [25]

v =
K

µ
(−∇p + ρg) (1.5)
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where v is the filtration velocity vector, ∇p the pressure gradient, ρ the
fluid density, µ the dynamic viscosity, K the permeability of the medium
and g the acceleration due to gravity. The analogy between an isothermal
two-dimensional flow in a porous medium and the motion of an isothermal
fluid between two parallel walls separated by a distance d, was first shown
by Hele-Shaw [16]. The mean velocity for the flow through a Hele-Shaw
cell is given by

v =
d2

12µ
(−∇p + ρg). (1.6)

The hydraulic analogy between viscous fluid motion in a porous medium
and motion in a Hele-Shaw cell is rigorous for isothermal flow when an
equivalent permeability K = d2/12µ is defined [17; 26]. The Hele-Shaw
cell is very useful because its geometry forces the disturbances to be purely
two-dimensional. In the case of porous media the critical Rayleigh number
is known to be Rac = 4π2, as it has been derived analytically by Horton
and Rogers [27] and experimentally shown by Lapwood [28]. The appear-
ance of time dependent motion in a porous layer uniformly heated from
below was suggested from experiments by Caltagirone et al. [29], and then
Horne and O’Sullivan [30] numerically verified the existence of both sta-
tionary and oscillatory motions. Cherkaoui and Wilcock [31] numerically
determined a sequence of transitions in an open-top square porous layer
heated from below: stationary - quasi-periodic - periodic. In the same way,
the analysis of time dependent Hele-Shaw convection [32; 33; 34] showed
that the transition from the steady state to the chaotic state is preceded
by the onset of periodic and then quasi-periodic oscillations, similar to the
behavior of convection in a thin horizontal fluid layer.

1.3 Synchronization

Chaos synchronization is an important piece of research in non linear dy-
namics due to its potential applications in engineering and in the under-
standing of complicated phenomena in nature. Different kinds of synchro-
nization have been defined: complete synchronization (CS) [10; 35; 36],
generalized synchronization (GS) [37; 38], phase synchronization (PS)[39;
40; 41; 42], and lag synchronization (LS) [43]. CS means that the several
coupled systems remain in step with each other in the course of time. It
is obvious that CS is the simplest and strongest form among the diverse
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synchronization behaviors. Only in coupled systems with identical elements
can we observe CS. In the GS the dynamical variables from one subsystem
are function of the variables of the other subsystem. In the classical case
of periodic self-sustained oscillators, described as early as in [4], synchro-
nization is usually defined as locking of the phases, while the amplitude
can be quite different. However, PS is not restricted to periodic oscil-
lators. Reference [40] shows that interaction of nonidentical autonomous
chaotic oscillators leads to a perfect locking of their phases, whereas their
amplitudes remain chaotic and uncorrelated. LS is an intermediate state
between PS and CS. It appears as a coincidence of shifted in time states
of two systems. Reference [43] shows transition from PS to CS, passing for
LS, increasing the coupling between two nonidentical chaotic oscillators.
Different regimes of synchronization can be found in the review article by
Boccaletti [5].
In view of the future results, we give some more information about the
complete synchronization.

1.3.1 Complete synchronization

For chaotic dynamics, synchronization influences not only the mean fre-
quencies but also the chaotic amplitudes. As a result, the signals coincide
(or nearly coincide).
Let us consider the temporal evolution of two identical chaotic systems:

ẋ = f(x),
ẏ = f(y), (1.7)

where x and y represent the N -dimensional state vectors of the systems,
while f is a vector field f : Rn → Rn. As the dynamics of each variable
is chaotic, in the case of non interacting systems one sees two independent
random-like processes without any mutual correlation. Obviously, there
is not a unique way to couple. However, we are looking for a contractive
coupling that tends to make the differences |x − y| smaller and does not
affect the symmetric synchronous state x = y. Therefore, we demand that
the coupling force were proportional to the differences of the state of the
two systems and vanishes for coinciding state.
A bidirectional coupling scheme is obtained by introducing the following
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additional dissipation term:

ẋ = f(x) + C · (y − x)
ẏ = f(y) + C · (x− y) (1.8)

where C is a n× n matrix, whose coefficients rule the dissipative coupling.
If there is no coupling the two systems are completely independent and
uncorrelated; with small coupling the trajectory of the signals will move
closer due to the attraction between the two states. If the coupling is
strong enough the attraction wins and eventually it leads to a complete
synchronized state.

However, we have to pay special attention to how strong is the coupling,
for example, if we consider two oscillators that are mechanically coupled
with a rigid link, we can not speak of synchronization because the coupling
imposes a too strong limitation on the motion of the two systems. To deter-
mine what can be considered as a weak or a strong coupling is rather subtle,
but we can say that the introduction of coupling should not qualitatively
change the behavior of the interacting systems.

1.4 The scope of this work

This thesis is a contribution to the theoretical analysis of possible syn-
chronization mechanisms between two convective Hele-Shaw cells. The ob-
jective requires to calculate the evolution of the flow and heat transport
patterns in a single Hele-Shaw cell uniformly heated from below. The first
numerical approach, has been supported by a linear and weakly non lin-
ear stability analysis of the model. Synchronization is investigated using
a thermal bidirectional coupling in stationary, periodic and chaotic dy-
namical regimes. Different numerical methods have been implemented to
optimize the computational speed. The minimal number of connectors has
been established to prepare favorable conditions for future experimental
realizations.

The mathematical formulation of the model of the flow in a Hele-Shaw
cell is given in Chapter 2. The configuration, which we have modelled con-
sists in a rectangular parallelepiped of width and hight h and thickness
d ¿ h. The vertical boundaries are considered adiabatic. The horizontal
top and bottom are isothermal, with the bottom surface hotter than the top
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one. When there is no motion, a vertical linear temperature distribution is
set in the system.
In chapter 3, we will analyze the dynamics of a single Hele-Shaw cell. Two
type of transition are characterized: the first one is a decrease in the hori-
zonal aspect ratio of the cells; the second one is from steady to unsteady
flow pattern. Due to the simple geometry of the Hele-Shaw cell, this the-
sis starts with a simple numerical scheme: a second order finite difference
scheme. We give the transitional Rayleigh numbers that separate the dif-
ferent dynamical regimes and describe the characteristics of the convective
patterns after each transition.
In chapter 4, linear and non linear analysis of the conductive state is pre-
sented. The linear analysis permits to determine the stability threshold.
The non linear evolution is described by the amplitude of the unstable
modes. In order to solve the linear and non linear problem, we implement
the spatial collocation method which is computationally more efficient than
the finite difference scheme.
In chapter 5, after a brief discussion over what determines the spatial struc-
tures of the flow, we investigate possible synchronization mechanisms be-
tween two Hele-Shaw cells. Using a weak bidirectional thermal coupling
between all the points of the two systems, we obtain complete coincidence
of the dynamics. We also investigate the minimal number of points neces-
sary to get synchronization and we also consider the possibility of coupling
both systems only through the lateral walls.
We conclude with chapter 6 by summarizing the main results.
In general, there is no analytical tools available for solving nonlinear compli-
cated PDE. Therefore, in Appendices A and B, we have recalled the numer-
ical techniques that permit to calculate the time evolution of the flow inside
the Hele-Shaw cell. In order to integrate the flow during a long period of
time, we propose a set of numerical methods, which permit to compute in an
accurate and stable way the time evolution of the system. In Appendix A,
we discuss the discretization of initial-value problems and boundary value
problems, considering, more specifically the advection-diffusion equations
and the Poisson equation. One-step and multistep methods are considered
for explicit and implicit schemes, paying special attention to the accuracy
and stability of discretization. In Appendix B, we introduce spectral meth-
ods, making evident their advantages in term of convergence, but also their
complexity in term of implementation.



Chapter 2

Mathematical Formulation

Two dimensional systems are in general more amenable to experiments and
simulations than three dimensional systems, mainly because the reduction
of the dimension significantly reduces the amount of data required to specify
the flow. Flow in third dimension can be suppressed through rotation,
stable density gradients, magnetic field or thinness of a fluid layer, as in
the present work. In this chapter, we deduce the equations which model
2D convection in Hele-Shaw cell, a cell that is very thin compared to its
horizontal width and vertical height. In this way the three dimensional
Navier-Stokes equations can be reduced to two dimensional equations. This
task is obtained following the procedure exposed in Bizon et al. [44; 45].
Finally, stream function formulation of the governing equations allows us
to make evident the analogy between flows in porous medium and in a
Hele-shaw cell.

2.1 Model equations

The geometry which we consider is a rectangular parallelepiped of width
and height h in direction x and y, and thickness d ¿ h in the z direction.
The fluid in the cell is buoyantly driven by a vertical gradient of temperature
which ranges from T = Tb at y = 0 ( the bottom of the cell) to T = Tt at
y = h (the top of the cell). To model the fluid motion, we start with the

11
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Navier-Stokes equations in the Boussinesq approximation:

∇ · v = 0 (2.1)
∂tT + v · ∇T = κ∇2T (2.2)

∂tv + (v · ∇)v = ν∇2v − 1
ρ0
∇p + g

ρf

ρ0
(2.3)

where v, p, ρ and T are the velocity, pressure, density and temperature
of the fluid. The parameters ν and κ are the kinematic viscosity and the
thermal diffusivity, respectively. Gravity g is directed downward, in the
y direction. Boussinesq approximation consists of setting constant all the
physical properties of the medium, except the one that is involved in the
buoyancy term. The equation of state of an isothermal fluid, in the most
general form, is

ρf = ρf (T, p). (2.4)

We suppose that the temperature and the pressure are sufficiently small
with respect to their reference values, in order to write

ρf = ρ0[1− α(T − T0)]− β(p− p0)] (2.5)

where T0 and p0 are the temperature and the pressure of reference, α is the
thermal expansion coefficient and β is the compression coefficient. Further-
more, if we suppose that the perturbations of the mass due to the variations
of the pressure are small with respect the variations of temperature, the re-
lation (2.5) becomes

ρf = ρ0[1− α(T − T0)]. (2.6)

Because d is much smaller than h, the flow parallel to the side walls may
be turbulent, while the crosswise Reynolds number, ud/ν, is no larger than
order ten. Here u refers to either x and y components of the velocity. This
allows to assume, for such flows, a parabolic profile [46; 47; 48] in z as

v(x, y, z, t) = f(z)u(x, y, t) (2.7)

where
f(z) = 4

z

d

(
1− z

d

)
, u · êz = 0, (2.8)

êz is the unit vector in the z direction and u lies in the (x, y) plane. Hence,
the temperature and the pressure may be considered independent of z [44].
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Inserting this profile in (2.1)-(2.3) and averaging in the z direction, the Eqs.
(2.1)-(2.3) become:

∫ d

0
f(∇⊥·u)dz = 0

∫ d

0
∂tT + f(u · ∇⊥)T − κ∇2Tdz = 0

∫ d

0
f∂tu + f2(u · ∇⊥)u− νf∇⊥u− ν∂2

yfu +
∇⊥p

ρ0
− g

ρf

ρ0
dz = 0

that is

∇⊥·u = 0

∂tT +
2
3
u · ∇⊥T = κ∇2

⊥T

∂tu +
4
5
(u · ∇⊥)u = ν[∇2

⊥ −
12
d2

]u− ∇⊥p

ρ0
+ g

ρf

ρ0
. (2.9)

Here the subscript ⊥ refers to the (x, y) plane. In order to generate dimen-
sionless variables (that are of order one in the flow fields), we scale with
respect to the new variables:

t̃ =
h2

κ
t,

x̃ =
x
h

,

ũ =
h

κ
u,

p̃ = µ
κ

h2
p,

T̃ =
T

∆T
. (2.10)

where ∆T = Tb − Tt. The proper scales depend on the nature of the flow
and are obtained equating the terms that are dominant in the flow field.
In particular, at low Rayleigh number the dominant terms are the pressure
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and the viscous forces. Thus, our model 2D system results:

∇⊥·u = 0, (2.11)

∂tT +
2
3
u · ∇⊥T = ∇2

⊥T, (2.12)

1
Pr

(
∂tu +

4
5
(u · ∇⊥)u

)
= [∇2

⊥ −
12h2

d2
]u−∇⊥p +

+
[1− α∆T (T − T0)]

νκ
h3g, (2.13)

where Pr = ν/κ is the Prandtl number. Apart from numerical factors,
the difference between these equations and the two dimensional Boussinesq
equation is the extra dissipation term proportional to h2/d2. Now, because
the scale of flow structures is larger than d, the ∇2

⊥u term is outweighed by
this linear Hele-Shaw drag term. Furthermore, for large Prandtl number
equations (2.11)-(2.13) become

u =
d2

12h2

(
−∇⊥p +

[1− α∆T (t− T0)]
νκ

h3g
)

(2.14)

∂tT + u · ∇⊥ = ∇⊥2T (2.15)
∇ · v = 0 (2.16)

2.1.1 Stream function equation reformulation

As an alternative way of solving the governing equations in primitive vari-
ables, it is possible to avoid the explicit appearance of the pressure term by
using the stream function formulation. In two dimensions the Eqs. (2.14)-
(2.16) are:

∂ux

∂x
+

∂uy

∂y
= 0, (2.17)

∂p

∂x
+ 12

h2

d2
ux = 0, (2.18)

− [1− α∆(T − T0)]
νκ

h3g +
∂p

∂y
+ 12

h2

d2
uy = 0, (2.19)

∂T

∂t
+ ux

∂T

∂x
+ uy

∂T

∂y
=

(
∂2T

∂x2
+

∂2T

∂y2

)
. (2.20)
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In order to remove the pressure variable, we derive Eq. (2.19) with respect
to x and subtract the derivative of Eq. (2.18) with respect to y. The
resulting equation is:

12
h2

d2

(
∂uy

∂x
− ∂ux

∂y

)
− αg∆Th3

νκ

∂T

∂x
= 0. (2.21)

Being uz = 0, the governing equations can be presented in terms of a stream
function defined by:

ux =
∂ψ

∂y
; uy = −∂ψ

∂x
. (2.22)

Using the stream-function formulation the equations (2.20) and (2.21) be-
come:

∂T

∂t
= ∇2T − ∂ψ

∂y

∂T

∂x
+

∂ψ

∂x

∂T

∂y

∇2ψ = −Ra
∂T

∂x

(2.23)

where

Ra =
αg∆Thd2

12νκ
(2.24)

is the Hele-Shaw Rayleigh number. For a square bounded porous medium,
the linear theory gives a Rayleigh number equals to 4π2 for the onset of
convection (Lapwood [28]) and it is defined as

RaPM =
gα∆ThK

νκ
(2.25)

where κ is the thermal diffusivity of the fluid-filled medium, K is the per-
meability of the medium, α is the coefficient of thermal expansion of the
fluid, ν is the kinematic viscosity of the fluid and h is the height of the
square porous medium. A comparison of (2.24) and (2.25) reveals that the
Hele-Shaw Rayleigh number is identical to the porous medium Rayleigh
number if the permeability is taken to be

K =
d2

12
. (2.26)
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Figure 2.1: Schematic representation of an Hele-Shaw cell heated from below.

As indicated before, the Hele-Shaw cell is represented by a rectangular
parallelepiped of width and height h in directions x and y, and thickness
d in the z direction. As all boundaries are rigid the flow must follow the
impermeability conditions that is, v · ên = 0 on the boundaries, where ên =
0 is the unit vector normal to the boundary. The temperature boundary
conditions are T = 1 at y = 0, T = 0 at y = h and ∇T · ên = 0 at
the lateral walls (insulating conditions), (see Fig. 2.1). The first equation
of (2.23), is a diffusion equation for the temperature field. The non linear
term is usually called advection term and takes the form of a Jacobian. The
second equation is of Poisson type and is written for the stream function.
The boundary conditions for the stream function are ψ = 0 on all solid
boundaries and express the impermeability of the walls.



Chapter 3

From Stationary Convection to
Chaos

In this section we will illustrate that a fluid layer when heated from below
may exhibit several behaviors: stationary convection, oscillating convec-
tion, formation of thermal plumes, chaotic convection, and turbulence.
Experimental investigations of Caltagirone et al. (1971) [29], for two-
dimensional flow in porous media uniformly heated from below, showed
irregular fluctuations. The experimental analysis of Koster (1980) [33] of
time dependent convection in a thin vertical fluid layer, demonstrated that
the transition from steady to chaotic state is preceded by the onset of peri-
odic, and then quasi-periodic oscillations. Horne and O’Sullivan (1974) [30]
modelled the experiment of Caltagirone and proved that, in certain case,
two distinct modes of flow were possible, one of which was oscillating, the
other being steady. Koster (1981) [32] and Frick (1983) [34] gave numerical
support to the oscillatory convection in the Hele-Shaw cell. Kimura et al.
(1986-87) [49; 50], with simulations of an initial value problem for convec-
tion in porous medium, explained the route to chaos through the following
temporal sequence: steady, periodic, quasi-periodic, and another final pe-
riodic regime. They found two chaotic states at Ra = 1000. Graham and
Steen (1994) [51] showed that it was an artefact due to the insufficient
spatial resolution of the numerical discretization and that chaotic behavior
appeared only at Ra = 1200.
In this chapter, we present the dynamics of a single square Hele-Shaw cell
heated from below. The Rayleigh number is varied from 44, (10% above
its critical value), until 1200. The first numerical method used to solve

17
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(a) (b)

Figure 3.1: Stationary convection at Ra=44. (a) The spatial pattern preferred by the

flow is a uni-cellular mode (stream-function) for the two possible rotation i.e. clockwise

(upper) and counterclockwise (lower) (b) The snapshots of the corresponding temperature

field.

equations (2.23) is a simple second order accurate finite difference scheme.
A square uniform (∆x = ∆y) grid of 129 × 129 points has been used. In
order to avoid aliasing errors, the advection term is treated with a second
order Arakawa Jacobian [52; 53; 54]. Time integration is achieved with
an Adams-Bashforth method. Details about the numerical method are re-
ported in Appendix A.

3.1 Results of numerical simulations

The onset of convection is defined when the parallel fringe pattern of the
state of pure heat conduction is slightly deformed to a wavy shape, indicat-
ing the appearance of a vertical flow component rising upward along one of
the two vertical walls. At low Rayleigh number, Ra = 44, the convective
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flow begins in the most favorable mode for that value, that consists of a roll
with its axis parallel to the shorter side of the box, namely the uni-cellular
mode. The single roll can turn clockwise or counterclockwise depending
on the initial condition. In a single cell, the fluid is swept horizontally
toward the lateral boundary. Due to buoyancy it rises and eventually im-
pacts the upper boundary layer in the corner where the side wall meets
the upper surface of the cell. In this way the fluid carries heat flux away
from the hot boundary layer. In that corner the fluid is redirected hori-
zontally, subsequently it becomes a dominant part of the fluctuation which
sweeps along the upper boundary layer, exchanging heat flux directly with
the sheared, cold boundary layer. The heavier fluid goes down and meets
with the lower hot boundary layer where the colder heat flux diffuses. Note
that this scenario does not involve the central region of the cell in any way.
It is remarkable that after the convection is fully developed the sense of ro-
tation of the roll remains invariant, independent of the heating rate (until
we observe transitions to new states).
Snapshots of the stream function and temperature for the solution at Ra =
44 are shown in Fig. 3.1.
At variance at high Rayleigh numbers, converged solutions display a multi-
cellular convective pattern. Starting from Ra = 350, it exist two distinct
possible modes of flow, one of which is time dependent (single cell mode),
the other being steady with a three-cellular mode. The boundary layer be-
comes unstable and new upwelling sites develop. Starting from a single roll
it is possible to see a continuous development of three weak circulations
inside the primary convective roll. By further increasing of the heating,
such circulations grow, and the flows continuously transform into a three-
roll flow. This transition brings the system from a steady one-cell pattern
to a steady three-cell pattern.
The aim of this investigation is to consider the possible synchronization
between two chaotic Hele-Shaw cells. By increasing slowly the Rayleigh
number it is possible to bring the uni-cellular convective cell into a chaotic
state. This dynamical regime is preferred in view of the subsequent study
of synchronization. The multi-cellular modes are in general stationary at
low Rayleigh number and therefore not interesting from the point of view
of dynamical systems. By increasing the Rayleigh number, we have to be
careful to keep the system onto the single cell mode of convection because
this solution maybe unstable with respect to the multi-cellular modes. This
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Figure 3.2: Snapshots of the instantaneous temperature fluctuation from the main field

at Ra = 400, showing wave number equal to 5. Wave number is computed as one-half

the number of sign changes in the fluctuation field around the perimeter of the container.

Time is increasing from left to right and from top to bottom. First snapshot is for

t = 0.1498. Sampling time is ∆t = 0.0014. For this Rayleigh number the dimensionless

period is τp = 0.01183.

task proved to be delicate. The mode selection depends from the history
of heating. Indeed, uni-cellular structure can be permanently maintained
in the range that we have studied by a slow and controlled increase of the
heating. Starting with the uni-cellular solution at Ra = 44, we drive the
flow to remain into this mode by increasing the Rayleigh number only by
small increments. Hence, we force the solution into the uni-cellular mode
which becomes unsteady for Rayleigh number larger than approximately
350. The possibility of imposing the spatial patterns in the experimen-
tal solutions is due to Horne and O’Sullivan [30]. In general a very rapid
heating introduces multi-cellular modes (stationary). Because we have mul-
tistability of modes, we will refer to the most favorable mode, not to the
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Figure 3.3: Temporal characteristics of convection at Ra = 400. (a) Evolution of

the temperature and the stream function over one oscillatory period. Time proceeds

from left to right and it is increased from t = 0.2 with time interval ∆t = 0.0029. The

period in dimensionless units is τp = 0.01183. (b) Temperature as function of time at

point (x = 1/3, y = 1/3). (c) Power spectrum of the temperature signal shown in (b) is

plotted in log-linear scale. Only one fundamental frequency f5 = 84.53 is observed.
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most stable. At this point of the exposition, we need only information
about the dynamics of the uni-cellular solution. We deal with its stability
analysis in the following chapter.
For Ra = 386.35 regular oscillations appear. We fix Ra = 400 and measure
the dimensionless period τp. The nature of the disturbance that gener-
ates the oscillations is a travelling wave pattern of five pairs of alternating
warm and cold blobs swept around the box [55]. The latter can be iden-
tify counting the number of extrema in one half of the box, as shown in
Fig. 3.2. The physical explanation of the instability is that as the Rayleigh
number increases, the flow gets stronger, bringing cold fluid close to the
warm boundary and vice versa. The destabilizing mechanism is the same
as it occurs at the convection onset. Now, the difference is that a flow
already exists. The resulting flow is the sum of a steady mean component
and a fluctuation with travelling wave structure. The evolution of the so-
lution through a single oscillation period is illustrated in Fig. 3.3(a). The
sequence is of five isothermal and five streamline plots evenly spaced in
time (τp/4). The numerical simulation is characterized by one prevailing
frequency, f5 = 84.5308. The power spectrum, defined as the squared mod-
ulus of the Fourier transform of the temperature is plotted on log linear
scale and is characteristic of a single periodic regime, (see Fig. 3.3(c)). The
convective system departs from this single periodic state at Ra = 505 when
a second fundamental frequency, incommensurate with the first one, ap-
pears in the power spectrum. The competing stationary solution has now
a four cellular spatial mode. A close look at the Poincaré section [56], Fig.
3.4(c) for Ra = 520, suggests a quasi-periodic dynamics. Starting from
the time series of the temperature we construct the Poincaré section by
plotting the sequence of time intervals between successive maxima (∆tn+1

vs ∆tn). The advantage of the Poincaré section is that it permits to vi-
sualize the organization of the trajectory in the phase space. Fig. 3.4(c)
shows that the phase trajectory is inscribed on a torus T 2. The lowest and
strongest frequency is f = 27.86. The frequency of the n = 5 unstable
periodic state is f5 = 104.37, as shown in Fig. 3.4(b). In order to know
what frequency refer to which particular spatial mode, we have made use
of a stroboscopic technique. The name comes from the well-known optical
devices that measure the frequency of oscillation (or rotation) of mechani-
cal objects by shining a bright light at periodic intervals, so that the object
appears stationary if the frequency of light flashes is equal to the frequency
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Figure 3.4: (a) Snapshots of temperature and stream function for the solution at

Ra = 520. For this value of the Rayleigh number, thermal plumes appears for the first

time. They are swept horizontally in the lower boundary layer to rise along the right

lateral wall by buoyancy. Time is going from t = 0.4149 to t = 0.5189. The time interval

between successive snapshots is ∆t = 0.026. (b) The spectrum of the temperature signal

taken at the point (x = 1/3, y = 1/3) shows a quasi-periodic behavior: f5 = 104.37

is the limit cycle frequency and f = 27.87 is the second frequency that appears at the

secondary bifurcation. (c) The Poincaré section displays the typical ”eight” of a quasi-

periodic state.
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(a)

(b)

Figure 3.5: (a) Snapshots of the temperature fixing f5. Snapshots are separated by

time intervals ∆t = 0.009 (1/f5). (b) snapshots of the temperature fixing f , the time

interval between each picture is ∆t = 0.036 (1/f).

of the moving object. If the frequencies are slightly different, the object ap-
pears to be slowly oscillating (or rotating). Figures 3.5 have been obtained
using this stroboscopic technique. Starting from the temporal signal of the
temperature taken at the point (x, y) = (1/3, 1/3), we take snapshots of the
temperature field separated by time interval ∆t = 1/f5, as shown in Fig.
3.5(a). Analyzing the evolution of the photographs, we understand that
the lowest frequency (f) is the frequency related to the vertical movement
of the plume in the boundary layer. In the same way, we discover that f5

is the frequency of the n = 5 travelling wave.
Numerical analysis permits to identify that the most dangerous pertur-
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Figure 3.6: Snapshots of the instantaneous temperature fluctuation field at Ra = 600,

showing a travelling wave with wave number equal to 7. The wave number is equal to

one half of the number of sign changes in the fluctuation field around the perimeter of

the container. Time is increased from t = 0.149 (upper-left) to t = 0.155 (bottom-right),

with time interval ∆t = 0.00075.

bation for this quasi-periodic state, is a travelling wave with wave number
n = 7. This travelling wave is the responsible of a new periodic regime
starting at Ra = 560, as shown in Fig. 3.6. Figure 3.7 shows the evolution
of the frequency spectra for Rayleigh numbers in the range [505, 560]. At
Ra = 505, the frequency f5 prevails with its harmonics. At Ra = 510, the
frequency f + f5 appears. From Ra = 520 to Ra = 540 the two frequencies
(f5, f) and their harmonics are more and more pronounced. At Ra = 560
the spectrum is characteristic of a single periodic dynamics with frequency
f + f5 = f7 and its harmonics. Thus, the frequency f5 is the primary
limit cycle frequency and f7 is the secondary frequency that arises at the
secondary bifurcation. The quasi-periodic regime is the result of the non
linear interaction between the steady state and two periodic fluctuations
with different wave numbers.
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Figure 3.7: Evolution of frequency spectra for Ra ∈ [505, 560]. (a) At Ra = 505, f5 is

dominant and f is just formed on the left side. At Ra = 510, f has increased and two

new frequencies appear on both sides of f5. They are identified as f5 − f and f5 + f .

(b) and (c) between 520 and 550 the harmonics of f5 and f become more marked. (d)

At Ra = 560 all frequencies vanish, except f5 + f and its harmonics. The nature of the

disturbance at Ra = 560 is a travelling wave with a wave number n = 7.
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Many qualitatively changes are observed in the spatial structure associated
with the quasi-periodic state. The flow patterns are characterized by the
appearance of a vertical portion of flow in the middle of the lower bound-
ary. This portion of hotter fluid, initially infinitesimal, grows while is swept
horizontally by the mean flow. By buoyancy, it rises along the side wall, but
the rise is not uniform as in the periodic case, see Fig. 3.4(a) and 3.5. The
flow breaks, creating a new particle of hot fluid which continues to rise up-
ward alone. At this Rayleigh number we can observe, for the first time, the
formation of the so-called thermal plumes. As an operational definition, we
say that a plume is formed when an isotherm in the boundary layer is buck-
led. In other words, a plume is formed when some portion of fluid becomes
nearly vertical (away from the downstream corner). In the quasi-periodic
regime, no plumes are identical. The horizontal position of each plume is
shifted, so with each plume formation, the cycle differs slightly in position
relative to each other: each plume forms slightly upstream or downstream
of the main position of formation. This process occurs in the following
way: a fluctuation in the bottom boundary layer causes a plume to form
just a little bit earlier, causing a horizontal compression of the wave train
(and vertical expansion). This leads to two plumes being slightly closer to
each other than they would otherwise be. These two plumes together do a
more efficient function of removing heat of the boundary layer than usual.
This leads to a little longer induction time for the next plume to form, a
larger interval between plumes and a slightly worse job of cleaning out the
boundary layer. Thus the next plume forms a little earlier and the flow de-
velops a phase-modulated train of disturbance. For Ra = 560, the solution
turns back to a simply periodic regime. As shown in Fig. 3.6, the nature of
the perturbation is a periodic oscillation with wave number n = 7, i.e. 14
blobs turning around the perimeter of the container are identified. The key
element is always the formation of thermal plumes, which changes as Ra
increases. At Ra = 520, the plumes are created around the middle of the
bottom boundary layer. They are small and grow more in width than in
height as they are convected across the horizontal layer. At Ra = 900, the
plumes start closer to the left lateral boundary with greater strength. They
are narrow and expand vertically. The periodic state is now a travelling
wave with n = 11, as shown in Fig. 3.8. Figure 3.9(a) shows the evolution
of the thermal plumes and stream function over one oscillatory cycle, at
Ra = 900. The competing stationary solution has now a two rolls pattern
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Figure 3.8: Snapshots of the instantaneous temperature fluctuation extracted from the

main field at Ra = 900, showing a wave number equal to 11. Time is evenly distributed

from t = 0.2 (upper-left) to t = 0.202 (bottom-right).

organization. Every plume is identical after applying a time shift. The
period, in dimensionless units, is equal to 0.00273. The power spectrum of
the temperature displays a single frequency, f11 = 365.21, as shown in Fig.
3.9. The Poincaré section is very simple as it reduces to a simple point, (see
Fig. 3.9(c)). Starting from Ra = 950, the quasi-periodic scenario repeats
again. Travelling waves interact in the same way as described above, but
this time ending up in a new regime. At Ra = 1200, the amplitude of the
variations in the heat transport reaches its maximum value and a strong
broad band noise appears in the power spectrum, which is a characteris-
tic of non-periodic motion, as shown in Fig. 3.10(b). Exponential decay
in the power spectra at high frequency is expected for bounded smooth
deterministic dynamics [57; 58]. The Poincaré section shows a very large
number of scattered points, as displayed in Fig. 3.10(c). The convective
regime is now chaotic. Qualitatively, however, the flow patterns appear
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Figure 3.9: Same as figure 3.4 except that Ra = 900. (a) Temporal evolution of the

temperature (up) and stream function (bottom) over one oscillation period, τp = 0.00273.

This time sequence shows the entire plume formation process. The overall circulation

of the flow is counterclockwise. Time is increased from t = 0.2 with time interval ∆t =

0.0006. (b) At Ra = 900 a single frequency, f11 = 365.21, and its harmonics prevail. (c)

Poincaré section of the temperature signal at point (x = 1/3, y = 1/3).
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Figure 3.10: Same as figure 3.4 except that Ra = 1200. No single frequency prevails

in the power spectrum. (a) Snapshots are taken evenly in time from t = 0.5 to t = 0.604,

with time interval ∆t = 0.026. (b) The power spectrum on a log linear scale illustrates

the region of exponential decay. (c) Poincaré section showing the scattered points in the

plane (∆tn, ∆tn+1).
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Figure 3.11: (a) The autocorrelation function of the temperature signal at point

(x = 10/128, y = 10/128). (b) is a close up of (a).

to follow a cycle, characterized by thermal plumes. The flow structure is
similar to those at lower Rayleigh numbers, except that the plumes are very
tight and stretched. This pattern repeats itself intermittently from the left
of the lower boundary without any specific regularity in time, as shown in
Fig. 3.10(a).
In order to gain some knowledge about the time evolution of the system one
can introduce some indicators as e. g. the autocorrelations of time signal
[59; 60]. In general, the measurement sl of the state at time l is expressed
through the probability distribution, p(s), of observing different values or
sequences of value. The probability distribution can be inferred from the
time series. The mean of the probability distribution can be estimated by
the mean of the time series

< s >=
1
N

N∑

l=1

sl (3.1)

where < · > denotes the average over time and N is the total number of
measurements in the time series. The variance of the probability distribu-
tion is estimated by the variance of the time series

σ2 =
1

N − 1

N∑

l=1

(sl− < s >)2. (3.2)
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Figure 3.12: The spatial correlation function of the temperature for ξ ∈ [0, 1], at

y = 1/4, y = 1/2 and y = 3/4.

The autocorrelation value at lag time ν is given by

cν =
< (sl− < s >)(sl−ν− < s >) >

σ2
. (3.3)

The autocorrelation cν quantifies how the signal is related with itself at
time t− ν. If there is no correlation cν = 0. If the signal is observed over a
continuous time, one can introduce the autocorrelation function C(τ) and
the correlation of equation (3.3) are estimated of C(τ = ν∆t). Autocorre-
lation of signals extracted from chaotic systems decay exponentially with
increasing lag time [56]. Our simulations indicate, indeed, that the corre-
lation functions of the temperature, decay exponentially (at least for the
envelope of the function), as shown in Fig. 3.11. The spatial correlation
function of the temperature has the same behavior. Figure 3.12 shows the
spatial correlation curves between points at three different heights (y = 1/4,
y = 1/2 and y = 3/4).

3.2 Conclusions

In this section, convective motions in the forms of rolls have been numeri-
cally investigated in a square Hele-Shaw cell. From chapter 1 we know the
temperature difference above which convection begins, (Rac = 4π2). The
dynamics is simulated in the range of Rayleigh numbers between Ra = 44
until Ra = 1200. In this range, several transitions take place, modifying
significantly the characteristic of the flow. These transitions are of two
types. The first type is a decrease in the horizontal aspect ratio of the
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cells. The second type is from steady to unsteady pattern. The principal
objective of this chapter is to reproduce a chaotic behavior and letting the
question of the stability analysis for the following chapters. The route to
chaos found in this chapter confirms the results of time dependent behaviors
by Kimura et al. [49; 50]. In particular, chaotic regime starts at Ra = 1200,
in agreement with the results of Graham and Steen [51].





Chapter 4

Stability analysis

With the available analytical tools, a theoretical study of the strongly non
linear convective regime is not possible. In order to get some insights of
what happens when the control parameter is increased (the vertical temper-
ature gradient in the present problem), we study the stability of a known
solution (the conductive rest state). By applying infinitesimal perturba-
tions to the basic state the threshold of stability is obtained by solving
linearized equations (linear stability analysis). In the second part of this
chapter, the asymptotic evolution of the finite perturbations is considered
by solving a set of weakly non linear equations (non linear stability anal-
ysis). The results are compared with the experiments of Caltagirone and
Fabrie [61], that show the sequence of periodic - quasi-periodic - periodic
dynamics. They interpreted it as the result of a frequency locking mecha-
nisms. However, the experimental frequency spectrum was not consistent,
as showed by Graham and Steen [62], with this interpretation. The latter
affirmed that quasi-periodic dynamics in porous medium convection was
related with strongly interacting travelling waves.

4.1 Linear analysis

Linear stability analysis for the Hele-Shaw cell leads to calculate the mini-
mal value of the temperature difference for which the perturbations are not
damped. From the numerical point of view, the method of finite differences
is replaced by the spectral collocation method, which is more accurate.
A detailed description of the spectral collocation method can be found in

35
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Appendix B.

4.1.1 Linearized equations for the perturbations

We consider the infinitesimal perturbations of the stream function ψ and
of the temperature θ added to the conductive solution:

ψ = ψ, (4.1)
θ = T − Tcond, (4.2)

the index cond refers to the conductive solution. By observing that Tcond

satisfies Eqs. (2.23) and neglecting the terms with order higher than one,
we obtain the linear equations satisfied by the perturbations:

∇2ψ = −Ra
∂θ

∂x
(4.3)

∂θ

∂t
= ∇2θ − ∂ψ

∂x
. (4.4)

In the same way, we obtain the boundary conditions for the perturbation:

ψ = ∂xθ = 0 x = 0, 1 y ∈ [0, 1]
ψ = θ = 0 y = 0, 1 x ∈ [0, 1]

(4.5)

The linearized equations (4.3) and (4.4) represent an eigenvalue problem
with solutions written as

θ(x, y, t) = f(x, y)est (4.6)
ψ(x, y, t) = g(x, y)est (4.7)

where s = σ+iω is the linear growth rate of the infinitesimal perturbations.
By substituting Eqs. (4.6)-(4.7) in Eqs. (4.3)-(4.4), we obtain an eigenvalue
problem for the Rayleigh number or alternatively for the growth rate

(D2
x + D2

y)g = −RaDxf, (4.8)

sf = (D2
x + D2

y)f −Dxg, (4.9)

in which we have done the substitution

∇2 → D2
x + D2

y, (4.10)
∂x → Dx, (4.11)
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where Dx and Dy are the corresponding spectral operators. The instability
takes place when, for a certain mode, the real part of the linear growth
rate becomes positive (<(s) ≥ 0). Generally the growth rate is a complex
number. Hence, the marginal condition of stability <(s) = 0, may occur
with =(s) 6= 0, which corresponds to an oscillatory solution with frequency
ω = =(s). However, in the present case, the matrix of the linear problem has
all the eigenvalues real. This guarantees that the instability is stationary.
Since we are in the first place, mainly interested in determining the critical
Rayleigh number characterizing the marginal stability, we fix s = 0 into
Eqs. (4.8)-(4.9)

(D2
x + D2

y)g = −RaDxf, (4.12)

(D2
x + D2

y)f = Dxg, (4.13)

with the corresponding boundary conditions

g = f = 0 y = 0, 1 x ∈ [0, 1]
Dxf = g = 0 x = 0, 1 y ∈ [0, 1]

(4.14)

A compact form of Eqs. (4.12)-(4.13) can be written by defining some
differential operators

Lu = −RaMu (4.15)

where the vector u is given by

u = (f, g)T (4.16)

and the matrices L and M are the following linear differential operators

L =
(

D2
x + D2

y −Dx

0 D2
x + D2

y

)
, M =

(
0 0

Dx 0

)
. (4.17)

Equation (4.15) is a generalized eigenvalue problem AX = λBX. Further
details about the resolution are found in Appendix B.
For the case of marginal stability, we see immediately that there exists an
exact solution

f(x, y) = cos(kπx)sin(hπy) (4.18)

g(x, y) =
−(h2 + k2)2

k2
sin(kπx)sin(hπy) (4.19)
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with h = 1, 2, ... and k = 0, 1, ..., are the set of natural numbers and

Ra =
π2(k2 + h2)2

k2
. (4.20)

It is straightforward to show that Ra is minimum when h = 1 and k = 1.
The corresponding critical Rayleigh number is Rac = 4π2 ' 39.4784.

4.1.2 Results

Before giving the results of the linear stability analysis, we give here only
some basic information about the introduction of the spectral matrices in
view of the numerical resolution of Eqs. (4.12)-(4.13). Due to the com-
plexity of their implementation, we leave details in Appendix B for the
interested reader.
The collocation spectral method needs the definition of the Chebyshev
points in the interval [−1, 1]. We define the new variables x̃ = 2x − 1
and ỹ = 2y − 1, with x̃, ỹ ∈ [−1, 1]. Equations (4.12)-(4.13) become:

(D2
x̃ + D2

ỹ)g̃ +
1
2
RaDx̃f̃ = 0 (4.21)

(D2
x̃ + D2

ỹ)f̃ −
1
2
Dx̃g̃ = 0 (4.22)

with boundary conditions

g̃ = f̃ = 0 ỹ = −1, 1, x̃ ∈ [−1, 1] (4.23)
Dx̃f̃ = g̃ = 0 x̃ = −1, 1 ỹ ∈ [−1, 1] (4.24)

In the following, in order to make the notation lighter, tildes are omitted
expecting no confusion for the reader. In the numerical procedure, we set
up a grid based on 22 × 22 Chebyshev points independently in each di-
rection [63]. The computation of the operator D2

x + D2
y is done by using

combinations of Kronecker products between the identity matrix and the
spectral matrix squared. The operator Dx is developed with the Kronecker
product between the identity matrix and the spectral matrix D. Dealing
with homogeneous Dirichlet boundary conditions is relatively easy. The
corresponding matrix is stripped off its first and last rows and columns.
The application of Neumann conditions at the lateral walls is realized by
replacing the first and last rows of the matrix by the first and last row of the



Section 4.1 Linear analysis 39

n m Rac

0 0 39.4784
1 0 61.6850
1 1 109.6623
2 0 157.9137
3 0 178.2697
2 1 185.3292
3 1 246.7401
0 1 246.7401
4 0 266.8741

Table 4.1: n and m are integer numbers representing the geometrical node lines through

the flow in the x and y direction, respectively. The flow is segmented in both directions

in n(x) and m(y) regions. Each mode has a critical value of the Rayleigh number.

spectral differentiation matrix of first order. The matrices are not sparse
as one typically gets with finite difference methods. Fortunately, given the
spectral accuracy, we obtain satisfactory results with much smaller matri-
ces.
The first nine critical modes (temperature field and stream function) are
displayed in Figs. 4.1, 4.2 and 4.3. By consideration of the stream function
structure, we indicate the modes with the notation, Mnm, where M stands
for mode and the subscripts n and m are integer numbers representing the
number of node lines in the x and y direction, respectively, through the
flow. In other words, the flow is separated in both directions in n(x) and
m(y) regions. Each geometrical disposition is associated with a mode.
At Ra = 39.4784 the spatial flow pattern preferred by the flow is the uni-
cellular mode M00. The parallel fringe of the temperature of the pure
conduction have been deformed and a vertical portion of fluid rises upward
along one of the lateral boundary. An increase of the Rayleigh number
leads to a continuous development of two weak circulations inside the pri-
mary convective roll. At Ra = 61.6850 the real part of the linear growth
corresponding to the two-roll flow M10 becomes positive. The next lin-
ear mode that becomes unstable is the M11 mode for Ra = 109.6623. At
Ra = 157.9137 the three-roll flow M20 is linearly unstable. The results of
the linear stability analysis are summarized in Table 4.1 where the critical
Rayleigh numbers are given for the first nine unstable modes.
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(a)

(b)

(c)

Figure 4.1: Snapshots of temperature and stream function for the first three unstable

modes. (a) M00 mode with Rac = 39.4784; (b) M10 mode with Rac = 61.6850; (c) M11

mode with Rac = 109.6623.
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(a)

(b)

(c)

Figure 4.2: (a) M20 mode with Rac = 157.9137; (b) M30 mode with Rac = 178.2697;

(c) M21 mode with Rac = 185.3292.
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(a)

(b)

(c)

Figure 4.3: (a) M31 mode with Rac = 246.7401; (b) M01 mode with Rac = 246.7401;

(c) M40 mode with Rac = 266.8741.
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4.2 Non linear analysis

The purpose of the non linear analysis is to follow the dynamics of the
linear unstable modes above threshold. The linear stability analysis has
determined the thresholds from which the perturbations are not damped,
but does not permit to calculate their non linear evolution. Since, close
to threshold, the dynamics is governed by only a few modes, called master
modes, (while the others, slaves, follow them adiabatically), a weakly non
linear analysis is sufficient. The original partial differential equations is
reduced to a non linear system of coupled ordinary differential equations
for the amplitudes of the master modes [64].
The first task is to recognize which modes are master and which are slave.
The latter will appear in the equations only as non linear interactions of
the master modes. In a bounded system the spectrum of the linear op-
erator is discrete, there is a large gap between unstable and stable modes
and the distinction between master and slave is clear. Modes that are
marginally unstable (<(s) ∼ 0) belong to the first group, while damped
modes (<(s) < 0) belong to the second one. In this context the central
manifold theorem guarantees that the dynamics of the Eqs. (2.23) can be
described accurately by following the evolution of the amplitude equations
of the master modes. Indexing the unstable modes with M and the stable
ones with S the amplitude equations are

dAM

dt
= sMAM + fM (AM , AS),

dAS

dt
= sSAS + fS(AM , AS), (4.25)

where sM are ∼ 0, positive or negative, while sS are negative and large.
If we consider amplitudes with growth rate sM , |dAS/dt| ∼ |sM |AS are
negligible with respect to |sS |AS in the equations of AS . The slow vari-
ables AM drive the evolution of the fast variable AS . Indeed, AS '
(−1/sS)fS(AM , AS) = g(AM ).
In this thesis we use the method of Galerkin-Eckaus [65] to get the expres-
sion for the amplitude equations. This method basically consists in doing
the adiabatic elimination described above. The solution of the non linear
problem is written by means of a series expansion in terms of the eigenfunc-
tions of the linear problem. This expansion is then introduced in the non
linear equations and projected onto the eigenfunctions of the adjoint linear
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problem. This procedure results in an infinite set of ordinary differential
equations, which is truncated by an adiabatic elimination [66]. We notice
that the idea of this principle is to consider only a few active modes by
splitting the number of eigenmodes into two categories: master and slave
modes.

4.2.1 Computing bifurcation diagrams with AUTO

For many years non linear phenomena were unknown, and this principally
for the absence of a general theory to describe them. Every problem is a
particular case that one has to solve independently from the others. How-
ever recently, powerful techniques, as bifurcation theory, dynamical system
theory, catastrophe theory, etc..., have been developed to solve non lin-
ear problem in a general framework. The elegant methods for qualitative
analysis of differential equations, that give us the tools of phase plane and
bifurcation analysis, were introduced by Poincaré in the 1890ies and fur-
ther developed by mathematicians as Hopf [67], Andronov and many others
during the twentieth century. Bifurcation and phase plane analysis allow to
identify changes in the dynamics of a system, such as hysteresis, the onset
of oscillation, changes in the type of oscillation (such as period-doubling),
or extinction of a solution. Bifurcation analysis refers to a body of math-
ematical theory and computational methods for tracking how the steady
state solution of a dynamical system changes as one or more parameters
are varied.
The software package AUTO [68] is specialized in continuation and bifur-
cation problems in ordinary differential equations. Early version of AUTO
was described by Doedel [69], Doedel and Kernévez [70], Doedel and Wang
[71].
The analysis of Eqs. (4.25) has been done using XPPAUT [72] which is a
graphical interface for AUTO. AUTO is used for solving differential equa-
tions, difference equations, delay equations, functional equations, boundary
value problems and stochastic equations. It contains the code for AUTO.
Despite of what the author says, “I have put a friendly face on AUTO so
you do not need to know much about it to play around with it”, XPPAUT
does not have a pretty buttons and windows interface or very sophisticated
graphical capabilities. There are size restrictions on some AUTO constants:
the effective problem dimension, the number of collocation points, the num-
ber of mesh intervals, the effective number of equations parameters, etc...
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These size restrictions can not be changed if you are using AUTO kernel
with the XPPAUT interface. Furthermore, the total length of any code
line can not exceed 1000 characters. We can circumvent this restriction by
including files in which we define auxiliary quantities. Clearly, these files
have the same restriction, and the operation “include file” is infinite.
All the above reasons explain why we have preferred the original AUTO
program, for which we have access to all the parameters. A source file
xxx.f (xxx stands for a user-selected name) contains the Fortran subrou-
tines for solving the ordinary differential equations, and the relative AUTO-
parameters for xxx.f are in a corresponding file, r.xxx. Only one difficulty
persists: all the graphical user interfaces are lost, everything must be done
in command modes.

4.2.2 Non linear problem formulation

The equations which govern the non linear evolution of the perturbations
are

∂θ

∂t
= ∇2θ − ∂ψ

∂x
− ∂ψ

∂y

∂θ

∂x
+

∂ψ

∂x

∂θ

∂y
, (4.26)

∇2ψ + Ra
∂θ

∂x
= 0. (4.27)

A compact form of these equations is given by

Lt∂tp = Lp +NL(p,p), (4.28)

where p is the vector of unknowns

p = (θ, ψ)T , (4.29)

L and Lt are the linear differential operators

L =
( ∇2 −∂x

Ra∂x ∇2

)
, (4.30)

Lt =
(

1 0
0 0

)
, (4.31)

while NL(p,p) is the operator which represents the non linear terms

NL(p,p) =
( −∂yψ∂xθ + ∂xψ∂yθ

0

)
. (4.32)
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4.2.3 The linear problem

The set of function used for the expansion of the solution is constituted
by the eigenmodes of the linear problem (4.3)-(4.4), written in operator
formulation

Lp− Ltp = 0, (4.33)

with boundary conditions

ψ = θ = 0 y = 0, 1 x ∈ [0, 1],
∂xθ = ψ = 0 x = 0, 1 y ∈ [0, 1],

(4.34)

where the linear differential operators L and Lt are the same as Eqs. (4.30)-
(4.31). The solutions are (θi, ψi) = [fi(x, y), gi(x, y)]esit, where fi(x, y) and
gi(x, y) satisfy the eigenvalue problem

(D2
x + D2

y)gi + RacDxfi = 0, (4.35)

sf = (D2
x + D2

y)fi −Dxgi. (4.36)

In Eqs. (4.8)-(4.9) we have considered as eigenvalue the growth rate, while
the Rayleigh number is fixed to Rac = 4π2:

Lcui = siLtui (4.37)

wherein the following notation has been used

Lc =
(

D2
x + D2

y −Dx

RacDx D2
x + D2

y

)
, Lt =

(
1 0
0 0

)
, ui =

(
fi

gi

)
(4.38)

Lc comes from L, evaluated this time at the threshold for the most unstable
mode. In this case the analytical solution is

f(x, y) = cos(kπx)sin(hπ), (4.39)

g(x, y) =
−4πk

h2 + k2
sin(kπx)sin(hπy), (4.40)

where h = 1, 2, ... and k = 0, 1, ... are natural numbers and the linear growth
rate is

s = −π2[(h2 + k2)2 − 4k2]
h2 + k2

. (4.41)

The largest eigenvalue is zero and it corresponds to the marginally stable
convective mode (see Fig. 4.4(a)). The values of the first nine eigenmodes
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are shown in Figs. 4.4, 4.5 and 4.6.
For the second, fourth and eighth eigenvalue the stream function vanishes.
These eigenmodes are called zeroth-modes. They are obtained by setting
in Eqs. (4.39)-(4.40) k = 0. For these modes s is given by s = −h2π2.
The solution of the non linear equations is then expressed as the following
series in the eingenmodes (fp,gp):

(
θ
ψ

)
=

∞∑

p=1

Ap(t)
(

Rac
Ra fp

gp

)
, (4.42)

where Ap is the amplitude of the mode p. We underline that the functions
used in this decompositions are not exactly the eigenmodes of the physical
problem, due to the rescaling factor Rac/Ra. However, for each value of
the Rayleigh number, the function gp and (Rac/Ra)fp may be considered
as eigenmodes of a “mathematical” eigenvalue problem, which is obtained
from the original problem by adding this factor. It may be also checked
that the adjoint eigenmodes of this problem are given by ((Ra/Rac)f∗p ,g∗p),
where the (f∗p ,g∗p) are the adjoint eigenmodes of the original problem, [73].
From a more physical point of view, the introduction of the factor Rac/Ra
in Eqs. (4.26)-(4.27) has been defined with temperature scale ∆Th, while
the linear problem is solved fixing Ra = Rac. When the unknown fields
are written under the form (4.42) and introduced in Eqs. (4.26)-(4.27), the
latter leave defined in Rac. In this way the resulting Eqs. (4.26)-(4.27)
are the sum of the solved linear problem with the non linear term. In the
following sections, we will show that the adjoint solutions verify the bi-
orthogonal relations. We will prove the bi-orthogonal relations also in the
case of the added scaling factor (Rac/Ra).
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(a)

(b)

(c)

Figure 4.4: On the left: temperature perturbation; on the right: stream function

perturbation; (a) M00 mode with s1 = 0; (b) Zero mode with s2 = −9.8696 (h = 1); (c)

M01 mode with s3 = −17.7652.
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(a)

(b)

(c)

Figure 4.5: Caption as in Figure 4.4. (a) Zero mode with s4 = −39.4784 (h = 2). (b)

M01 mode with s5 = −41.4523. (c) M11 mode with s6 = −59.2176.
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(a)

(b)

(c)

Figure 4.6: Caption as in figure 4.4. (a) M20 mode with s7 = −63.1654. (b) Zero

mode with for s8 = −88.8264 (h = 3). (c) M02 mode with s9 = −94.7482.
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4.3 Linear adjoint problem
and bi-orthogonal relations

4.3.1 Linear adjoint problem

The adjoint problem is defined by

L∗p∗ − L∗tp∗ = 0 (4.43)
B∗p∗ = 0 (4.44)

where B∗ is the adjoint of the operator B which brings together the bound-
ary conditions (4.14). From the definition of the adjoint, the operator L∗
and L∗t must verify the following relations

< p∗,L(p)− Lt(p) >=< L∗(p∗)− L∗t (p∗),p > (4.45)

where < .. > denotes the integral on [0, 1] × [0, 1]. By performing a series
of integration by parts and using the boundary conditions Eq. (4.14), we
obtain that

L∗ =
( ∇2 −Rac∂x

∂x ∇2

)
, (4.46)

L∗t =
(

1 0
0 0

)
. (4.47)

The operator which contains the boundary conditions of the adjoint prob-
lem is the same as of the direct problem (B∗ = B). By analogy with the
direct problem, the adjoint problem admits the solutions

(
θ∗i
ψ∗i

)
=

(
f∗i
g∗i

)
es∗i t, i = 1, 2, ... (4.48)

where s∗i , f∗i and g∗i are respectively the eigenvalue and the eigenfunctions
of

L∗cu
∗
i = s∗i L

∗
tu
∗
i , (4.49)

B∗u∗i = 0. (4.50)

L∗c and L∗t are the discretized operators L∗ and L∗t as in Eqs. (4.10)-(4.11).
The analytical solution of the adjoint problem

f(x, y) = cos(kπx)sin(hπy), (4.51)

g(x, y) = − kπ

k2π2 + h2π2
sin(kπx)sin(hπy), (4.52)
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where h = 1, 2, ... and k = 0, 1, ... are natural numbers and

s =
π2[k2 − (k2 + h2)2]

k2 + h2
. (4.53)

By the way, we check that the direct system and its adjoint have the same
set of eigenvalues [74]. The adjoint system is solved by means of spectral
collocation method, in complete analogy with the direct problem.

4.3.2 Bi-orthogonal relations (I)

The first reason for which we choose the eigenmodes of the adjoint problem
as a base of projection, is the existence of bi-orthogonality relations between
these functions and the eigenmodes of the direct problem. Starting from
the eigenvalue problems

Lcup = spLtup,

L∗cu
∗
q = s∗qL

∗
tu
∗
q , (4.54)

and multiplying respectively, by u∗q and up; integrating over the volume
and keeping in mind Eq. (4.45), the following relation is verified

(s∗q − sp) < u∗q , Ltup >= 0. (4.55)

The above relation is called the bi-orthogonality relations. They express
that the eigenmodes of the direct problem are orthogonal with the eigen-
modes of the adjoint problem. These relations are very useful for the projec-
tion of the non linear equations into the adjoint modes. Using the definition
of the operator Lt, the above relations become

(s∗q − sp) < f∗q , fp >= 0. (4.56)

4.3.3 Bi-orthogonal relations (II)

The presence of this second section for the bi-orthogonality relations is
justified by the particular choice

θ =
Rac

Ra

∞∑

p=1

Apfp. (4.57)
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In this case the expression of the eigenvalue problems is given by

Lc

(
Rac
Ra fp

gp

)
= spLt

(
Rac
Ra fp

gp

)

L∗c

( Ra
Rac

f∗q
g∗q

)
= s∗qL

∗
t

( Ra
Rac

f∗q
g∗q

)
(4.58)

and we do not have, for the operators Lc,t and L∗c,t, an analogous relation
(4.45). But an identical procedure, made of multiplication and integrations,
brings to the same relation (4.56).

4.4 General expression for the amplitude equa-
tions

After introducing the expansion (4.42) into equations (4.28), one projects
them on the adjoint eigenfunctions of the linear problem. We multiply
equation (4.26) by Ra/Racf

∗, the temperature field of the adjoint eigen-
value problem, and equation (4.27) by g∗, the velocity field of the adjoint
eigenvalue problem. These two relations are added together and integrated
over the whole volume. Making use of the bi-orthogonality relations be-
tween the solutions of the eigenvalue problem and its adjoint, together
with the boundary conditions, we obtain the time evolution equations for
the amplitudes. This procedure can be summarized as follows

< U∗
q ,Lt∂tU >=< U∗

q ,LcU > + < U∗
q ,NL(U,U) >, q = 1, 2, ...

(4.59)
where

U =
∞∑

p=1

(
Rac
Ra fp

gp

)
, U∗

q =
( Ra

Rac
f∗q

g∗q

)
. (4.60)

The Eq. (4.59) defines an infinite system of ordinary differential equations
for the amplitudes Ap. In the following, after having developed relation
(4.59), we show in which way it is possible to reduce the dynamics to a
small number of modes.
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4.4.1 Projection

Projection of L

PLq =< U∗
q ,LU >=<

Ra

Rac
f∗q ,

∞∑

p=1

Ap(
Rac

Ra
∇2fp − ∂xgp) >

+ < g∗q ,
∞∑

p=1

Ap(∇2gp + Ra
Rac

Ra
∂xfp) >

=
∞∑

p=1

Ap < f∗q ,∇2fp − Ra

Rac
∂xgp) > +

∞∑

p=1

Ap < g∗q ,∇2gp + Rac∂xfp) >

=
∞∑

p=1

Ap < fp,∇2f∗q > +
∞∑

p=1

Ap < gp,
Ra

Rac
∂xf∗q >

+
∞∑

p=1

Ap < gp,∇2g∗q > +
∞∑

p=1

Ap < fp,−Rac∂xg∗q >

=
∞∑

p=1

Ap < fp, (∇2f∗q −Rac∂xg∗q ) >

+
∞∑

p=1

Ap < gp, (∇2g∗q +
Ra

Rac
∂xf∗q ) >

=
∞∑

p=1

Ap < fp, sqf
∗
q > +

∞∑

p=1

Ap < gp,∇2g∗q +
Ra

Rac
∂xf∗q >

= sq

∞∑

p=1

Apδ(p, q) +
∞∑

p=1

Ap < gp,∇2g∗q +
Ra

Rac
∂xf∗q >

= sqAq +
∞∑

p=1

Ap < gp,∇2g∗q +
Ra

Rac
∂xf∗q > (4.61)

Adding and subtracting from Eq. (4.61) the term

∞∑

p=1

Ap < gp, ∂xf∗q > (4.62)
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PLq becomes

PLq = sqAq + (
Ra−Rac

Rac
)
∞∑

p=1

Ap < gp, ∂xf∗q > (4.63)

Projection of the temporal term

PLt
q = < U∗

q ,Lt∂tU >

= <
Ra

Rac
f∗q ,

∞∑

p=1

dAp

dt

Rac

Ra
fp >=

∞∑

p=1

dAp

dt
δ(p, q)

=
dAq

dt
(4.64)

Projection of NL
PNLq = < U∗

q ,NL(U,U) >

= <
Ra

Rac
f∗q ,

∞∑

p=1

∞∑

p′=1

ApAp′
Rac

Ra
(−∂ygp∂xfp′ + ∂xgp∂yfp′) >

=
∞∑

p=1

∞∑

p′=1

ApAp′ < f∗q ,−∂ygp∂xfp′ + ∂xgp∂yfp′ > (4.65)

4.4.2 Summary of the amplitude equations

Combining relations (4.63), (4.64) and (4.65) the amplitude equations take
the following form

dAq

dt
= sqAq + δ

∞∑

p=1

Ap < gp, ∂xf∗q >

−
∞∑

p=1

∞∑

p′=1

ApAp′ < f∗q , ∂ygp∂xfp′ − ∂xgp∂yfp′ >,

that is

dAq

dt
= sqAq + δ

∞∑

p=1

C1(q, p)Ap −
∞∑

p=1

∞∑

p′=1

C2(q, p, p′)ApAp′ (4.66)
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where

C1(q, p) =< gp, ∂xf∗q >, (4.67)
C2(q, p, p′) =< f∗q , ∂ygp∂xfp′ − ∂xgp∂yfp′ > . (4.68)

The partial differential equations Eqs. (2.23) have been transformed into a
system of infinite ordinary differential equations, where δ = (Ra−Rac)/Rac

is the relative distance to the threshold.

4.5 Dynamics reduction

System (4.66) is clearly impossible to manage. By using the adiabatic
elimination, it may be reduced to a finite number of ordinary differential
equations for the amplitudes of the most unstable modes of convection.
The infinite number of eigenmodes has to be split into two categories: mas-
ter and slave modes. These latter do not really take part in the dynamics
of the system, but they have to be considered because they represent the
response of the system to the growth of the unstable modes. Slaved modes
will be present in the solution only as quadratic interactions of the unsta-
ble modes. Their own dynamics can be neglected. To be more explicit,
for a slave mode the term multiplying δ may be neglected with respect to
sqAq since δ remains small, while sq is quite negative for a well-damped
eigenmode. The time derivative vanishes since the slave modes do not par-
ticipate in the dynamics of the system. Furthermore, the quadratic term
can be expressed as a quadratic expression in which only the amplitudes
of the master modes appear, because near the threshold the amplitudes of
the slave modes are rather small and terms of order higher than two can
be neglected. The amplitudes of the slave modes can be expressed as

ASq =
1

sSq

∑

Mp,Mp′

C2(Sq,Mp, Mp′)AMpAMp′ , (4.69)

where the sub-index Sq refers to a slaved mode, while Mp and Mp′ refer to
master modes. In particular equation (4.69) shows that the amplitudes ASq

become smaller as Sq increases, since the corresponding growth rate become
more negative. Thus, eigenmodes with growth rate sufficiently negative can
be ignored since their amplitudes are very small. By introducing the Eq.
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n sn

1 0
2 -9.8696
3 -17.7652
4 -39.4784
5 -41.4523
. . . . . .

Table 4.2: Spectrum of the linear growth rate for δ = 0.

(4.69) in Eq. (4.66) we obtain

dAMq

dt
= sMqAMq + δ

∑

Mp

C1(Mq,Mp)AMp

−
∑

Mp,Mp′

C2(Mq,Mp,Mp′)AMpAMp′

−
∑

Mp,Mp′ ,Mp′′

C3(Mq,Mp,Mp′ ,Mp′′)AMpAMp′AMp′′ (4.70)

where the matrix C3 is given by

C3(Mq,Mp,Mp′) =
∑

Sr

1
sSr

C2(Mq,Mp, Sr)C2(Sr,Mp′ ,Mp′′)

+
∑

Sr

1
sSr

C2(Mq, Sr,Mp)C2(Sr,Mp′ ,Mp′′) (4.71)

4.6 Results

The spectrum of the linear operator L (δ = 0) is summarized in Table 4.2.
All the modes are strongly damped, except the first one that is marginal.
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The first few equations are explicitly given by

dA1

dt
= s1A1 + δC1(1, 1)A1 − C2(1, 1, 4)A1A4,

dA2

dt
= s1A2 + δC1(1, 1)A2,

dA3

dt
= s1A3 + δC1(3, 3)A3,

dA4

dt
= s4A4 + δC1(4, 4)A4 − C2(4, 1, 1)A1A1

dA5

dt
= s5A5 + δC1(5, 5)A5,

. . . (4.72)

Weakly non linear analysis makes sense near the threshold. In this case,
assuming for n > 1 that dAn/dt ≡ 0 and δAn ≡ 0 we get

dA1

dt
= (s1 + δC1(1, 1))A1 − 1

s4
C2(4, 1, 1)C2(1, 1, 4)A3

1. (4.73)

Equation (4.73) corresponds to the normal form of a supercritical pitchfork
bifurcation [75], which is valid close to the stability threshold of the con-
ductive solution (i.e. Rac = 4π2). The bifurcation diagram shown in Fig.
4.7 has been computed with AUTO. The conduction branch is represented
in all the following graphs by blue lines. Other branches are represented
with black lines. Solid lines indicate stable stationary solutions, dashed
lines indicates unstable solution. The stable branch of conduction becomes
unstable at δ = 0 where the first bifurcation point is located. The branch
point (0, 0) separate domains of different qualitative behavior (see Fig. 4.7).
For δ > 0, one observes a steady solution formed by a two-dimensional roll.
Starting from Ra = 400, numerical calculations of the Eq. (2.23) have
shown that the evolution of the temperature and stream function fields be-
comes time dependent. Equation (4.73) alone is not sufficient to describe
the dynamics for such a large value of δ. In fact, the steady state solution
of Eq. (4.73) is always stable for δ > 0. As the distance to the threshold
increases, the number of modes that participate to the dynamics also in-
creases and the amplitude equation Eq. (4.73) is not valid anymore. We
need to add more amplitude equations for other modes. Previous works of
Steen and collaborators about bifurcation in Hele-Shaw slots [76; 77] and
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Figure 4.7: Conduction (blue lines) looses stability at δ = 0, where a first bifurcation

(supercritical pitchfork bifurcation) takes place (black lines). The pattern above the

bifurcation point is a two dimensional roll. This bifurcation diagram has been computed

with only one amplitude equation (A1).

in square container of porous media [62] have used around 100 ordinary
differential equations, and accuracy have been checked by increasing the
number of modes up to 153. In the following, we will prove that the bifur-
cation diagram continues to be qualitatively valid, that is, we provide an
approximation of the branches in the bifurcation diagram with less ampli-
tude equations. Quantitative convergence of the bifurcation diagram means
checking that the number and kind of branches do not change if the number
of slave and master modes is increased.
The criterion to decide if a mode is slave or master, is obtained by com-

paring the corresponding value of its amplitude. If it is small (in absolute
value) relatively to the largest mode, the mode is considered slave. For
Rayleigh numbers close to Rac, Eq. (4.73), (the first mode is master, the
others are slave), is sufficient to describe the convective solution. By in-
creasing the Rayleigh number (by step of ∆Ra = 1) and taking for each
new value of Ra the previous solution as the initial condition, the values of
the amplitudes start to grow. For example, at Ra = 100, the modes A4, A6,
A7, A9 are also masters. This means that A4 ' A6 ' A7 ' A9 ' A1 and
Ai ¿ A1 for i 6= {1, 4, 6, 7, 9}. Other steady states (modes M10, M11,...)
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master 5 master 10 master 20 master 30
slave 5 slave 10 slave 20 slave 30

B1 0 0 0 0
B2 1.7803 1.7803 1.7802 1.7802
B3 3.005 3.005 3.005 3.005
B4 3.005 5.2531 5.2531 5.2531
B5 3.005 5.7531 5.7531 5.7531

Table 4.3: Position of the first five bifurcation points for different value of master and

slave modes. B1 −→ M00, B2 −→ M20, B3 −→ M11, B4 −→ M10 and B5 −→ M30.

bifurcate directly from the conduction branch for positive value of δ. Table
4.3 shows the position in the conductive branch of the first five bifurcation
points for modes (M10, M11,...). B1 is the branch point corresponding to
the M00 mode; B2 is the bifurcation point of the M20 mode; the bifurca-
tion point B3 corresponds to the M11 mode; at B4 and B5 the branches of
the M10 and M30 modes take place, respectively. The fact that bifurcation
points in Table 4.3 have the same value for different numbers of master
and slave modes, do not imply necessarily convergence of the bifurcation
diagram. In fact, we have observed differences in the branches, every time
we have changed the number of modes (masters and slaves).
At Ra = 243, with the same set of stable and unstable ones, as for Ra = 100
(i.e. A1, ..., A9), the temporal evolution of the amplitudes is oscillating.
In our amplitude equations model, periodic behaviors are already observed
with only five equations (A1, A4, A6, A7, A9). The type of bifurcation that
connects equilibrium solution with periodic motion is called a Hopf bifur-
cation [75]. In addition to the first bifurcation AUTO also detects several
Hopf bifurcations. Table 4.4 shows, for different branches, how the posi-
tion of the Hopf bifurcation points (of the uni-cellular solution) varies with
the number of master and slave modes. Bifurcation diagrams in Fig. 4.8
have been computed with 43 ordinary differential equations. Now red solid
lines represent stable periodic solutions, while dashed red lines represent
unstable periodic solutions. After the supercritical pitchfork bifurcation,
the uni-cellular solution undergoes a first Hopf bifurcation at δ = 8.7875
(Ra = 386.39). This new branch is initially stable and becomes unstable
at δ = 9.9327 (Ra = 431.60), as shown in Fig. 4.8(a). A second Hopf
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master 5 master 10 master 20 master 30 master 43
slave 5 slave 10 slave 20 slave 30 slave 7

HB1 5.09 7.4520 6.9463 8.0428 8.7875
HB2 7.35 8.9328 9.0427
HB3 7.5141 9.4884

TR1(HB1) 9.9327
TR2(HB1) 11.1335
TR1(HB2) 9.8739
TR2(HB2) 10.9856
TR1(HB3) 10.5108

Table 4.4: Hopf bifurcations and torus bifurcation points of the M00 mode for different

value of master and slave modes. In the upper part: HB1, HB2 and HB3 are Hopf

bifurcation points located on the steady branch of the unicellular solution (M00). In the

lower part: two torus bifurcations take place on the first (TR1(HB1),TR2(HB1)) and second

periodic branch (TR1(HB2),TR2(HB2)). The third one present only one torus bifurcation

(TR1(HB3)). The blanks in the table mean inexistent branch point.

bifurcation takes place at δ = 9.0427 (Ra = 396.46) and remains unstable,
until the third Hopf bifurcation appears at δ = 9.4884 (Ra = 414.06), see
Fig. 4.8(b-c).
Since, between all the steady state that bifurcate from the conduction
branch solution, the M20 mode is the one observed in full numerical sim-
ulation, we present also its bifurcation diagram. The M20 mode becomes
stable at δ = 2.499 (Ra = 137.77) through a Hopf bifurcation, as shown in
Fig. 4.9(a). Two saddle nodes bring the steady solution to a new unstable
condition, as shown in Fig. 4.9(b). The stability of this mode (three-cellular
solution) explains the frequent occurrence of this solution, during the nu-
merical simulations of Eq. (2.23).
Table 4.4, shows that each periodic solution of the uni-cellular mode under-

goes a torus bifurcations which justify the appearance of a quasi-periodic
state. In fact, quasi periodic regimes are the result of the stability exchange
between limit cycles.
Due to its size the maneuverability of the ODE system begins to be chal-

lenging. We are surprised by the number of equations necessary to explore
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Figure 4.8: Periodic solution for the uni-cellular mode (M00). A first Hopf bifurcation

takes place at δ = 8.7875. This oscillatory solution becomes unstable at δ = 9.9327. Two

other unstable Hopf bifurcations are located at δ = 9.0427 and δ = 9.4884. The diagrams

have been computed solving 43 amplitude equations with AUTO.
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Figure 4.9: Bifurcation diagram for the M20 mode. The branch is born unstable at

δ = 1.7802 (Ra = 109.75). At δ = 2.499, it becomes stable through a Hopf bifurcation.

For δ = 2.486 the oscillatory solution becomes unstable through a saddle node bifurcation.

The above diagrams have been computed with 43 amplitudes equations.

the bifurcation diagram for larger value of δ. We have reached the limit
given by our computational resources. However, from examining the nu-
merical results of Eq. (2.23), we know that the scenario begins with a first
bifurcation due to a time periodic fluctuation with spatial wave number
n = 5. A second bifurcation lead to a quasi-periodic regime, and a third
bifurcation restores the solution to the periodic behavior. This latter oscil-
lation have wave number n = 7. Hence, the most dangerous perturbation
around the second bifurcation point, is a travelling wave pattern of seven
pairs of alternating warm and cold blobs swept around the box. Fig. 4.10
summarizes the scenario of the stability exchange between the periodic so-
lution (n = 5) to the periodic solution (n = 7) through an excursion to
the quasi-periodic state for intermediate value of δ, (or equivalently Ra).
The diagonal line at the left represents the steady state, where are located
the three Hopf bifurcations (n = 5, 3, 7). The horizontal lines indicates the
periodic solutions which are born at the Hopf bifurcation points. The nar-
row lines predicts quasi-periodic solutions: the periodic uni-cellular solution
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Figure 4.10: Solid line indicates stable solutions, dashed line unstable ones. Bold curve

represent computed steady and periodic solution, narrow ones predicted quasi-periodic

solutions.

(n = 5) undergoes a torus bifurcation. The new frequency, uncomensurable
with the first, corresponds to the frequency of the periodic solution with
wave number n = 7. The quasi-periodic solution persists until it jumps
back to a simply periodic solution with n = 7. This jump happens at
saddle-node bifurcation point.
We suspect that the quasi-periodic regime observed at Ra = 1000 is again
due to the interaction of periodic travelling wave states.

4.7 Conclusions

In this chapter the stability analysis of the M00 mode has been investigated
thoroughly. Linear stability analysis yields a sufficient condition of insta-
bility of the eigenmodes. Weakly non linear analysis is valid close to the
threshold. By increasing the distance to the threshold, we need to add more
modes in order to reproduce accurately the dynamics. Previous works by
Steen et al. used a large number of ordinary differential equations, and thus
showed the limit of this kind of analysis. Conduction looses its stability at
δ = 0 where the first bifurcation point is located. A supercritical pitch-
fork bifurcation takes place and the corresponding spatial pattern is the
unicellular mode. The first Hopf bifurcation is located at δ = 8.7875. The
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oscillatory solution is stable and becomes unstable at δ = 9.9327 through a
torus bifurcation. Several Hopf bifurcations follow the first one. Interaction
of the limit cycles of periodic solutions are responsable of the quasi-periodic
state. The present scenario is summarized in Fig. 4.10. The impossibility
of using more equations prevents the investigation of the bifurcation dia-
gram for larger value of the parameter δ. We assume that the scenario for
large δ is characterized by the same interactions as discussed above. Other
steady states (M20, ...) bifurcate from the conduction branch. In particular,
by using 43 amplitudes equations the M20 stability has been investigated.
This was motivated by the frequent occurrence of the three-cellular solution
in the numerical simulation of Eq. (2.23).





Chapter 5

Synchronization

In the previous chapters we have shown that by heating uniformly from
below a Hele-Shaw cell a large number of different dynamical regimes may
appear: stationary convection, oscillatory convection, thermal plumes and
turbulent flow. The diversity of these behaviors, in a rather simple ge-
ometry, is a good candidate in order to study possible synchronization
mechanisms between two such cells. We give particular emphasis to the
synchronization of chaotic dynamics. Different coupling schemes have been
proposed in order to achieve synchronization. A widely used coupling, and
controlling, technique is the so called “pinning” technique [13; 14; 15; 78],
which connects pair of points of the two systems.

5.1 All internal points are connectors

Starting from two identical Hele-Shaw cells, we introduce a thermal bidi-
rectional coupling between all the internal points. This means to add a
dissipation term to the equations (A.34) and (A.35). The systems are now
governed by

I





∂T (1)

∂t = ∇2T (1) + J(T (1), ψ(1)) + ε(T (2) − T (1))

∇2ψ(1) = −RaG2(T (1))
(5.1)

II





∂T (2)

∂t = ∇2T (2) + J(T (2), ψ(2)) + ε(T (1) − T (2))

∇2ψ(2) = −RaG2(T (2))
(5.2)

67
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Figure 5.1: Time evolution of ψ1 and ψ2 at the point x = 1/3; y = 1/3. Complete

synchronization for steady convection at Ra = 44.

where the indexes 1 and 2 refer to the two cells, ε is the thermal coupling
and is applied in all the interior points (i, j = 1, ..., N − 1).
Before presenting the results for the synchronization of chaotic systems, we
want to briefly discuss the cases of steady and periodic convection.
At Ra = 44, two systems with a single convective cell, the first system with
clockwise rotation flow, the second one with counterclockwise rotation flow
are prepared by particular choice of the initial conditions. By setting the
thermal coupling ε in the interval [0.35, 1], synchronization between the two
cells is achieved. The flow of one of the systems changes its rotation di-
rection. Figure 5.1 shows complete coincidence of the dynamics of the two
systems after some transient for the coupling ε = 0.5.
For the periodic case, Ra = 400, the two cells are prepared with counter-
clockwise rotation but they are set initially out of phase, see Fig. 5.2(a).
This can be done by taking as initial conditions for the second system the
final state of the first after a time of exactly half period. By applying a
thermal coupling ε = 0.05 after 1000 iterations (∆t = 0.0001), the two pe-
riodic states come in phase, see Fig. 5.2(b). We underline that this is the
simplest case of synchronization. We switch through two different states of
synchronization: from synchronization in anti-phase to synchronization in
phase.
Let us now discuss the case of chaotic dynamics at Ra = 1200. In this case,

the correlation function is of interest because it is one central measure for
quantifying synchrony. Recent papers illustrate the power of the correlation
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Figure 5.2: Time series of ψ1 and ψ2 at the point x = 1/3; y = 1/3. Complete

synchronization for periodic convection at Ra = 400. (a) At the beginning the time

series are out of phase. (b) Under the presence of the coupling the periodic oscillations

come in phase.

in measuring the synchrony [2; 3; 18]. The most common way to quantify
the degree of synchronization between two variables is by monitoring the
Pearson’s coefficient γ, or zero-lag cross-correlation

γ =
< (T1− < T1 >)(T2− < T2 >) >

σ1σ2
(5.3)

where we recall that <> and σ2 denote a full space-time average and the
variance, respectively, and T1 and T2 are the temperature fields of the two
systems. Precisely, when γ = 0 the two fields are linearly uncorrelated;
γ = 1 marks complete correlation and γ = −1 indicates that the fields are
negatively correlated. Figure 5.3 reports the Pearson’s coefficient as func-
tion of the thermal coupling ε. The results indicate that for value of the
coupling smaller than 0.02 the Pearson’s coefficient is almost one. But, as
we will see later, this not necessarily means the appearance of a complete
synchronization state for such low values of the coupling.
The cells have been prepared both with counterclockwise rotation but with
different initial conditions. The proper way to do this is analog to what
has been done for the periodic case. In order to see the differences between
the systems we plot the variables of cell I vs the variables of cell II, (what
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Figure 5.3: Pearson’s coefficient (see text for definition) vs the thermal coupling ε.

is known as a Lissajous-type of plot) as in Fig. 5.4(a). Obviously, the time
series give us the same information, as shown in Fig. 5.4(b). We connect
the two systems with couplings ε = 0.5, 0.05, 0.02, 0.01 at the dimensionless
time t = 0.01. Once we get synchronization, the states of the systems are
identical, as it can be easy seen on the plot ψ1 vs. ψ2, (see Fig. 5.4(c)).
The trajectory lies on the diagonal ψ1 = ψ2. However, it is important to
note that the coupling does not destroy the chaotic dynamics, but the os-
cillations are nearly identical, as shown in figure 5.4(d).
In order to verify the complete synchronization we have defined the syn-
chronization error as:

E =
∑

r

|T1(r)− T2(r)| (5.4)

where r stands for all the interior points. Another important parameter for
characterizing the synchronization is the time that we have to wait in order
to obtain the perfect coincidence of the trajectories of the two systems.
The error has a practical importance, in fact we decide to stop the program
when the error is less than 10−6, a value for which we are sure to have reach
a synchronized state. In Fig. 5.6, the error is plotted for different values
of the coupling. Obviously, the rate of convergence to the synchronized
state is faster for stronger couplings. For weaker couplings the transient
times increase. There is a critical value of ε below which synchronization
is no longer obtained. The space-time plots of the temperature taken at a
height h = 10/128 (from the bottom wall) are shown in Fig. 5.5, showing
the dynamics of the plumes drifting to the right wall after being created. At
time t = 0.01 the coupling is switched on with ε = 0.5. Immediately after
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Figure 5.4: (a) Uncoupled Hele-Shaw cells, ψ1 vs ψ2 (ε = 0, x = 1/3; y = 1/3).

(b) Time series of the stream function below the synchronization threshold. (c) and

(d) Complete synchronization in coupled Hele-Shaw cells (ε = 0.05). The states of the

systems are identical.
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Figure 5.5: Space-time plots of the two convective cells at h = 10/128. At time

t = 0.01 (where the arrows are located) the coupling (ε = 0.5) is switched on.
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Figure 5.6: Synchronization error E (see text for definition), for several values of the

coupling strength. The convergence rate is proportional to ε. For ε = 0.01 synchroniza-

tion is no longer achieved.

the coupling is set, the states come close to each other and they converge
slowly towards the synchronized state.

5.2 Coupling through the lateral walls (only)

Until now, we have shown theoretically that synchronization between two
Hele-Shaw cells is possible for a sufficiently large coupling. In this section,
we consider its feasibility from the experimental point of view. This is not
an easy task. An obvious limitation is how to implement the coupling be-
tween the two convective cells without perturbing too much the dynamics.
The coupling technique used so far consisted in connecting the whole spa-
tial domain. This is not clear yet how to realize such a connection between
all the internal points of the systems. This may simply be impractical in
experiments. On the other hand, because of the smallness of the spatial cor-
relation length (see Fig. 3.12), it seems (at least intuitively) that we need
to put several internal connectors between the two systems. This number
of connectors must be finite and as small as possible. The reason for which
we do not couple in the whole spatial domain is that the uncoupled areas
receive information from the coupled areas that are in their neighborhood.
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Figure 5.7: Synchronization error using an intermediate (ε = 0.3) and a very strong

coupling (ε = 3) connecting only the points located at the lateral boundaries. Synchro-

nization is not achieved in these cases.

In addition, we also mention that the experimental measuring devices have
a finite time and space resolutions and measure local spatial information of
some observable.

Let us now give a brief account of the future experiment. It has been
thought to work by using the Peltier effect in order to add or extract heat
from the system. In 1934, J. Peltier discovered that the passage of an elec-
tric current through the junction of two dissimilar conductors can either
cool or heat this junction, depending on the direction of the current. Heat
generation or absorption rates are proportional to the magnitude of the
current and also the temperature of the junction. Let us now return to the
results of the numerical simulation, the cells are prepared with different
initial conditions. Both cells have Peltier devices connected on each lateral
boundary. Their positions coincide for the two cells. The temperature of
the fluid at the location of each Peltier device is constantly measured. Let
us assume that a fluid parcel has a different temperature in the two cells.
The Peltier device in contact with the warmer fluid will extract heat and
locally cools the surrounding fluid, the corresponding device in the other
cell will inject the same amount of heat. This process will last until the
temperature measured in both systems are equilibrated.
In order to test the feasibility of this experimental setup, we are using con-
trollers only belonging to the lateral vertical walls i.e. 256 mesh points.
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With this particular choice the systems are governed always by the same
equations (5.1), where the term ε(T 2,1

i,j −T 1,2
i,j ) appears when i = 1, ..., N−1,

but only for j = 1 and j = N−1. A direct inspection of the synchronization
errors suggest that this type of connection is not strong enough to achieve
synchronization. From Fig. 5.7, we observe that the synchronization error
is even worse when using a very strong coupling, ε = 3.

5.3 Finite number of internal points are used as
connectors

The failed attempt of synchronization through only the lateral walls brings
us to consider what are the minimal number of “internal” points necessary
in order to obtain synchronization. As a rule, in experiments one will try to
use as few controllers as possible. The simplest way to start investigating
the minimal number of controllers is to put the connectors every two grid
points and, in case of success, following the reduction of connectors in this
way. For a controller every two grid points one gets synchronization, but we
observe a change in the organization of the patterned flow, (see Fig. 5.8).
For a connector every two grid points, the flow passes from a single roll cell
(chaotic) to a three-cellular convection mode (stationary). The convergence
to the synchronization state is not fast. Here the synchronization drastically
affect the final dynamical state of the system i.e. we have chaos suppression.
Presumably, the basin of attraction of the single chaotic cell is quite narrow
and a sparse and strong coupling will bring the dynamics to fall in the
three-cellular steady solution. The reason is that this solution is selected
when strong perturbations are applied to the single chaotic cell. In order
to avoid the destruction of the single cell solution, we have to increase
very slowly the coupling from zero to its nominal value. Unfortunately, all
attempts to keep the single mode with less connectors have failed so far.
Even worse, is the case of a connector every four grid points, in that case
the synchronization is no longer achieved and the solution single mode is
destroyed into a two-cellular solution with recirculation flow in the lower
corners that is still chaotic.
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Figure 5.8: The synchronization error obtained by connecting all internal points, every

two points and every four points. The coupling parameter, ε = 0.5, is set at t = 0.01. For

a loose connection (every two points) a new three-cellular stationary structure appears.

For a connector every four points, synchronization is not achieved.

5.4 Non uniform grid

The dynamics of the Hele-Shaw cell is determined by the boundary layer
instabilities. As the center of the cell practically does not participate in the
dynamics, we propose to connect points belonging to a “hole-grid”. But,
in order to avoid destroying the uni-cellular solution we need to couple the
two cells with as much as 14000 points (85% of the number of grid points).
Otherwise, synchronization is also achieved but the solution falls in a multi-
cellular mode.
The best choice for the connectors would be couple points which follow

the inverse of a gaussian distribution. In this case, the concentration of
points would be larger near the boundaries and smaller in the center. This
is typical of grid built over Chebyshev points. In fact, as N →∞ they are
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Figure 5.9: Uniform grid of 129× 129 points and non uniform grid of 17× 17 points.

distributed with density

d ∼ N

π
√

1− x2
. (5.5)

Geometrically, we can visualize these points as the projection on [−1, 1]
of equispaced points in the upper half of the unit circle. We send to Ap-
pendix B for technical details. In Fig. 5.9, we show that the uniform grid
of 129× 129 points used until now and a non uniform grid of only 17× 17
points.
In this section, we test the synchronization by using Chebyshev points
(CP). Time discretization is obtained with a simple Euler scheme. For the
uni-cellular solution, 17 × 17 CP are sufficient to observe periodic oscilla-
tions. To obtain the quasi-periodic regime we need 22× 22 points. Chaotic
behaviors need 36× 36 CP.
We investigate the synchronization mechanisms using as connectors all the
internal points. At Ra = 400 we prepare the oscillating cells in anti-phase.
Figures 5.10(a-b) show complete synchronization using thermal couplings
ε = 0.5 and ε = 1, respectively for Ra = 400. In case of quasi-periodic
(Ra = 520) and chaotic (Ra = 1200) regimes, stronger couplings and
longer transients are needed to show complete coincidence of the trajec-
tories. Figures 5.11(a-c) shows the behaviors of the temperatures T1 and
T2 evaluated at the point (x, y) = (1/3, 1/3) in quasi-periodic and chaotic
regime, respectively. Figures 5.11(b-d) show the temperatures T1 and T2

after the application of the coupling ε = 1. In order to achieve complete
synchronization we can use less connectors with a lower coupling strength,
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(a) (b)

Figure 5.10: Time series of the temperatures T1 and T2 at the point (x, y) = (1/3, 1/3).

Complete synchronization of periodic convection at Ra = 400, using the internal points

of a non uniform grid 17× 17 as connectors, under the presence of thermal coupling (a)

ε = 0.5 and (b) ε = 1.

but at expense of transient time.

5.5 Conclusions

In this chapter, we have investigated possible synchronization mechanisms
between two Hele-Shaw cells. We have coupled them using a bidirectional
thermal coupling ε. This means, adding a dissipation term, equal to the
difference of the temperature fields, multiplied by ε. In particular, we use
the pinning technique, which connects pairs of points of the two cells. For
the first trials, the temperature and the stream function are discretized in
space over a two dimensional uniform square (∆x = ∆y) grid of 129× 129
points. Using all the internal points (i.e. 16129) as connectors, complete
synchronization is achieved for stationary convection (Ra = 44), periodic
convection (Ra = 400) and chaotic regime (Ra = 1200). With this grid,
small couplings are enough. ε = 0.01 is the smallest coupling which leads to
synchronization in the chaotic case. The future experiment, directed by H.
Mancini, leads us to consider the synchronization also from the experimen-
tal point of view. In this context, the cell are connected with Peltier devices
on the lateral boundaries. We numerically translate this set-up, but an in-
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(a) (b)

(c) (d)

Figure 5.11: (a-c) Time series of the temperature T1 and T2 at the point (x, y) =

(1/3, 1/3) for quasi-periodic (Ra = 520) and chaotic (Ra = 1200) regime, respectively.

Complete synchronization is achieved under the presence of a thermal coupling ε = 1

and using (b) 400 (83% of the mesh grid numbers) and (d) 1156 (88% of the mesh grid

numbers) connectors.
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spection of the synchronization error suggests that this type of connection
(i.e. 254 mesh points) is not strong enough to obtain synchronization. In
experiments, one must try to use as few controllers as possible. As a con-
sequence, we investigate the minimal number of internal points necessary
to synchronize the Hele-Shaw cells. The simplest way to proceed is taking
connectors every two points, every four, every eight...but all these choices
drastically affect the final dynamical state, that is, they suppress chaos and
synchronize the cells in other (stationary) solutions [79]. The consideration
of the dynamics of a single Hele-Shaw cell which shows boundary layer in-
stabilities, suggests to use more connectors near the boundaries and less in
the center of the cell. The resulting non uniform grid is the one obtained by
using Chebyshev points. The results are slightly improved. Chaotic signals
are synchronized with only 1156 connectors (88% of the total numbers of
grid points).



Chapter 6

Conclusions

In this thesis we have studied possible configurations to synchronize two
Hele-Shaw cells. Before dealing with the synchronization of the cells, we
have studied the dynamics of a single one. The dynamics of this fluid
system is interesting in itself as it exhibits a boundary layer instability at
reasonably small Rayleigh number. Let us recall the main results of this
work:

• Since two dimensional systems are more amenable to experiments
and simulations than three dimensional systems, we have proposed a
model for the flow within the Hele-Shaw cell. If K = d2/12 is the
porous medium permeability, the governing equations of a flow in the
Hele-Shaw cell are formally identical to that describing a flow through
a uniform porous medium. Therefore, Lapwood’s thermal instability
analysis is valid, and the critical Rayleigh number for convective mo-
tion is 4π2.

• The integration of the Hele-Shaw cell for different values of the Rayleigh
number has been done first by using finite difference scheme. The re-
sults made clear the richness of the dynamics of the Hele-Shaw cell.
Two type of transitions have been observed. The first one is an hori-
zontal decrease of the aspect ratio of the convective rolls. The second
one is from steady to unsteady patterns.

• For large value of the Rayleigh number, there is multi-stability be-
tween multicellular stationary solutions and time dependent unicel-
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lular mode. From the point of view of dynamical systems, we have
decided to force the solution into the uni-cellular mode, which is un-
steady for Rayleigh number larger than approximatively 350. The
pattern selection depends from the history of heating: slow and con-
trolled increase of the Rayleigh number maintains the uni-cellular
structure.

• By increasing the Rayleigh number, we have found the following se-
quence of solutions: stationary - periodic - quasi-periodic - periodic -
chaotic. Thermal plumes are generated in the lower unstable bound-
ary layer for large value of the Rayleigh number (Ra ≥ 520).

• For a fixed value of the Rayleigh number, the system exhibits mul-
tistability. Applying infinitesimal perturbations to the conduction
state, the threshold of stability is determined by using simplified equa-
tions obtained by linearizing the basic equations. In order to solve
the linear problem, the finite difference scheme has been substituted
by a spectral collocation method, which guarantees spectral accuracy.
The analytical solutions confirm the results.

• The asymptotic evolution of the perturbations is calculated by reduc-
ing first the original infinite system of partial differential equations
to a non linear system of coupled ordinary differential equations for
the amplitudes of the few modes that govern the dynamics near the
threshold (adiabatic elimination).

• Far from the threshold, the above amplitude equations need many
modes to describe the dynamics. We provide qualitatively and quan-
titatively convergence of the bifurcation diagrams, showing our lim-
itations when we increase the degrees of freedom. The bifurcation
diagrams have been computed with AUTO [68], a bifurcation analy-
sis package for ordinary differential equations.

• In the chaotic regime, synchronization is possible if the cells are cou-
pled with all the internal points and a sufficient strong coupling.
These requirements are quite demanding and in view of future ex-
perimental realization not very encouraging. Let us recall that syn-
chronization through the lateral walls failed as well as when only every
4 grid points were connected in space (6% of the total number of mesh
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points). If we connect 25% of the total number of mesh points, syn-
chronization is achieved, but the solution falls in the three-cellular
mode [79].

• By using 2D non uniform grid (spectral method) the minimal number
of connectors is outstandingly decreased. Also chaotic behaviors are
reproduced with only 36 × 36 Chebyshev points and again synchro-
nization is obtained by coupling all the internal points.





Appendix A

Finite Difference methods

Rayleigh-Bénard convection is so important that many numerical methods
have been developed and tried for this problem over the years [80; 81].
Unfortunately, most of these methods have not been compared with each
other to determine which best achieves a practical balance of efficiency,
accuracy, ease of programming, and parallel scalability on some specific
computer architecture. In this thesis we use two numerical scheme: finite
difference methods [82; 83; 84] and spectral methods [63; 85; 86]. The
purpose of this appendix is to explain the basic ideas of the finite difference
approximation and to propose a serie of improvement which lead to the
final code.

A.1 Solution of diffusive initial value problem

Let us consider the two-dimensional diffusion equation:

∂T

∂t
= ∇2T. (A.1)

We will begin considering how to solve the diffusion equation numerically
by deriving some finite difference approximations to the Laplacian term
[80; 84; 87; 88]. The basic idea of a finite difference procedure is to replace
the continuous problem domain with a finite-difference mesh containing
a finite number of grid points. In order to represent a function f on a
two-dimensional domain spanned by Cartesian coordinates (x, y), we use
f(i∆x, j∆y). The grid points are located according to values of i and j,
so the equations are usually written in terms of the general point (i, j) and
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its neighbors. The standard approach for approximating the differentials
comes from truncated Taylors series [89; 90]. The Laplacian is written as

∇2T =
Ti+1,j − 2Ti,j + Ti−1,j

∆2
+

Ti,j+1 − 2Ti,j + Ti,j−1

∆2
, (A.2)

where i and j number the grid lines in the y and the x directions respec-
tively, with i, j = 0, ..., N , of a 2-D square grid. Formula (A.2) is a second-
order accurate approximation in the grid size spacing. However, including
more and more neighboring points, higher order schemes can be obtained.
Apart from the discretization of the thermal diffusion term we need to add
the time derivative for the left-hand-side. Using a forward time step the
approximation of the diffusion equation can be written

Tn+1
i,j = Tn

i,j + α
(
Tn

i+1,j − 2Tn
i,j + Tn

i−1,j + Tn
i,j+1 − 2Tn

i,j + Tn
i,j−1

)
, (A.3)

where
α =

∆t

∆2
(A.4)

physically corresponds to the number of grid points that the heat flux
reaches in a time step (or it is the inverse of the number of time step
required for heat to diffuse a grid space) [91; 92].
It is evident that a variety of numerical schemes can be written, but they
are not all equally acceptable. The difference representation given by (A.3)
is referred to as the simple explicit scheme for the heat diffusion equation
(Euler scheme). An explicit scheme is one for which only one unknown
appears in the difference equation in a manner that permits evaluation in
terms of known quantities.
The first requirement that any scheme should meet is that of stability and
the stability requirement for the method represented by (A.3) is

α ≤ 1
4
. (A.5)

This means that a decrease in grid spacing, for example, by a factor of 2
in both direction requires a factor of 16 computer time. In fact, this choice
for ∆x implies that the grid’s point numbers is increased by a factor 4 and
from the condition (A.5) it follows that the new ∆t is four times smaller
than the original time step. Unfortunately, because the simplest centered
schemes are only second order in space (and first order in time), we gain
only a factor of 4 in reducing the truncation error.
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A.2 Implicit scheme

If we use an explicit scheme we have to choose time steps that satisfy the re-
striction (A.5). But, sometimes time steps comparable to, or smaller than,
(∆x)2/4 may be physically unreasonable. For this reason we will use an
implicit scheme which is unconditionally stable.
In an explicit scheme we have only one unknown, since the diffusion equa-
tion governs a marching problem for which an initial distribution of T must
be specified. The temperature field T at time level n can be considered to be
known. If the second derivative term in the equation were approximated
by the temperature field taken at the n + 1 time level, three unknowns
would appear in the difference equation. In this case the procedure is
called implicit, indicating that the algebraic formulation would require the
simultaneous solution of several equations involving the unknowns. The
simplest implicit scheme for the heat diffusion equation can be developed
from the Taylor series by simply evaluating the heat diffusion term at the
n + 1 time level (all we have to do is to rewrite equation (A.3) replacing
the diffusion rate at time step n with that at time step n + 1). A second
order scheme in both time and space, can be obtained simply averaging
the explicit and implicit schemes (Crank-Nicholson scheme). The latter
into two dimensions leads to a band tridiagonal system which is significant
more expensive computationally. One possibility to solve them is to use
a sparse matrix technique, or another approach, which combines second
order accuracy in space and time with the ease of tridiagonal solvers, it is
the Alternating-Direction Implicit scheme.

A.2.1 Alternating-Direction Implicit scheme

One possibility is to use the ADI scheme, the idea is to split one process
into its different directional components. For example, we could rewrite
our multidimensional diffusion equation as

∂T

∂t
= LxT + LyT (A.6)

where Lx is the operator controlling diffusion in the horizontal direction
and Ly controls diffusion in the vertical direction. Given this splitting,
ADI schemes then solve (A.6) by taking two-passes, first solving an implicit
diffusion equation in the horizontal for the first half time step and then an
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implicit diffusion equation in the vertical for the second half time step.
In more detail, the ADI algorithm for (A.1) looks like

T
n+ 1

2
i,j − Tn

i,j

∆t/2
=

1
∆x2

(
T

n+ 1
2

i+1,j − 2T
n+ 1

2
i,j + T

n+ 1
2

i−1,j

)

+
1

∆y2

(
Tn

i,j+1 − 2Tn
i,j + Tn

i,j−1

)
(A.7)

Tn+1
i,j − T

n+ 1
2

i,j

∆t/2
=

1
∆x2

(
T

n+ 1
2

i+1,j − 2T
n+ 1

2
i,j + T

n+ 1
2

i−1,j

)

+
1

∆y2

(
Tn+1

i,j+1 − 2Tn+1
i,j + Tn+1

i,j−1

)
(A.8)

Only one tridiagonal system of equations must be solved for each half step.
The equation (A.8) is an implicit, tridiagonal equation for the horizontal
rows at time n + 1/2 which are then used in the equation (A.8) to update
the vertical columns at time n + 1. The advantage of this method is that
each time step requires only the solution of two simple tridiagonal systems.

A.3 The non-linear term

Our diffusion equation is not linear, it has the following form

∂T

∂t
= ∇2T + J, (A.9)

where J is the Jacobian non linear term and in two dimensions it is written

J =
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
(A.10)

this term is also known as the advection term. By studying the way to
construct a computer model of the general circulation of the atmosphere,
Arakawa [52] has explained that a simple finite difference approximation
using central differences, for example

∂ψ

∂y

∂T

∂x
=

(ψi+1,j − ψi−1,j) (Ti,j+1 − Ti,j−1)
4∆2

(A.11)

causes numerical instability. At first he thought that it were “truncation
error”. A computer cannot produce numbers with infinite precision. When
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thousands of calculation are repeated and the numbers are truncated each
time, we add up tiny discrepancies over and over. As result we have a big
discrepancy. Eventually the solutions became unrealistic and “explode”.
But after that Arakawa recognized that the instability was like the prob-
lem of a platoon of soldiers ordered to march across a bridge. If they march
across in step, it may happen that somewhere there is a combination that
resonates at just the frequency of their marching. Each time the feet come
down, they hit that combination at the same phase of its swing, pushing
it a little further. Soldiers know that bridges can resonate and they will
break step before crossing.
Something like this happened with Arakawa’s simulations. Suppose the
computer goes through a complete step and takes its next step after a sim-
ulation interval of, for example, one hour. Among the simulated waves
there would be some with a frequency of just one hour. Every time the
calculation was repeated, the computer would catch those waves at the
same phase (aliasing occurs when the sampling frequency is too low with
respect to the frequency content in the original time series. A new, but
false frequency is obtained by the sampling procedure). Arakawa sought a
way to make the small pushes cancel one another out, as the impact of the
feet of the soldiers would cancel one another if they broke step. The key, he
found, was to write equations in such a way that certain quantities would
remain unchanged. For example, the kinetic energy. In the real world, the
law of conservation of energy demands that there is never any change in
the total energy, whereas kinetic energy alone is not normally conserved.
But by using equations that did conserve kinetic energy, Arakawa could
make sure that no unrealistic spike of wind speed grew exponentially from
his calculations.
To avoid aliasing errors Arakawa developed nine- and thirteen-point repre-
sentations of the Jacobian J which conserve the kinetic energy and which
have a truncation error of the square and fourth power, respectively, of the
spatial difference ∆x. These numerical schemes are known as the second
and fourth-order Arakawa schemes.
We choose second order Arakawa scheme. There are different possibilities
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of writing the expression for the Jacobian [53; 54]:

J(ψ, T ) =
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

=
∂

∂x

(
ψ

∂T

∂y

)
− ∂

∂y

(
ψ

∂T

∂x

)

=
∂

∂y

(
T

∂ψ

∂x

)
− ∂

∂x

(
T

∂ψ

∂y

)

=
1
2r
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− r

∂ψ

∂x

)(
∂T
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+ r

∂T

∂x

)
−

(
∂T

∂y
− r
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∂y
+ r

∂ψ

∂x
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The last expression follows from

η = x− y

r

ξ = x +
y

r

from which

∂

∂η
=

1
2

(
∂

∂x
− r

∂

∂y

)
,

∂

∂ξ
=

1
2

(
∂

∂x
+ r

∂

∂y

)
, (A.12)

and

J(ψ, T ) =
2
r

{
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

}
(A.13)

The resulting schemes will depend on the choice of the mathematical ex-
pression for the Jacobian. From the first expression we have

J++ =
1

4∆x∆y

{
(ψi,j+1−ψi,j−1)(Ti+1,j−Ti−1,j)−(ψi+1,j−ψi−1,j)(Ti,j+1−Ti,j−1)

}
,

from the second expression we get:

J+× =
1

4∆x∆y

{
ψi,j+1(Ti+1,j+1 − Ti−1,j+1)− ψi,j−1(Ti+1,j−1 − Ti−1,j−1)

− ψi+1,j(Ti+1,j+1 − Ti+1,j−1) + ψi−1,j(Ti−1,j+1 − Ti−1,j−1)
}

, (A.14)
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the third one leads to:

J×+ =
1

4∆x∆y

{
Ti+1,j(ψi+1,j+1 − ψi+1,j−1)− Ti−1,j(ψi−1,j+1 − ψi−1,j−1)

− Ti,j+1(ψi+1,j+1 − ψi−1,j+1) + Ti,j−1(ψi+1,j−1 − ψi−1,j−1)
}

, (A.15)

finally, from the last one with r = ∆y/∆x:

J×× =
1

8∆x∆y

{
(ψi−1,j+1 − ψi+1,j−1)(Ti+1,j+1 − Ti−1,j−1)

− (ψi+1,j+1 − ψi−1,j−1)(Ti−1,j+1 − Ti+1,j−1)
}

. (A.16)

A viable form to represent the Jacobian is

J = aJ++ + bJ×+ + cJ+× + dJ××, a + b + c + d = 1 (A.17)

In the discretized expression for the Jacobian J the two super-indices in-
dicate the points where ψ and T are evaluated respectively. For example,
J+× means that ψ is evaluated in the adjacent horizontal and vertical points
and T is evaluated with the neighboring points on the diagonals. In the
present thesis, we have chosen to use d = 0 and a = b = c = 1/3 for the
discretization of the Jacobian [30].

A.3.1 ADI scheme revisited

The method until now is known as single-step because it uses information
from only the last step computed. The value Tn+1

ij depends only on Tn
ij . It

exists a class of methods that use past values for the approximation of the
solution. They are known as multistep methods. By adding the non-linear
term and using a second-order Adams-Bashforth method in the diffusion
equation, the ADI scheme is modified as follow:

[−1 α + 2 − 1]Tn+ 1
2 =




1
α− 2

1


Tn − ∆t

2 ρ (A.18)




−1
α + 2
−1


Tn+1 = [1 α− 2 1]Tn+ 1

2 − ∆t
2 ρ (A.19)
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where
ρ =

1
2

(
3J(ψn, Tn)− J(ψn−1, Tn−1)

)
(A.20)

In the ADI scheme we have to solve two tridiagonal systems, one for each
spatial directions at every time step. We have not spoken yet about the
implementation of boundary conditions. The equations (A.18) and (A.19)
can be used to calculate the solution at the internal points, while the tem-
peratures at the boundaries are supplied by the given boundary conditions.
In the first half step we have to solve an implicit system in the x direc-
tion. In this case, the boundary condition that we have to consider are the
condition at the lateral walls. We imposed a Neumann boundary condition
that fixes the heat flux (= 0) at the boundary

∂T

∂x
(0, y) =

∂T

∂x
(1, y) = 0. (A.21)

Hence we can obtain the temperature at the boundary by approximating
the derivative in (A.21) by a finite difference. In sections 3.1 and 3.2, we
have written a first approximation for the first derivative using only two
points

∂Ti,0

∂x
=

Ti,1 − Ti,0

∆
;

∂Ti,N

∂x
=

Ti,N − Ti,N−1

∆
. (A.22)

From (A.21) and (A.22) we deduce that

Ti,0 = Ti,1 Ti,N = Ti,N−1. (A.23)

A derivative using three points formula increases the precision

∂Ti,0

∂x
=

−3Ti,0 + 4Ti,1 − Ti,2

2∆
∂Ti,N

∂x
=

Ti,N−2 − 4Ti,N−1 + 3Ti,N

2∆
from which

Ti,0 =
4Ti,1 − Ti,2

3
Ti,N =

4Ti,N−1 − Ti,N−2

3
. (A.24)

For the second half step in the vertical direction we consider the upper and
lower boundaries, where Dirichlet boundary condition are imposed:

T0,j = 1 at the bottom (A.25)

and
TN,j = 0 at the top of the layer (A.26)
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A.4 Boundary value problem

In the previous section we have been concerned with time dependent initial
value problems where we start with some assumed initial condition (plus
appropriate boundary conditions), then we calculate how this solution will
change in time. Now we consider the simplest elliptic problem which is a
Poisson problem of the form:

∇2u = f(x, y) (A.27)

We have already discussed finite difference approximations in the previ-
ous sections on 2-D initial value problems. For boundary value problems,
nothing has changed except that we do not have any time derivatives to
deal with any more. For example, the standard 5-point discretization of
the equation (A.27) on a regular 2-D cartesian mesh with uniform grid
(∆x = ∆y = ∆) is:

1
∆2

(ui+1,j − 2ui,j + ui−1,j) +
1

∆2
(ui,j+1 − 2ui,j + ui,j−1) = fi,j (A.28)

Finally, a note about boundary conditions. For determining T it is neces-
sary to specify the boundary conditions. In general boundary conditions
add auxiliary information that modify the matrix or the right hand-side or
both. However, there are many ways to implement the boundary condi-
tions and these depend somewhat on the method of solution. In general,
for Dirichlet boundary conditions, because matrix methods can be so ex-
pensive, the fewer points the better so one approach is just to solve the
unknown interior points. For certain classes of problems, of which the
Poisson problem is one example, there are rapid methods that can take
advantage of some of the special properties of the underlying matrix.
Problems with regular boundaries and constant coefficient stencil can often
be solved using the Fast Fourier transform. A more general set of rapid
methods, however exists for problems that are separable, in the sense of
separation of variables. These methods include cyclic reduction. Numeri-
cal Recipes [87] gives a brief explanation of how these methods work which
we do not repeat here. We use a collection of codes called FISHPAK pack-
ages [93]. These are a collection of generalized cyclic reduction Fortran
routines for solving more general Helmholtz problems, 3-D Cartesian co-
ordinates and general 2-D separable elliptic problem, for any combination
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of periodic or mixed boundary conditions. These codes are extremely fast
with solution time scaling like N2logN , but they were written back in the
eighties and the Fortran is inscrutable and therefore hard to modify for
different boundary conditions. In addition they still only work for separa-
ble problems and could not, for example solve the more general problem
∇ · k∇T = ρ for a space varying conductivity. However, the only solvers
that can compete in time with these routines and handle spatially varying
coefficients are the iterative multi-grid solvers.

A.4.1 Explicit time-stepping procedure

In previous sections we have seen how we can solve a non-linear diffusion
equation as well as the Poisson equation, so we have all the elements in
order to study our specific problem. The latter we remember to be:

∂T

∂t
= ∇2T +

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
(A.29)

∇2ψ = −Ra
∂T

∂x
, (A.30)

T (x, 0) = 1; T (x, 1) = 0, (A.31)
∂T

∂x
(0, y) =

∂T

∂x
(1, y) = 0. (A.32)

We first discretize equations (A.30)-(A.32) in space by using second-order
centered differences at the grid point (i, j) for i = 1, ..., N − 1 and j =
1, ..., M−1 (i = 0 or N or j = 0 or M represent the points on the boundary.
In particular the advection term is discretized using Arakawa scheme. The
resulting equations are

∂tTij = G1(Tij , ψij) (A.33)
∇2ψij = −RaG2(Tij) (A.34)

where G1 and G2 represent finite difference approximation for all the terms
except the one with time derivative in (A.34) We use second-order forward
and backward differences for the boundary condition of T .
We use a second-order Adams-Bashforth scheme to iterate in time

Tn+1
ij = Tn

ij +
∆t

2
∇2Tn

ij +
∆t

2
(3J(Tn

ij , ψ
n
ij)− J(Tn−1

ij , ψn−1
ij )). (A.35)
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More precisely, the scheme is implemented in the following way:
I. Initialization of the temperature and stream function at the time step n
and also at n − 1. We suppose that the temperature has a linear vertical
distribution. The stream function is identically zero.
II. Evaluate the intermediate temperature Tn+ 1

2 by solving the implicit
diffusion equation in the horizontal direction for the first half time step

T
n+1/2
ij = Tn

ij +
∆t

2
∇2Tn

ij +
∆t

4
(3J(Tn

ij , ψ
n
ij)− J(Tn−1

ij , ψn−1
ij )) (A.36)

for i = 1, ..., N − 1 and j = 1, ..., M − 1.
III. Implement lateral boundary conditions on T

n+1/2
ij .

IV . Evaluate the temperature Tn+1 solving the implicit diffusion equation
along the vertical direction for the second half time step

Tn+1
ij = T

n+1/2
ij +

∆t

2
∇2T

n+1/2
ij +

∆t

4
(3J(Tn

ij , ψ
n
ij)−J(Tn−1

ij , ψn−1
ij )) (A.37)

for i = 1, ..., N − 1 and j = 1, ..., M − 1.
V . Implement top and bottom boundary conditions on Tn+1

ij .
V I. Solve

∇2ψn+1
ij = −RaG2(Tn+1

ij ). (A.38)

by the generalized cyclic reduction routine from the FISHPACK package.
V II. Implement boundary conditions on ψn+1

ij .
V III. Go to the next time step.





Appendix B

Spectral collocation method

At first sight, the simple geometry of the Hele-Shaw cell did not give us any
reasons to look for complicated methods of discretization. By combining
various truncated Taylor series, it is possible to derive several difference
schemes. The end product is a weighted combination of the values of the
functions at neighboring points. But as we progressed in the thesis, it was
clear that we needed to consider new methods able to describe the dynam-
ics near the boundary layers. An alternative way to derive approximations
for derivatives is by interpolation and differentiation. Given discrete data
on a grid, the fundamental principle of spectral collocation methods is to
interpolate the data globally and then evaluate the derivative of the in-
terpolant on the grid [63; 85; 86]. Figure B.1 shows the convergence of
fourth-order finite difference and periodic spectral method for the deriva-
tive of esin(x) in [−π, π]. We compare the approximations with the exact
derivative, esin(xj)cos(xj), for various value of N . Using finite difference
approximation, the differentiation matrix is penta-diagonal and permits
high values of N . Using spectral method, the matrix is dense, but the
error is smaller. It decreases very rapidly until rounding errors on the
computer prevent any further improvement. This is the so-called spec-
tral accuracy. Generally, if the problem has periodic domain the natural
choice is a trigonometric polynomial on equispaced grid. For non periodic
domains and non periodic functions, one approach is to assume that the
functions were periodic and use trigonometric interpolation in equispaced
points. But generally this method sacrifices the accuracy advantages of
spectral method. It is customary to replace trigonometric polynomials by
algebraic polynomials on irregular grid.
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Figure B.1: Convergence of periodic spectral method and of fourth-order difference

scheme. (Notice the logarithmic scales for both axes).

B.1 Chebyshev points

Different sets of unevenly spaced points are effective for the interpolation
, but they have all a common property. Asymptotically as N → ∞, the
points are distributed with the density:

d ∼ N

π
√

1− x2
. (B.1)

A set of points that satisfy (B.1) is the so-called Chebyshev points,

xj = cos(jπ/N), j = 0, 1, ..., N. (B.2)

Geometrically, we can visualize these points as the projections on [−1, 1]
of equispaced points on the upper half of the unit circle, as in Fig. B.2.
If N = 1, from (B.2) the interpolation points are x0 = 1 and x1 = −1
and the interpolating polynomial through the data f0 and f1, written in
Lagrange form, is

y(x) =
1
2
(1 + x)f0 +

1
2
(1− x)f1. (B.3)

The derivative is
y′(x) =

1
2
f0 − 1

2
f1, (B.4)

that is
f ′ = C1f, (B.5)
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Figure B.2: Chebyshev points are the projection onto the x -axis of equally spaced

points on the unit circle.

where

C1 =




1
2 −1

2

1
2 −1

2


 , (B.6)

is a 2 × 2 Chebyshev differentiation matrix. For N = 2 the interpolation
points are x0 = 1, x1 = 0 and x2 = 2, and the interpolant is the quadratic

y(x) =
1
2
x(1 + x)f0 + (1 + x)(1− x)f1 +

1
2
x(x− 1)f2. (B.7)

The derivative is the linear polynomial

y′(x) = (x +
1
2
)f0 − 2xf1 + (x− 1

2
)f2. (B.8)

The differentiation matrix is, in this case, the 3× 3 matrix

C2 =




3
2 −2 1

2

1
2 0 −1

2

−1
2 2 −3

2




. (B.9)
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Generally, for each N ≥ 1 the entries of the Chebyshev spectral differenti-
ation matrix are [63]

(CN )00 =
2N2 + 1

6
, (CN )NN = −2N2 + 1

6
, (B.10)

(CN )jj = − xj

2(1− x2
j )

, j = 1, ..., N − 1 (B.11)

(CN )ij =
ci

cj

(−1)i+j

(xi − xj)
, i 6= j, i, j = 0, ..., N (B.12)

where

ci =
{

2, i = 0 or N,
1, otherwise.

(B.13)

B.2 Solving the eigenvalue problem

Spectral methods provide the great advantage of spectral accuracy. How-
ever, the implementation of the matrix CN may result very difficult, espe-
cially for imposing boundary conditions. We start modifying and using such
matrix to solve the eigenvalue problem (4.8)-(4.34), for which the descrip-
tion of the method result simpler, to show after in which way the procedure
described in section A.4.1 changes. The equations are partial differential
equations of second order in [0, 1] × [0, 1]. Defining the Chebyshev points
as in figure B.2 we need the new variables x̃ = 2x− 1 and ỹ = 2y− 1, with
x̃, ỹ ∈ [−1, 1]. Equations (4.34)-(4.8) become:

(D2
x̃ + D2

ỹ)g̃ +
1
2
RaDx̃f̃ = 0 (B.14)

(D2
x̃ + D2

ỹ)f̃ −
1
2
Dx̃g̃ = 0 (B.15)

with boundary conditions

g̃ = f̃ = 0 ỹ = −1, 1, x̃ ∈ [−1, 1] (B.16)
Dx̃f̃ = g̃ = 0 x̃ = −1, 1 ỹ ∈ [−1, 1] (B.17)

In the following, tildes are omitted. For such problem, it is useful to set up
a grid based on Chebyshev points independently in each direction, called
a tensor product grid, see figure B.3. The easiest way to solve a problem
on a tensor product spectral grid is to use tensor product, also known as
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Kronecker product. If A and B are two matrices of dimensions p × q and
r× s respectively, the Kronecker product, denoted by A⊗B, is the matrix
of dimension pr × qs with p × q block form, where the i,j block is ai,jB.
For example,

(
1 2
3 4

)
⊗

(
a b
c d

)
=




a b 2a 2b
c d 2c 2d

3a 3b 4a 4b
3c 3d 4c 4d


 (B.18)

To explain how Kronecker products can be used in our case, let us consider
the case N = 3. Suppose we have the initial nodes as shown in figure B.3.
f and g have to be evaluated on the black and red nodes, respectively. We
recall that f and g are the temperature and the stream function perturba-
tions, respectively, for which g vanishes on all boundaries, while f is zero on
the upper and lower boundary and its partial derivative respect to x is zero
on the lateral walls. We suppose to have the data F = (f0, f1, ..., f7)T and
G = (g1, ..., g3)T at the interior grid points. We approximate the Lapla-
cian by differentiating spectrally in the x and y directions independently.
The first and second partial derivatives can be computed by the Kronecker
product of CN and the square of CN respectively, with the identity matrix
I:

Dx = CN ⊗ I,

D2
x = C2

N ⊗ I

D2
y = I ⊗ C2

N . (B.19)

Let us consider equation (B.15). The boundary conditions imply that the
first and last columns of C2

N have no effect, as the first and last rows. The
2 × 2 differentiation matrix with N = 3 in one dimension in given by the
square of the matrix defined by (B.10)-(B.13), to which we remove the first
and last columns and rows:

C̃2
3 =

( −5.3 2.6
2.6 −5.3

)
. (B.20)

If I denotes the 2× 2 identity, then the second derivative with respect to
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Figure B.3: A tensor product grid. Red points are nodes of g. Black points are nodes

of f .

x will be computed by the matrix:

I ⊗ C̃2
3 =




−5.3 2.6
2.6 −5.3

−5.3 2.6
2.6 −5.3


 . (B.21)

The second derivative with respect to y will be computed by:

C̃2
3 ⊗ I =




−5.3 2.6
−5.3 2.6

2.6 −5.3
2.6 −5.3


 . (B.22)

The discrete Laplacian for g is now the Kronecker sum

L
(g)
4×4 = I ⊗ C̃2

3 + C̃2
3 ⊗ I. (B.23)

The construction of the Laplacian for f is slightly different because of the
different boundary conditions. At the nodes 0, 3, 4 and 7 we wish to
impose a condition involving the first derivative with respect to x. For
this purpose we will use the spectral differentiation matrix C3. Starting
from C2

3 , where the first and last rows have been extracted from C3, we
compute the second derivative with respect to x. In order to calculate the
Laplacian of Eq. (B.23), we need to calculate the derivative with respect
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to y, (C̃2
3 ⊗ I). After having imposed the first and last row of C̃2

3 equal to
zero, we calculate the Kronecker product C̃2

3 ⊗ I, which we add to I ⊗ C̃2
3

. For N = 3 solving (B.14)-(B.17) means to solve the eigenvalue problem




L
(f)
8×8 − 1

2
D

(g)
8×4

L
(g)
4×4







f0

f1

f3

f4

f5

f6

f7

g1

g2

g3

g4




= −1

2
Ra




D
(f)
4×8







f0

f1

f3

f4

f5

f6

f7

g1

g2

g3

g4




(B.24)

D
(g)
8×4 has been constructed starting from C3, removing the first and last

columns, substituting the first and last rows with zeros, and computing
the Kronecker product with I = I2×2. D

(f)
4×8 has been constructed starting

from C3, stripping off the first and last rows and computing the Kronecker
product with I = I2×2.
L

(f)
8×8 being a no singular matrix, we can solve the simplest eigenvalue prob-

lem:

L
(f)
8×8F =

1
2
D

(g)
8×4G, (B.25)

L
(g)
4×4G = −1

2
RaD

(f)
4×8F. (B.26)

From the Eq. (B.25),

F =
1
2
(L(f)

8×8)
−1D

(g)
8×4G (B.27)

Substituting in (B.26)

L
(g)
4×4G = −1

2
Ra

(
1
2
D

(f)
4×8(L

(f)
8×8)

−1D
(g)
8×4

)
G (B.28)

Now the eigenvalue problem appears in the generalized form

Ax = λBx (B.29)

(λ = −1/2Ra!) and it can be easily solved by the routine GVCRG from
the IMSL package.
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For the temporal integration of Eqs. (2.23) by using spectral collocation
method, the procedure is practically the same as in section A4.1. We
initialize the temperature and the stream function at the time step n. The
temperature has a linear vertical distribution, while the stream function is
identically zero. From the diffusion equation, by advancing in time with a
simple Euler scheme, we evaluate the temperature at the time step n + 1.
By the Poisson equation the stream function is defined at the same time
step. At the end of each time step, the boundary conditions are imposed
as it has been explained for the eigenvalue problem (B.14)-(B.17).
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[20] P. Bergé and M. Dubois. Rayleigh-Bénard Convection. Contemp.
Phys., 25:535–582, 1984.

[21] H. Bénard. Les tourbillons cellulaires dans une nappe liquide. Rev.
Gen. Sci. Puers Appl., 11:1261–1271, 1900.

[22] Rayleigh, Lord. On convection currents in a horizontal layer of fluid
when the higher temperature is on the under side. Philos. Mag.,
32:529–546, 1916.



BIBLIOGRAPHY 107

[23] S. Chandrasekhar. Hydrodynamic and hydromagnetic instability. The
Clarendon Press, Oxford, 1961.

[24] P. Colinet, J.C. Legros and M.G. Velarde. Nonlinear Dynamics of
surface tension driven instability. Wiley-VCH, 2001.

[25] H.P.G. Darcy. Les fontaines publique de la Ville de Dijon. Victor
Dalmont, Paris, 1856.

[26] B.K. Hartline and C.R.B. Lister. Thermal convection in a Hele-Shaw
cell. J. Fluid Mech., 79:379–389, 1976.

[27] C.W. Horton and F.T. Rogers. Convection currents in a porous
medium. J. Appl. Phys., 16:367–370, 1945.

[28] E.R. Lapwood. Convection of a fluid in a porous medium. Proc. Camb.
Phil Soc., 44:508–521, 1948.

[29] J.P. Caltagirone, M. Cloupeau and M. Combarnous. Convection na-
turelle fluctuante dans une couche poreuse horizontale. Acad. Sci.
Paris, 273:833–836, 1971.

[30] R.N. Horne and M.J. O’Sullivan. Oscillatory convection in porous
medium heated from below. J. Fluid Mech., 66:339–352, 1974.

[31] A.S.M. Cherkaoui and W.S.D. Wilcock. Characteristics of high
Rayleigh number two-dimensional convection in an open-top porous
layer heated from below . J. Fluid Mech., 394:241–260, 1999.

[32] J.N. Koster and U. Müller. Time-dependent free convection in vertical
slots. Phys. Rev. Lett., 47:1599–1602, 1981.

[33] J.N. Koster. Freie konvektion in vertikalen spalten. Dissertation,
Universität Karlsruhe, 1980.

[34] H. Frick and U. Müller. Oscillatory Hele-Shaw convection. J. Fluid
Mech., 126:521–532, 1983.

[35] J.Yang, G. Hu and J. Xiao. Chaos Synchronization in Coupled Chaotic
Oscillators with Multiple Positive Lyapunov Exponents. Phys. Rev.
Lett., 80:2963–2966, 1997.



108 BIBLIOGRAPHY

[36] M. Zhan, G. Hu and J. Yang. Synchronization of chaos in coupled
systems. Phys. Rev. E, 62:496–499, 2000.

[37] N.F. Rulkov, M.M. Sushchik and L.S. Tsimring. Generalized synchro-
nization of chaos in directionally coupled chaotic systems. Phys. Rev.
E., 51:980–994, 1995.

[38] L. Kocarev y U. Parlitz. Generalized synchronization, predictability,
and equivalence of unidirectionally coupled dynamical systems. Phys.
Rev. Lett., 76:1816–1819, 1996.

[39] A.S. Pikovsky, M.G. Rosemblum, G.V. Osipov y J. Kurths. Phase
synchronization of chaotic oscillators by external driving. Physica D,
104:219–238, 1997.

[40] M.G. Rosenblum, A.S. Pikovsky and J.Kurths. Phase Synchronization
of Chaotic Oscillators. Phys. Rev. E., 76:1804–1807, 1996.
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Resumen

Este trabajo presenta una contribución teórica al análisis de los posibles
mecanismos de sincronización entre dos celdas de “Hele-Shaw” uniforme-
mente calentadas desde abajo. La celda de Hele-Shaw tiene una dimension
(la anchura) mucho mas pequeña que las otras dos, lo que permite reducir
el complicado estudio de un flujo tridimensional a dos dimensiones.
En primer lugar se calculan los estados dinámicos de una sola celda uti-
lizando como parámetro de control la diferencia de temperatura entre las
partes superior e inferior del sistema. Mediante el método de diferencias
finitas se logran visualizar los diferentes estados convectivos que se desar-
rollan en el fluido.
Considerando dos celdas de Hele-Shaw idénticas se investigan los posibles
fenómenos de sincronización introduciendo un acoplamiento térmico bidi-
reccional, prestando particular atención al régimen caótico. Se proponen
diferentes esquemas de acoplamiento capaces de llevar a sincronización com-
pleta.
Para minimizar el número de acoplamientos necesarios para sincronizar
las dos celdas, se recalculan los estados dinámicos del sistema mediante
métodos numéricos espectrales. Con este procedimiento resulta más sen-
cillo analizar distribuciones espaciales no homogéneas para los puntos de
sincronismo y se logra disminuir de forma notable el numero de conectores.


