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Introduction

Thermal Convection

The origin of the term convection [1], from the Latin “convectio”, gives an idea
of “carrying with”. It seems to have been applied for the first time to denote the
transport of heat through fluid motion. Thermal convection arises when a thermal
inhomogeneity exists in a fluid. This thermal inhomogeneity is a source of motion
through different possible mechanisms, but stabilizing effects tend to dampen these
motions. Generally, competition between these two opposite effects leads to an in-
stability. The fundamental characteristic of such instabilities is the existence of a
threshold beyond which there is organization of motion into a relatively ordered
pattern.
H. Bénard [2] was the first person to study quantitatively the phenomenon of convec-
tion in which instability is primarily due to temperature dependence of the surface-
tension. In fact, it was at the turn of the last century that Bénard reported on
carefully controlled experiments of convective motions in thin horizontal liquid lay-
ers, where the lower surface was a metallic plate heated by steam and maintained
at a uniform temperature, while the upper surface was in free contact with air. Bé-
nard observed a first phase in which the fluid formed cells of almost regular shapes,
nearly polygons of four to seven sides, which evolved to equal and regularly spaced
hexagons.
There is a different mechanism responsible for convection in which we are more in-
terested in this thesis i.e. the Rayleigh-Bénard convection [1], which has become
an experimental and theoretical paradigm for the study of systems out of the equi-
librium. The Rayleigh-Bénard experiment consists of a thin layer of fluid confined
between two horizontal, spatially-uniform, constant-temperature metal plates such
that the bottom plate is maintained at a constant temperature higher than the up-
per plate. The temperature difference generates a vertical gradient in the layer.
The resulting stratification is formed by one denser layer located above another less
dense. This situation is clearly unstable.
A fluid element located in the less dense region is not subjected to any upwards
force, since its horizontal surroundings are of the same density. But, if we consider a
small ascending displacement of the fluid element, this will be surrounded by denser
regions producing an buoyancy force that will sustain the initial displacement, to
which the thermal diffusivity and the viscous force will oppose. There is a thresh-
old, due to the mechanism mentioned above, after which the dissipative effects can
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2 Introduction

Figure 1: The geometry and physics of Rayleigh-Bénard convection. Hot goes up...cold goes
down T0 > T1.

not stop the fluid motion, and convection begins. As consequence, a “dynamical”
structure takes place: there is an organization of ascending and descending motions,
in rolls turning clockwise or counter-clockwise successively in space.
The stability question is the following: during the time required for the fluid element
to move a distance h, has the thermal diffusivity relaxed the temperature difference
between the fluid element and its new surroundings?
This problem was studied theoretically by Lord Rayleigh [3] at the beginning of the
twentieth century. Starting from the conservation equations he calculated the linear
stability of the conductive state.

∂ρ

∂t
= −∇ · (ρv)

dT

dt
= κ∇2T (1)

ρ
dv

dt
= ν∇2v −∇p + ρg

He ignored the non linear terms and assumed that the physical properties were tem-
perature independent, except for the density. This is the Boussinesq approximation
in fluid mechanics.
This study permitted to define the so-called Rayleigh number, Ra, that is the di-
mensionless parameter which determines the stability of a fluid layer subjected to a
destabilizing vertical thermal gradient

Ra =
gα∆Th3

νκ
(2)

where ν is the fluid kinematic viscosity, κ is the heat diffusivity, ∆T is the temper-
ature difference across the layer of height h, g is the acceleration of gravity and α is
the thermal expansion coefficient. If Ra is higher than a certain value, motion inside
of the layer will begin. Since experiments can only take place in finite containers, a
number of researchers have discussed the influence of the lateral walls on the convec-
tive process in a rectangular box. A linear study of pure gravity-driven instability
in rectangular containers with rigid horizontal and lateral walls was presented by
Davis [4; 5]. He predicted the appearance at the threshold of “finite” rolls (cells with
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Figure 2: Convection in a porous media.

non-zero velocity components dependent on all three spatial variables) with axes
parallel to the shorter side.
The results on the onset of convection in rectangular vessels have been extended
to boxes of axisymmetric shape. Experiments in vessels of circular shape and large
extent have been performed by Koschmieder [6; 7] also by Koster and Müller [8] and
also more recently in smaller square boxes by Ondarcuhu et al. [9] and Ramón et
al. [10].

Hele-Shaw and porous media

The Hele-Shaw cell was invented by British engineer Henry S. Hele Shaw before the
turn of the twentieth century, and consists of two transparent plates separated by
a small gap [11], so that one dimension is much smaller than the other two. It is
very useful because it reduces the complicated three dimensional flow of fluid to a
two dimensional flow. If the gap between the plates is sufficiently small the fluid
flow between the plates held vertically and heated from below, is a good analog of
the porous flow along ridge axes. For this reason, the governing equations for gap-
averaged velocity components are identical with those for two-dimensional flow in a
porous medium (the interested reader can see the detailed derivation in [12; 13]).
As the Rayleigh number increases above a critical value of Rac = 4π2, the heat

transfer process changes from conduction to convection. This first transition has al-
ready received considerable attention by Horton and Rogers (1945) [14] and Lapwood
(1948) [15]. Their studies indicated that steady-state flow patterns evolved from an
initially motionless system and remained unchanged for all subsequent times. It
was noticed later, that under certain conditions the flow became oscillatory. The
appearance of time dependent motion in a fluid layer uniformly heated from below
has been suggested from Caltagirone et al. [16], and then Horne and O’Sullivan
[17] who verified the existence of both stationary and oscillatory motions. There
are more recent numerical works confirming the old results, where porous-media
convection for higher Rayleigh numbers has been treated with particular attention
as an illustration to the route to chaos. Cherkaoui and Wilcock [18] determined
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a sequence of transitions in an open-top square porous layer heated from below:
stationary - periodic - chaotic - periodic - chaotic. The flow pattern starts with a
uni-cellular mode evolves to a bi-cellular and quadri-cellular mode, this last mode
being the more stable convective mode. This dynamical states succession depends
on the way in which the lower boundary is heated [19]. For example, if it is heated
slowly enough, the temperature difference across the boundary layer is such that
the effective Rayleigh number does not reach its critical value until the layer has
extended well across the system, in which case only a uni-cellular mode forms. The
same result occurs if a uni-cellular perturbation is applied to a uniformly stratified
conduction solution. Once this lower order flow regime has become dominant then
higher and more favorable flow patterns are suppressed.

Synchronization

The origin of the term synchronization comes from the Greek and it means “oc-
curring in the common time” [20]. The original meaning of synchronization has
been maintained up to now in the colloquial use of the word, as the capacity of ob-
jects of different nature to acquire a common regime. Synchronization phenomena
are abundant in science, nature, engineering and social life. Systems as diverse as
clocks, singing crickets, cardiac pacemakers, firing neurons and applauding audiences
exhibit a tendency to operate in synchrony. In the year 1665 the Dutch scientist
Christiaan Huygens was the first who observed and clearly described synchroniza-
tion. He wrote in a letter to his father about two pendulum clocks hanging on a
wall. He observed while he was sick and obliged to stay in bed for a couple of days
that their oscillations coincided perfectly and the pendulum moved always in oppo-
site directions. He correctly understood that the conformity of the rhythms of the
clocks had been caused by an imperceptible motion of the beam. In his dissertation
Horologium oscillatorium [21] he explained that the oscillations of the pendulum
communicate some motion to the clocks, this motion impressed to the beam has
the effect of making the pendulum come to a state of exactly contrary swings. In
this way Huygens had given an exact description of mutual synchronization (the
beam is not rigid but can vibrate slightly; the vibration is caused by the motions of
both pendulum as a result the two clocks “feel” the presence of each other) due to a
coupling (the interaction is due to the beam).

Also in the case treated in this thesis, two Hele-Shaw cells are coupled with each
other and the coupling factor induces an adjustment of the rhythms leading to a
mutual synchronization. In this case we have a bidirectional coupling.
A very different situation is the one described by a unidirectional coupling. Here one
system evolves freely and drives the evolution of the other, so the response system is
slaved to follow the dynamics of the driver system which acts as an external forcing.
Furthermore the Huygens’s clocks, moving in opposite directions, are an example
of synchronization in anti-phase. Indeed, the phases of the oscillators help us to
distinguish between two different synchronization regimes, see Fig. 3.
Recently, synchronization of chaos [22; 23] has aroused much interest in view of its



5

Figure 3: Possible synchronous regimes of two nearly identical oscillators. They may be synchro-
nized in-phase, or in anti-phase.

potential applications. In particular, the use of chaotic synchronization in commu-
nication systems has been investigated by several authors [24; 25]. A dynamical
system is called chaotic when its evolution is sensitive to small perturbations in its
initial conditions [26]. This means that two close but different points in the phase
space will have trajectories that eventually separate exponentially. In other words,
the evolution of a chaotic system cannot be predicted over a long time period.

The representation of a chaotic system in the phase space does not correspond
to a simple geometrical object, but rather to a complex structure called strange
attractor.

Let us remember that a periodic oscillation is represented by a closed curve in
the phase space called limit cycle, see Fig. 4b. The origin of this term comes from
the fact that the closed curve attracts all the trajectories from its neighborhood,
which also explains the name simple attractor. The minimal dimension of the phase
space for a limit cycle oscillator is two, but this is not enough for chaotic motion to
take place, since trajectories cannot intersect each other. A chaotic motion needs
at least three dimensions. The Rössler model has exactly three dimensions and its
numerical integration shows that this system lies on a strange attractor, see Fig. 4d.
In the context of coupled chaotic systems many different synchronization states have
been studied. In the present work, we have chosen to use strong coupling in order
to make the states of both oscillators identical. As a result, the signals coincide
and we obtain a regime of complete synchronization. But, we have to pay attention
to how strong is the coupling, for example, if we consider two oscillators that are
mechanically coupled with a rigid link, we can not speak of synchronization because
the coupling imposes too strong limitations on the motion of the two systems. To
determine what can be considered as a weak or a strong coupling is rather difficult,
but we can say that the introduction of coupling should not qualitatively change
the behavior of the interacting systems. The motion of the attractor exhibits the
sensitive dependence on initial conditions. As mentioned before this means that
two trajectories starting very close together will rapidly diverge from each other,
and thereafter have totally different futures. The growth rate is called Lyapunov
exponent. Consider the trajectories x(k) and y(k), starting, respectively, from x(0)
and y(0). If both trajectories are, until time k, always in the same linear region, we
can write

|x(j + 1)− y(j + 1)| = |f ′(x(j))||x(j)− y(j)|, j = 0, 1, ..., k − 1 (3)
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Figure 4: a) and b) Periodic oscillation is represented by a closed curve in the phase space. c)
The Rössler’s attractor. d) For the variables x, y the dynamics of the Rössler model look like
rotations around the center, with irregular amplitude and an irregular return time.

where f ′(x) denotes the derivative of f at x. Thus,

|x(k)− y(k)| = |f ′(x(k − 1))||f ′(x(k − 2))| . . . |f ′(x(0))||x(0)− y(0)| (4)

or equivalently

|x(k)− y(k)| = eλk|x(0)− y(0)| (5)

where

λ =
1

k

k−1∑
j=0

ln|f ′(x(j))|. (6)

The equation (6) defines the Lyapunov exponent of the trajectory x(k).
The interpretation of (5) is that λ gives the average rate of divergence (if λ > 0),
or convergence (if λ < 0) of the two trajectories from each other, during the time
interval [0, k].

The scope of this work

The first objective of the present study is to calculate the evolution of the flow and
heat transport patterns in a Hele-Shaw cell uniformly heated from below, from the
onset of convection to relatively high Rayleigh numbers (Ra ' 30Rac). Having found
the Rayleigh number’s value from which the chaotic regime begins (Ra = 1100), the
main purpose is to achieve the synchronization between two identical Hele-Shaw
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cells laying in the chaotic regime.

A mathematical formulation of the modeling of the flow in a Hele-Shaw cell is
proposed in Chapter 1. The configuration, which we have modeled consists in a box
of porous material heated uniformly from below. It is a bounded two-dimensional
square porous layer of thickness (height) h. The vertical boundaries are considered
adiabatic. The horizontal top and bottom are isothermal, with the bottom warmer
than the top, see Fig. 2. When no motion occurs, a vertical linear temperature
distribution is set in the system.
The Chapters 2 and 3 are dedicated to explain the different numerical procedures
that can be used to calculate the evolution of the temperature and velocity in the
box. In order to integrate the flow during a long period in time, we propose a set of
numerical methods, which permit to compute in an accurate and stable way the time
evolution of the system. In chapter 2 we discuss the discretization of initial-value
problems, considering, more specifically the advection-diffusion equations. One-step
and multistep methods are considered for explicit and implicit schemes, paying spe-
cial attention to the accuracy and stability of discretization. Chapter 3 is devoted to
solve boundary value problems, essentially the Poisson, or more generally, Helmholtz
equations. Also, in this case we offer different methods to find solutions in a rapid
way, underlaying the success of the Fourier transform algorithms (FFT).
In chapter 4, we describe the results of the numerical integrations. We give the
Rayleigh numbers that separate the different dynamical regimes. We describe the
characteristics of the convective patterns after each transition, and analyze their
effects on the heat transport through the analysis of the Nusselt number.
In the last chapter, after a brief discussion over what determines the spatial struc-
tures of the flow, we investigate possible synchronization mechanisms between two
Hele-Shaw cells. Using a weak bidirectional thermal coupling between all the points
of the two systems, we obtain the complete coincidence of the states. We also inves-
tigate the minimal number of points necessary to get synchronization and also the
possibility of coupling both systems only through the lateral walls.





Chapter 1

Mathematical Formulation

1.1 Governing equations

A porous medium is a material consisting of a solid matrix with an interconnected
void [12; 13]. The interconnectedness of the void (the pores) allows the flow of one
or more fluids through the material.
In a natural porous medium the distribution of pores with respect to shape and
size is irregular. On the pore scale (the microscopic scale) the flow quantities will
be irregular, but many of these quantities are measured over areas that cross many
pores, and such space-averaged (macroscopic) quantities change in a regular manner
with respect to space and time.
The usual way of deriving the laws governing the macroscopic variables is to begin
with the standard equations obeyed by the fluid [27; 28] and to obtain the macro-
scopic equations by averaging over volumes or areas containing many pores. In
the textbook “Convection in Porous Media” [13] the authors construct a continuum
model for a porous medium using a spatial approach: a macroscopic variable is de-
fined over a sufficiently large representative elementary volume (r.e.v.). The value
of the variable is evaluated in center of the volume and it is assumed that the result
is independent of the size of the r.e.v.
In our problem, we will consider a bounded two-dimensional square porous layer of
thickness h. The vertical boundaries are adiabatic. The horizontal boundaries are
isothermal. The temperature difference across the porous layer is ∆T = T0 − T1,
the porous layer is heated from below. Let us briefly recall what are the governing
equations for such system:
Conservation of mass.
The expression for the continuity equation for a flow through porous media is given
by:

φ
∂ρf

∂t
+∇ · (ρfv) = 0, (1.1)

where ρf is the fluid density, v is the fluid velocity and φ is the porosity of the
porous medium, defined as the fraction of the total volume of the medium that is
occupied by void space.
Conservation of momentum.

9



10 chapter 1. Mathematical Formulation

The usual Navier-Stokes equation is replaced by the Darcy’s law which is assumed
to describe the flow. The Darcy’s law expresses proportionality between the flow
rate and the applied pressure difference:

∇p = −µ

k
v, (1.2)

where ∇p is the pressure gradient in the flow direction, µ is the dynamic viscosity
of the fluid and k is the permeability of the medium.
An extension of the equation (1.2) for the conservation of the momentum can be
expressed in the following way:

ρf

(
φ−1∂v

∂t
+ φ−2(v · ∇)v

)
= ρfg −∇p− µ

k
v, (1.3)

where g is the acceleration due to gravity [12].
Conservation of energy.

(φ(ρc)f + (1− φ)(ρc)s)
∂T

∂t
+ (ρc)fv · ∇T = λ∇2T, (1.4)

where (ρc)s and (ρc)f are respectively the heat capacity of the solid material and of
the fluid and λ is the thermal conductivity of the fluid-saturated porous medium.
Since φ is small for most relevant systems, the energy equation can be reduced to

σ
∂T

∂t
+ v · ∇T = κ∇2T, (1.5)

where σ = (ρc)s/(ρc)f is typically near unity and κ is the thermal diffusivity of the
fluid-saturated porous medium. In the following we will assume σ = 1.

For thermal convection to occur, the density of the fluid must be a function of
the temperature, hence we need an equation of state to complement the equations
of mass, momentum and energy. The simplest equation of state is:

ρf = ρ0[1− α(T − T0)], (1.6)

where ρ0 is the fluid density at some reference temperature T0 and the positive con-
stant α is the thermal expansion coefficient. Equation (1.6) is obtained from the
first term of the Taylor expansion of the equation of state of ρ = ρ(p, T ) in which
the pressure variations are neglected.
It is usual in convection problems to invoke the Boussinesq’s approximation. This
consists of setting constant all properties of the medium, except the one that in-
volves the buoyancy term, hence α is retained in the momentum equation. As a
consequence the equation of continuity reduces to ∇ · v = 0. The Boussinesq’s
approximation is valid as long as that density changes remain small in comparison
with ρ0, and provided that the temperature variations are insufficient to vary the
properties of the medium from their mean values.
Also the momentum equation may be simplified further by comparing the relative
magnitude of the separate terms. Using this argument the equation (1.3) reduces to

v =
k

µ
(−∇p + ρfg). (1.7)
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1.1.1 Stream function equation reformulation

As an alternative way of solving the governing equations in primitive variables, it
is also possible to avoid the explicit appearance of the pressure by using the stream
function formulation.
In two dimensions the governing equations are:

∂u

∂x
+

∂v

∂y
= 0, (1.8)

∂p

∂x
+

µ

k
u = 0, (1.9)

ρ0[1− α(T − T0)]g +
∂p

∂y
+

µ

k
v = 0, (1.10)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= κ

(
∂2T

∂x2
+

∂2T

∂y2

)
. (1.11)

In order to remove the pressure variable, we derive equation (1.10) with respect to
x and subtract the derivative of equation (1.9) with respect to y. The resulting
equation is:

−αρ0g
∂T

∂x
+

µ

k

(
∂v

∂x
− ∂u

∂y

)
= 0. (1.12)

In two dimensions the stream function is defined by:

u =
∂ψ

∂y
; v = −∂ψ

∂x
. (1.13)

Using the stream-function formulation the equations become:

∇2ψ = −αgkρ0

µ

∂T

∂x
,

∂T

∂t
+

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= κ

(
∂2T

∂x2
+

∂2T

∂y2

)
. (1.14)

The equations may now be expressed in dimensionless form, by introducing the
new dimensionless variables:

t̃ =
h2

κ
t

x̃ =
x

h

ũ =
h

κ
u

ψ̃ =
ψ

κ

T̃ =
T

T1 − T0

=
T

∆T
(1.15)
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after which the equations become:

∂T̃

∂t̃
= ∇2T̃ +

∂ψ̃

∂ỹ

∂T̃

∂x̃
− ∂ψ̃

∂x̃

∂T̃

∂ỹ
,

∇2ψ̃ = −Ra
∂T̃

∂x̃
, (1.16)

where Ra is the Rayleigh number and is defined by:

Ra =
αgkρ0h∆T

µκ
, (1.17)

this number is a dimensionless parameter that measures the applied temperature
difference. For an infinitely horizontally extended porous medium, the linear the-
ory gives a Rayleigh number equals at the onset of convection to 4π2 (Lapwood [15]).

In this thesis, we have considered isothermal conditions at the lower and at the
upper boundaries:

T̃ (x̃, 0) = T0 = 1 T̃ (x̃, 1) = T1 = 0, (1.18)

and adiabatic conditions at the lateral walls:

∂T̃

∂x̃
(0, ỹ) =

∂T̃

∂x̃
(1, ỹ) = 0. (1.19)

The stream-function vanishes at all boundaries as a result of the impermeability of
the walls. In the following, in order to make the notation lighter, tildes are omitted
but all variables are dimensionless.

1.1.2 The Nusselt number

An important consequence of convective motions is the increase of the heat flux q
through the layer. Below the onset of convection ∆T < ∆Tc, and q is only due to
conduction, q = qcond. In contrast, when the fluid motion is present, the fluid velocity
entails a supplementary heat flux qconv, and then the total heat flux q = qcond + qconv

is higher than it would be in a purely conductive state.
This is expressed by the Nusselt number:

Nu =
qcond + qconv

qcond

. (1.20)

Hence Nu = 1 provided that Ra < Rac. For Ra > Rac the Nusselt number increases
reflecting the increasing part of the convection in the heat transport.
For a layer internally heated from below:

Nu = −
∫ 1

0

∂T

∂y
|y=0dx. (1.21)

It can be easily checked, by substitution of the linear temperature profile in (1.21),
that the reference value is given by Nu = 1 (for conduction).



Chapter 2

Solutions of Diffusive Initial Value
Problems

Rayleigh-Bénard convection is so important that many numerical methods have
been developed and tried over the years although [29; 30], somewhat unfortunately,
most of these methods have not been compared with each other to determine which
best achieves a practical balance of efficiency, accuracy, ease of programming, and
parallel scalability on some specific computer architecture. Because our interest is
to study fundamental questions in simple cell geometries, we chose not to use finite
element [31; 32] or spectral methods [33; 34; 35] whose main strengths are the ability
to handle irregular boundaries. In the present thesis, we have chosen second order
accurate finite difference approximations.

2.1 Grid based methods and simple finite differ-

ences

The basic idea of a finite difference procedure [36; 37; 38] is to replace the continuous
problem domain with a finite-difference mesh containing a finite number of grid
points. In order to represent a function f on a two-dimensional domain spanned
by Cartesian coordinates (x, y), we use f(j∆x, i∆y). The grid points are located
according to values of i and j, so difference equations are usually written in terms
of the general point (j, i) and its neighbors.
The standard approach for approximating the differentials comes from truncated
Taylors series [39; 40]. Consider a function f(x, t) at a fixed time t. If f is sufficiently
continuous in space we can expand it around any point f(x + ∆x) as

f(x + ∆x) = f(x) + ∆x
∂f

∂x
(x) +

(∆x)2

2

∂2f

∂x2
(x) + ...

+
(∆x)n−1

(n− 1)!

∂n−1f

∂xn−1
(x) +

(∆x)n

n!

∂nf

∂xn
(ξ) x ≤ ξ ≤ x + ∆x (2.1)

13



14 chapter 2. Solutions of Diffusive Initial Value Problems

where the last term can be identified as the remainder. If we ignore in this series
terms of order ∆x2 and higher, we could approximate the first derivative at any
point x0 as

∂f

∂x
(x0) ≈ f(x0 + ∆x)− f(x0)

∆x
+ O(∆x) (2.2)

where the last term is called the truncation error and it is the difference between
the actual partial derivative and its finite-difference representation.
If we consider that our function is now stored in a discrete array of points fj and
x = j∆x where ∆x is the grid spacing, then at time step n we can write

∂f

∂x
(x0) ≈

fn
j+1 − fn

j

∆x
+ O(∆x) (2.3)

where (fn
j+1 − fn

j )/∆x is the finite difference representation for (∂f/∂x)j.
An identical procedure but expanding in time gives

∂f

∂t
(t0) ≈

fn+1
j − fn

j

∆t
+ O(∆t) (2.4)

Both of these approximations are however first order accurate as the leading term
in the truncation error is of order ∆x or ∆t.

Figure 2.1: Forward space step.

2.1.1 Higher order finite difference schemes

In equation (2.1), we have considered the value of our function at one point forward
in ∆x. We could just have easily taken a step backward to get

f(x−∆x) = f(x)−∆x
∂f

∂x
(x0) +

(∆x)2

2

∂2f

∂x2
(x0) + O(∆x3) (2.5)

If we truncate at order ∆x2 and above we still get a first order approximation

∂f

∂x
(x0) ≈

fn
j − fn

j−1

∆x
+ O(∆x) (2.6)

which is not any better than the forward step as it has the same order error (but of
opposite sign). An improved scheme is obtained by combining equation (2.1) and
(2.5) to remove the equal but opposite second order terms. If one subtracts (2.5)
from (2.1) one gets the centered space approximation

∂f

∂x
(x0) ≈

fn
j+1 − fn

j−1

2∆x
+ O(∆x2) (2.7)



Section 2.1. Grid based methods and simple finite differences 15

Figure 2.2: Backward and centered space step.

Note that we have still two grid points to approximate the derivative but we have
gained an order of magnitude in the truncation error. By including more and more
neighboring points, even higher order schemes can be obtained.
After considering the first derivative, we have also to consider an approximation for
the second derivative. This time by adding (2.1) and (2.5) and rearranging we get

∂2f

∂x2
(x0) ≈

fn
j+1 − 2fn

j + fn
j−1

(∆x)2
+ O(∆x2) (2.8)

This approximation only requires a point and its two neighbors.

2.1.2 Multi-dimensions

What we have done in one dimension in the first section, we generalize it to multi-
dimension. Consider, for example, a function f(x, y, t) at fixed time t and fixed point
y. If f is continuous in space we can expand it again around any point f(x+∆x, y)
or f(x, y + ∆y). So if we ignore terms of order ∆x2 and ∆y2, and higher, and store
the function in a discrete matrix of points fi,j where x = j∆x and y = i∆y are the
grid spacings, at time steps n, we can write

∂f

∂x
(x0, y0) ≈

fn
i,j+1 − fn

i,j−1

2∆x
+ O(∆x2) (2.9)

or
∂f

∂y
(x0, y0) ≈

fn
i+1,j − fn

i−1,j

2∆y
+ O(∆y2) (2.10)

at any point (x0, y0). In the same way, we can obtain an approximation for the
second derivatives

∂2f

∂x2
(x0, y0) ≈

fn
i,j+1 − 2fn

i,j + fn
i,j−1

(∆x)2
+ O(∆x2) (2.11)

or for example

∂2f

∂x∂y
(x0, y0) ≈

fn
i+1,j+1 − fn

i−1,j+1 − fn
i+1,j−1 + fn

i−1,j−1

4∆x∆y
+ O(∆x2) + O(∆y2) (2.12)
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Figure 2.3: The second derivatives at the point A are evaluated using the points to which A is
shown connected. The second derivatives at the point B are evaluated using the connected points
and also using ”right-hand-side” boundary information, as shown schematically.

2.2 Numerical solutions of the diffusion equation

Let us consider the two-dimensional diffusion equation:

∂T

∂t
= ∇2T. (2.13)

We will begin considering how to solve the diffusion equation numerically by deriving
some finite difference approximations to the Laplacian term [29; 38; 41; 42]. Given
a 2-D square grid, we will use i and j to number the grid lines in the y and the x
directions, respectively, with i, j = 0, ..., N and ∆y = ∆x = ∆.
Accordingly with last section, we represent the Laplacian as

∇2T =
Ti+1,j − 2Ti,j + Ti−1,j

∆2
+

Ti,j+1 − 2Ti,j + Ti,j−1

∆2
(2.14)

which is a second-order accurate approximation.
For convenience and future notation, it is useful to write (2.14) as

∇2T =
1

∆x2




1
1 −2 1

1


 Ti,j +

1

∆y2




1
1 −2 1

1


 Ti,j (2.15)

which is an operator that acts on a point T (i, j) and its two nearest neighbors and it
is represented by a tridiagonal matrix that is primarily zero except for the diagonal
(which has value −2) and the super- and sub-diagonal (of value 1).
Given a discretization of the thermal diffusion term we still need to add the time
derivative for the left-hand-side. Using a forward time step the approximation of
the diffusion equation can be written

T n+1
i,j − T n

i,j

∆t
=

T n
i+1,j − 2T n

i,j + T n
i−1,j

∆2
+

T n
i,j+1 − 2T n

i,j + T n
i,j−1

∆2
(2.16)
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or, in matrix form

T n+1
i,j − T n

i,j

∆t
=

1

∆2




1
1 −4 1

1


 T n

i,j

T n+1
i,j = T n

i,j + α




1
1 −4 1

1


 T n

i,j

T n+1
i,j =




α
α 1− 4α α

α


 T n

i,j (2.17)

where

α =
∆t

∆2
(2.18)

physically corresponds to the number of grid points that heat reaches in a time step
(or it is the inverse of the number of time step required for heat to diffuse a grid
space) [43; 44].

2.2.1 Stability analysis

From the material presented thus far, it is evident that a variety of numerical schemes
can be written, but they are not all equally acceptable. The difference representation
given by (2.16) is referred to as the simple explicit scheme for the heat diffusion
equation (Euler scheme). An explicit scheme is one for which only one unknown
appears in the difference equation in a manner that permits evaluation in terms of
known quantities.
The first requirement that any scheme should meet is that of stability. A stable
scheme is defined as one for which errors from any source are not permitted to grow
in the sequence of numerical procedures as the calculation proceeds from one step
to the next.
The Von Neumann stability analysis is perhaps the most widely used for establishing
the stability characteristics of a finite-difference scheme. Instead of considering the
behavior of the truncated terms we will now consider the behavior of small sinusoidal
errors. If S is the exact solution of the difference scheme, we suppose to have
obtained S + δ, where δ is the results of errors arising from any sources. If we
substitute in the equation (2.16), S will cancel out because it satisfies the difference
equation, we have

δn+1
i,j − δn

i,j

∆t
=

δi+1,j − 2δi,j + δi−1,j

∆2
+

δi,j+1 − 2δi,j + δi,j−1

∆2
. (2.19)

If the difference equation is linear, the errors will satisfy an equation of the same
form as the original difference equation.
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At each time step in the computation a group of errors is introduced. If E(x, y) are
the errors at t = 0, we can consider a harmonic decomposition of them

E(x, y) =
∑
m

Ameiβmxeiγmy (2.20)

where β and γ are respectively, the wave number in the x and y direction. Because
the solution have to be stable for every βm and γm, it is only necessary to consider a
single error term eiβxeiγy, where β and γ belong to βm and γm. So, we find a solution
such that it reduces to eiβxeiγy when t = 0. There is only one such solution

δ(x, y, t) = eateiβxeiγy (2.21)

where a may be real or complex. Substituting the equation (2.40) in (2.33) gives

ea(t+∆t)eiβxeiγy − eateiβxeiγy

∆t
=

eateiβ(x+∆x)eiγy − 2eateiβxeiγy + eateiβ(x−∆x)eiγy

(∆x)2

+
eateiβxeiγ(y+∆y) − 2eateiβxeiγy + eateiβxeiγ(y−∆y)

(∆y)2

Solving for the error at t + ∆t gives

δ(x, y, t + ∆t) = ea(t+∆t)eiβxeiγy

= eateiβxeiγy + αx(e
ateiβ(x+∆x)eiγy − 2eateiβxeiγy + eateiβ(x−∆x)eiγy)

+ αy(e
ateiβxeiγ(y+∆y) − 2eateiβxeiγy + eateiβxeiγ(y−∆y))

The ratio of the error at t + ∆t to that at t, δ(x, y, t + ∆t)/δ(x, y, t), is know as the
amplification factor G. The errors will not grow if |G| < 1, this is known as the Von
Neumann condition. So, by dividing equation (2.42) by δ(x, y, t)

δ(x, y, t + ∆t)

δ(x, y, t)
= ea∆t = 1 + αx(e

iβ∆x − 2 + e−iβ∆x) + αy(e
iγ∆y − 2 + e−iγ∆y) (2.22)

Making use of the identity eiz = cos(z) + isin(z) the equation (2.42) can be written
in the following way

ea∆t = 1 + 2αx[cos(β∆x)− 1] + 2αy[cos(γ∆y)− 1] (2.23)

Requiring that |G| = |ea∆t| be less than or equal to 1 gives

|1 + 2αx[cos(β∆x)− 1] + 2αy[cos(γ∆y)− 1]| ≤ 1 (2.24)

that using the half-angle identity became

|1− 4αxsin
2β∆x

2
− 4αysin

2γ∆y

2
| ≤ 1. (2.25)

If

1− 4αxsin
2β∆x

2
− 4αysin

2γ∆y

2
≥ 0 (2.26)
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that is

−4αxsin
2β∆x

2
− 4αysin

2γ∆y

2
≤ 0 (2.27)

the inequality is always satisfied because α > 0. Whereas if

1− 4αxsin
2β∆x

2
− 4αysin

2γ∆y

2
< 0 (2.28)

that is

αxsin
2β∆x

2
+ αysin

2γ∆y

2
≤ 1

2
(2.29)

the inequality is satisfied if

αx + αy ≤ 1

2
. (2.30)

If ∆x = ∆y the condition (2.30) becomes

2α ≤ 1

2
. (2.31)

This provides the stability requirement for this method. This means that a decrease
in grid spacing, for example, by a factor of 2 in both direction requires a factor of
16 more computer time. In fact, this choice for ∆x implies that the grid’s point
numbers is increased by a factor 4 and from the condition (2.31) it follows that the
new ∆t is four times smaller than the original time step. Unfortunately, because the
simplest centered schemes are only second order in space (and first order in time), we
gain only a factor of 4 in reducing the truncation error. Fortunately, this is not the
only scheme available. We will develop implicit schemes which are unconditionally
stable and we will can take as large a step as we want.

2.3 Implicit scheme and stability:

Crank-Nicholson scheme

At the end of the last section we have shown that if we use an explicit scheme we
have to choose time steps that satisfy the restriction (2.31). But, sometimes time
steps comparable to, or smaller than, (∆x)2/4 may be physically unreasonable. For
this reason we will use a implicit scheme which is unconditionally stable.
In an explicit scheme we have only one unknown, since the parabolic heat equation
governs a marching problem for which an initial distribution of T must be specified.
The temperature field T at time level n can be considered to be known. If the
second derivative term in the heat equation were approximated by the temperature
field taken at the n + 1 time level, three unknowns would appear in the difference
equation. In this case the procedure is called implicit, indicating that the algebraic
formulation would require the simultaneous solution of several equations involving
the unknowns.
The simplest implicit scheme for the heat diffusion equation can be developed from
the Taylor series by simply evaluating the heat diffusion term at the n+1 time level
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(all we have to do is to rewrite equation (2.16) replacing the diffusion rate at time
step n with that at time step n + 1):

T n+1
i,j − T n

i,j

∆t
=

T n+1
i+1,j − 2T n+1

i,j + T n+1
i−1,j

∆2
+

T n+1
i,j+1 − 2T n+1

i,j + T n+1
i,j−1

∆2
(2.32)

or, in matrix form

T n+1
i,j = T n

i,j + α




1
1 −4 1

1


 T n+1

i,j . (2.33)

This is an implicit method because we do not know in advance what the right-
hand-side will evaluate to, however, we can again rearrange (2.33) to solve T n+1

i,j

as

T n
i,j =




−α
−α 1 + 4α −α

−α


 T n+1

i,j (2.34)

This scheme is first order accurate in time and second order accurate in space.
The Von Neumann method can easily be applied to this scheme to determine its
stability characteristics. Proceeding in the same way that for the explicit scheme,
we obtain that the error satisfy an equation of the same form as equation (2.32).
Substituting δ(x, y, t) = eateiβxeiγy into that equation and requiring that |G| ≤ 1
gives

|G| =
(

1 + 4αsin2β∆x

2
+ 4αsin2γ∆y

2

)−1

≤ 1 (2.35)

which is satisfied for any α ≥ 0. So, the difference equation is effectively, uncondi-
tionally stable.
We can obtain a second order scheme in both space and time, simply averaging the
explicit and implicit schemes:

T n+1
i,j − T n

i,j

∆t
=

1

2

(
(T n+1

i+1,j − 2T n+1
i,j + T n+1

i−1,j) + (T n
i+1,j − 2T n

i,j + T n
i−1,j)

∆2

)

+
1

2

(
(T n+1

i,j+1 − 2T n+1
i,j + T n+1

i,j−1) + (T n
i,j+1 − 2T n

i,j + T n
i,j−1)

∆2

)
(2.36)

Here both the left- and the right-hand sides are centered at time step n+1/2, so the
method is second-order accurate in time, as we said. This scheme is called Crank-
Nicholson scheme and it is also unconditionally stable.
Inspection of (2.36), shows that Crank-Nicholson in one dimension is a system of
linear equations of the form

Ax = b (2.37)

where A is a tridiagonal matrix that is primarily zero except for the diagonal (which
has value (1 + 4α)) and one super and sub diagonal (of value −α). For (2.37) the
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vector x corresponds to the matrix of the temperature values at the time step n+1,
Tn+1, and the vector b is the known temperature at time n. So, we want solve

ATn+1 = Tn (2.38)

A is a symmetric and positive definite matrix, so it can be inverted. Tridiagonal
matrix can be inverted in order N operations where N is the total number of grid
points. The IMSL library provides efficient implementations of tridiagonal solvers
and shows that tridiagonal algorithm makes the implicit methods very competitive
for the heat diffusion equation in terms of computational effort.
Unfortunately in two dimensions this scheme is no longer tridiagonal. In fact the
extension of the Crank-Nicholson scheme (to two dimensions) leads to a system of
linear equations that contains five unknowns for two dimensions. It looks like




−1
−1 2(2 + α) −1

−1


 T n+1 =




1
1 2(2− α) 1

1


 T n (2.39)

equation (2.39) is a “band” tridiagonal system of simultaneous linear equations and
the inversion of the matrix in this case is significant more expensive computationally.
However the scheme remains unconditionally stable. One possibility to solve them
is use a sparse matrix technique, or another approach, which combines second order
accuracy in space and time with the ease of tridiagonal solvers, is the Alternating-
Direction Implicit scheme.

2.3.1 Alternating-Direction Implicit scheme

One possibility is to use the ADI scheme, the idea is split one process into its dif-
ferent directional components. For example, we could rewrite our multidimensional
diffusion equation as

∂T

∂t
= LxT + LyT (2.40)

where Lx is the operator controlling diffusion in the horizontal direction and Ly

controls diffusion in the vertical direction. Given this splitting, ADI schemes then
solve (2.40) by taking two-passes, first solving an implicit diffusion equation in the
horizontal for the first half time step and then an implicit diffusion equation in the
vertical for the second half time step.
In more detail, the ADI algorithm for (2.13) looks like

T
n+ 1

2
i,j − T n

i,j

∆t/2
=

1

∆x2

(
T

n+ 1
2

i+1,j − 2T
n+ 1

2
i,j + T

n+ 1
2

i−1,j

)

+
1

∆y2

(
T n

i,j+1 − 2T n
i,j + T n

i,j−1

)
(2.41)

T n+1
i,j − T

n+ 1
2

i,j

∆t/2
=

1

∆x2

(
T

n+ 1
2

i+1,j − 2T
n+ 1

2
i,j + T

n+ 1
2

i−1,j

)

+
1

∆y2

(
T n+1

i,j+1 − 2T n+1
i,j + T n+1

i,j−1

)
(2.42)
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Only one tridiagonal system of equations must be solved for each half step. The
equation (2.42) is an implicit, tridiagonal equation for the horizontal rows at time
n+1/2 which are then used in the equation (2.42) to update the vertical columns at
time n+1. The tridiagonal nature of these two schemes can be made more apparent
if we collect terms of the same time step together. For a uniform grid we can rewrite
the equations (2.42) as

[−1 α + 2 − 1]T n+ 1
2 =




1
α− 2

1


 T n




−1
α + 2
−1


 T n+1 = [1 α− 2 1]T n+ 1

2 (2.43)

where a horizontal stencil implies horizontal neighbors and vertical stencil implies
vertical neighbor.
The advantage of this method is that each time step requires only the solution of
two simple tridiagonal systems.

2.4 The non-linear term

Our diffusion equation is not linear, it has the following form

∂T

∂t
= ∇2T + J, (2.44)

where J is the Jacobian non linear term and in two dimensions it is written

J =
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
(2.45)

this term is also known as the advection term. By studying the way to construct
a computer model of the general circulation of the atmosphere, Arakawa [45] has
explained that a simple finite difference approximation using central differences, for
example

∂ψ

∂y

∂T

∂x
=

(ψi+1,j − ψi−1,j) (Ti,j+1 − Ti,j−1)

4∆2
(2.46)

causes numerical instability. At first he thought his problems were “truncation er-
ror”. A computer cannot produce numbers with infinite precision. When thousands
of calculation are repeated and the numbers are truncated each time, we add up
tiny discrepancies over and over. As result we have a big discrepancy. Eventually
the solutions became unrealistic and “explode”. But after that Arakawa recognized
that the instability was like the problem of a platoon of soldiers ordered to march
across a bridge. If they march across in step, it may happen that somewhere there is
a combination that resonates at just the frequency of their marching. Each time the
feet come down, they hit that combination at the same phase of its swing, pushing
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it a little further. Soldiers know that bridges can resonate and they will break step
before crossing.
Something like this happened with Arakawa’s simulations. Suppose the computer
goes through a complete step and takes its next step after a simulation interval of,
for example, one hour. Among the simulated waves there would be some with a
frequency of just one hour. Every time the calculation was repeated, the computer
would catch those waves at the same phase (aliasing occurs when the sampling fre-
quency is too low with respect to the frequency content in the original time series.
A new, but false frequency is obtained by the sampling procedure). Arakawa sought
a way to make the small pushes cancel one another out, as the impact of the feet
of the soldiers would cancel one another if they broke step. The key, he found, was
to write equations in such a way that certain quantities would remain unchanged.
For example, the kinetic energy. In the real world, the law of conservation of energy
demands that there is never any change in the total energy, whereas kinetic energy
alone is not normally conserved. But by using equations that did conserve kinetic
energy, Arakawa could make sure that no unrealistic spike of wind speed grew ex-
ponentially from his calculations.
To avoid aliasing errors Arakawa developed nine- and thirteen-point representations
of the Jacobian J which conserve the kinetic energy and which have a truncation
error of the square and fourth power, respectively, of the spatial difference x. These
numerical schemes are known as the second and fourth-order Arakawa schemes.
We choose second order Arakawa scheme. There are different possibilities to write
the expression for the Jacobian [46; 47]:

J(ψ, T ) =
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

=
∂

∂x

(
ψ

∂T

∂y

)
− ∂

∂y

(
ψ

∂T

∂x

)

=
∂

∂y

(
T

∂ψ

∂x

)
− ∂

∂x

(
T

∂ψ

∂y

)

=
1

2r

{(
∂ψ

∂y
− r

∂ψ

∂x

)(
∂T

∂y
+ r

∂T

∂x

)
−

(
∂T

∂y
− r

∂T

∂x

)(
∂ψ

∂y
+ r

∂ψ

∂x

)}

The last expression follows from

η = x− y

r

ξ = x +
y

r

from which

∂

∂η
=

1

2

(
∂

∂x
− r

∂

∂y

)
,

∂

∂ξ
=

1

2

(
∂

∂x
+ r

∂

∂y

)
, (2.47)
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and

J(ψ, T ) =
2

r

{
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

}
(2.48)

The resulting schemes will depend on the choice of the mathematical expression for
the Jacobian. From the first expression we have

J++ =
1

4∆x∆y

{
(ψi,j+1−ψi,j−1)(Ti+1,j − Ti−1,j)− (ψi+1,j −ψi−1,j)(Ti,j+1− Ti,j−1)

}
,

from the second expression we get:

J+× =
1

4∆x∆y

{
ψi,j+1(Ti+1,j+1 − Ti−1,j+1)− ψi,j−1(Ti+1,j−1 − Ti−1,j−1)

− ψi+1,j(Ti+1,j+1 − Ti+1,j−1) + ψi−1,j(Ti−1,j+1 − Ti−1,j−1)

}
, (2.49)

the third one leads to:

J×+ =
1

4∆x∆y

{
Ti+1,j(ψi+1,j+1 − ψi+1,j−1)− Ti−1,j(ψi−1,j+1 − ψi−1,j−1)

− Ti,j+1(ψi+1,j+1 − ψi−1,j+1) + Ti,j−1(ψi+1,j−1 − ψi−1,j−1)

}
, (2.50)

finally, from the last one with r = ∆y/∆x:

J×× =
1

8∆x∆y

{
(ψi−1,j+1 − ψi+1,j−1)(Ti+1,j+1 − Ti−1,j−1)

− (ψi+1,j+1 − ψi−1,j−1)(Ti−1,j+1 − Ti+1,j−1)

}
. (2.51)

A viable form to represent the Jacobian is

J = aJ++ + bJ×+ + cJ+× + dJ××, a + b + c + d = 1 (2.52)

In the discretized expression for the Jacobian J the two super-indices indicate the
points where ψ and T are evaluated respectively. For example, J+× means that ψ
is evaluated in the adjacent horizontal and vertical points and T is evaluated with
the neighboring points on the diagonals. In the present thesis, we have chosen to
use d = 0 and a = b = c = 1/3 for the discretization of the Jacobian [17].

2.5 Multistep methods

The method proposed in section 2.3.1 is known as single-step because it uses infor-
mation from only the last step computed. The value T n+1

ij depends only on T n
ij. It

exists a class of methods that use past values for the approximation of the solution.
They are known as multistep methods.
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For ordinary differential equations the principle of multistep methods can be used
for the solution of the initial value problem

dy

dx
= f(x, y), y(x0) = y0, (2.53)

can be expressed in integral form as

yk+1 = yk +

∫ xk+1

xk

f(x, y(x))dx, (2.54)

where yk,yk−1,...,yk−N are approximations of the solution at xk,xk−1,...,xk−N , for
some integer N . The integral on the right can be approximated by a numerical
quadrature formula and the result will be a formula for generating the approximate
solution step by step. There is a unique polynomial p(x) of degree N such that
p(xi) = fi = f(xi, yi), for i = k, ..., k −N . So the explicit multistep method is:

yk+1 = yk +

∫ xk+1

xk

p(x)dx. (2.55)

If N = 0, we have just the Euler’s method. If N = 1, p is a linear function connecting
(xk, fk) and (xk−1, fk−1):

p1(t) = fk +
1

h
(x− xk)(fk − fk−1). (2.56)

Substituting (2.56) into (2.55), we have:

yk+1 = yk + hfk +
h

2
(fk − fk−1) = yk +

h

2
(3fk − fk−1), (2.57)

a two step method (see how it is modified with respect the Euler method).
If N = 2, the polynomial interpolating (xk, fk),(xk−1, fk−1),(xk−2, fk−2), is of tree
form:

p2(x) = p1(x) +
(x− xk)(x− xk−1)

2h2
(fk − 2fk−1 + fk−2). (2.58)

Evaluating the integral we find:

yk+1 = yk + hfk +
h

2
(fk − fk−1) +

56

6
(fk − 2fk−1 + fk−2), (2.59)

a 3 step method modified from 2 step method (2.57). Completing the integration,
we get:

yk+1 = yk +
h

12
(23fk − 16fk−1 + 5fk−2). (2.60)

Similarly, for N = 3, one has the 4 step method:

yk+1 = yk +
h

24
(55fk − 59fk−1 + 37fk−2 − 9fk−3). (2.61)

The above explicit multistep methods are called Adams-Bashforth methods of order
N + 1.
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2.5.1 ADI scheme revisited

By adding the non-linear term and using a second-order Adams-Bashforth method
in the diffusion equation, the ADI scheme is modified as follow:

[−1 α + 2 − 1]T n+ 1
2 =




1
α− 2

1


 T n − ∆t

2
ρ (2.62)




−1
α + 2
−1


 T n+1 = [1 α− 2 1]T n+ 1

2 − ∆t
2

ρ (2.63)

where

ρ =
1

2

(
3J(ψn, T n)− J(ψn−1, T n−1)

)
(2.64)

In the ADI scheme we have to solve two tridiagonal systems, one for each spatial
directions at every time step. We have spoken yet about the implementation of
boundary conditions. The equations (2.62) and (2.63) can be used to calculate the
solution at the internal points, while the temperatures at the boundaries are supplied
by the given boundary conditions.
In the first half step we have to solve the a implicit system in the x direction. In
this case, the boundary condition that we have to consider are the condition at the
lateral walls. We imposed a Neumann boundary condition that fixes the heat flux
(= 0) at the boundary

∂T

∂x
(0, y) =

∂T

∂x
(1, y) = 0. (2.65)

Hence we can obtain the temperature at the boundary by approximating the deriva-
tive in (2.65) by a finite difference. In sections 3.1 and 3.2, we have written a first
approximation for the first derivative using only two points

∂Ti,0

∂x
=

Ti,1 − Ti,0

∆
;

∂Ti,N

∂x
=

Ti,N − Ti,N−1

∆
. (2.66)

From (2.65) and (2.66) we deduce that

Ti,0 = Ti,1 Ti,N = Ti,N−1. (2.67)

A derivative using three points formula will increase the precision

∂Ti,0

∂x
=

−3Ti,0 + 4Ti,1 − Ti,2

2∆
∂Ti,N

∂x
=

Ti,N−2 − 4Ti,N−1 + 3Ti,N

2∆

from which

Ti,0 =
4Ti,1 − Ti,2

3
Ti,N =

4Ti,N−1 − Ti,N−2

3
. (2.68)

For the second half step in the vertical direction we consider the upper and lower
boundaries, where Dirichlet boundary condition are imposed:

T0,j = 1 at the bottom (2.69)
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and
TN,j = 0 at the top of the layer (2.70)





Chapter 3

Boundary Value Problem

In the previous section we have been concerned with time dependent initial value
problems where we start with some assumed initial condition (plus appropriate
boundary conditions), then we calculate how this solution will change in time. We
have considered both implicit and explicit numerical schemes, but the basic point is
that given a starting field it is relatively simple to get the next step. The principal
difficulties with time dependent scheme are stability and accuracy.
In a boundary value problem we are trying to satisfy a steady state solution in space
that agrees with our prescribed boundary conditions. In general, boundary value
problems will reduce, when discretized, to a large and sparse set of linear equations.
While stability is no more a problem, efficiency in solving these equations is impor-
tant.
In the following sections we will describe several approaches for discretizing and
solving elliptic (2nd order) boundary value problems. We will consider the simplest
elliptic problem which is a Poisson problem of the form:

∇2u = f(x, y) (3.1)

We have already discussed finite difference approximations in the previous sections
on 2-D initial value problems. For boundary value problems, nothing has changed
except that we do not have any time derivatives to deal with any more. For example,
the standard 5-point discretization of the equation (3.1) on a regular 2-D cartesian
mesh with uniform grid (∆x = ∆y = ∆) is:

1

∆2
(ui+1,j − 2ui,j + ui−1,j) +

1

∆2
(ui,j+1 − 2ui,j + ui,j−1) = fi,j (3.2)

Finally, a note about boundary conditions. For determining T it is necessary
to specify the boundary conditions. In general boundary conditions add auxiliary
information that modify the matrix or the right hand-side or both. However, there
are many ways to implement the boundary conditions and these depend somewhat
on the method of solution. In general, for Dirichlet boundary conditions, because
matrix methods can be so expensive, the fewer points the better so one approach is
just to solve the unknown interior points.

29
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3.1 Iterative methods

Iterative methods [48; 49; 50] consists of repeated application of an algorithm that
is usually relatively simple and these methods are particularly useful for systems
in which roundoff errors may be a problem. Furthermore, iterative procedures can
easily take advantage of the sparse nature of the coefficient matrices, on the other
hand they are certain to converge only for systems having ”diagonal dominance”.
We are going to review briefly the main concepts of the iterative methods. The most
straightforward approach to a iterative solution of a linear system is to rewrite the
linear equations Ax = b as a linear fixed-point iteration. One way to do this is to
write Ax = b as

x = (I − A)x + b (3.3)

and to define the Richardson iteration

xk+1 = (I − A)xk + b. (3.4)

We will discuss more general method in which {xk} is given by

xk+1 = Mxk + c. (3.5)

In (3.5) M is a matrix called the iteration matrix. Iterative methods of this form are
called stationary iterative methods because the transition from xk to xk+1 does not
depend on the history of the iteration.
There are ways to convert Ax = b to a linear fixed-point iteration that are different
from (3.4). Methods such as Jacobi and Gauss-Seidel are based on splitting of A of
the form:

A = A1 + A2, (3.6)

where A1 is a nonsingular matrix constructed so that equations with A1 as coefficient
matrix is easy to solve. The Ax = b is converted to the fixed-point problem

x = A−1
1 (b− A2x). (3.7)

In the next section we show two iterative schemes the Jacobi and the Gauss-Seidel
iterative methods.

3.1.1 Classical methods: Jacobi and Gauss-Seidel

In this section we want illustrate the simplest iterative scheme called Jacobi scheme.
This is certainly not the best scheme because it converges too slowly, but it is the
basis for understanding the modern methods, which are always compared with it.
The Jacobi iteration uses the splitting

A1 = D, A2 = L + U (3.8)

where D is the diagonal part of A, L is the lower triangle of A with zeros on the
diagonal and U is the upper triangle of A with zeros on the diagonal. This leads to
the iteration matrix

−D−1(L + U). (3.9)



Section 3.1. Iterative methods 31

If superscripts n and n + 1 denote two successive iterates, then we can express the
Jacobi iteration for (3.1) concretely as

Un+1 = D−1[fn − (L + U)Un]. (3.10)

Note that D is diagonal and hence trivial to invert.
For the simple regular Poisson stencil

Aij =
1

∆2




1
1 −4 1

1


 (3.11)

we can write the Jacobi scheme in stencil notation as

Un+1
i,j = −1

4


∆2fn

i,j −



1
1 0 1

1


 Un

i,j


 (3.12)

What is the rate of convergence of the Jacobi method ? First of all, the iteration
(3.10) converges if and only if the spectral radius, defined as the largest eigenvalue
of the iterative matrix and denoted ρs, is less than one. In other words, the matrix
D−1(L + U) is trying to reduce the errors in our guess Un and those errors can
always be decomposed into orthogonal eingevectors with the property that

D−1(L + U)x = λx (3.13)

where x is the eingevector and λ is the eingevalue. If λ is not less than one, repeated
iterations of the equation (3.10) will causes the error to grow and blow up. Even for
non-exploding iteration schemes, however, the rate of convergence will be controlled
by the largest eigenvalue. Unfortunately for most iteration matrices, the largest
eigenvalue approaches unity as the number of points increase and thus simple scheme
tends to converge quite slowly.
The number of iterations r required to reduce the overall error by a factor 10−p is
thus estimated by

r ≈ pln10

(−lnρs)
(3.14)

In general, the spectral radius goes asymptotically to one as the grid-size is increased,
so that more iterations are required. For the 2D diffusion equation on a grid N ×N
with Dirichlet boundary conditions on all four sides, the asymptotic formula for
large N turn out to be

ρs ≈ 1− π2

2N2
. (3.15)

The number of iterations r required to reduce the error by a factor of 10−p is thus

r ≈ 2pN2ln10

π2
≈ 1

2
pN2. (3.16)

In other words the number of iteration is proportional to the number of mesh points.
Since our problem has a 129× 129 points, it is clear that the Jacobi scheme is only
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of theoretical interest.
The Gauss-Seidel method corresponds to the matrix decomposition:

A1 = D + L A2 = U (3.17)

and the iteration matrix is
M = −(D + L)−1U. (3.18)

Note that A1 is lower triangular, and hence A−1
1 y is easy to compute for vectors y.

Note also that, unlike Jacobi iteration, the iteration depends on the ordering of the
unknowns, as it can easily check writing out (3.7) in components. One can show that
the spectral radius of a Gauss-Seidel scheme is the square of that the Jacobi scheme
so it converges in about a factor of two less time. The factor of two improvement in
the number of iterations over the Jacobi method still leaves the method impractical.

3.2 Direct methods

Direct methods [50] are based on the factorization of the coefficient matrix. In the
(hypothetical) absence of rounding errors, these methods produce the exact solution
of a linear system after a finite number of arithmetic operations. One of the most
elementary methods is the Cramer’s rule. Unfortunately the number of operations
required in the algorithm is approximately proportional to (n + 1)!, where n is the
number of unknowns. For more than about three equations the use of Cramer’s
rule becomes impractical owing to excessive computational effort and is not recom-
mended. Gaussian elimination is a very useful and efficient tool for solving many
systems of algebraic equations. Although it is one of the earliest methods proposed
for solving simultaneous linear equations, it remains among the most important
algorithms in use today. Direct methods for solving certain systems of algebraic
equations that are significantly faster than Gaussian elimination do exist. Unfor-
tunately, none of them is completely general. That is, they are applicable only to
the algebraic equations arising from a special class of differential equations and as-
sociated boundary conditions. The algorithms for fast direct procedures tend to
be rather complicated and are not easily adapted to irregular domains or complex
boundary conditions. One of the simplest fast direct methods is the error vector
propagation, but roundoff errors tend to accumulate in this method, so it is limited
in applicability to relatively small systems of equation. Two fast direct methods for
the Poisson equation that are not limited by the accumulation of roundoff errors are
the even-odd reduction method and the fast Fourier transform method [51; 52; 53].

3.3 Matrix diagonalization method

In this section we present a method to solve the Poisson equation that we have
obtained modifying a numerical scheme developed by Lopez [54; 55; 56; 57] to study
axisymmetric Navier-Stokes equations. The algorithm is based on the use of the
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matrix diagonalization method [58].
Consider the the left-hand-side of the equation (3.2). We claim that it may be
rewritten as the matrix-matrix product (1/∆2)TU , where U is the N -by-N matrix
of u(i, j), and T is the familiar symmetric tridiagonal matrix, that in stencil form
we have written:

T =




1
1 −2 1

1


 (3.19)

A formal proof requires the simple computation:

T (i, j)U(i, j) =
∑

k

T (i, k)U(k, j)

= T (i, i− 1)U(i− 1, j) + T (i, j)U(i, j) + T (i, i + 1)U(i + 1, j)

= −U(i− 1, j) + 2U(i, j)− U(i + 1, j) (3.20)

since only three entries of row i of T are nonzero. A completely analogous argument
shows that:

U(i− 1, j)− 2U(i, j) + U(i + 1, j)

∆2
= − 1

∆2
U(i, j)T (i, j) (3.21)

and so the Poisson equation may be written

TU + UT = b (3.22)

The important feature of these matrices is that they are incredibly sparse and the
problem is to solve for T efficiently in terms of time and storage.
Suppose we know how to factorize the solution U = QV , where V is a known
non singular matrix and the columns of Q are eigenvectors of T . Substituting this
expression for U into TU + UT = b yields

TQV + QV T = b. (3.23)

Now premultiply this equation by Q−1 to get
[
Q−1TQ

]
V +

[
Q−1Q

]
V T = Q−1b (3.24)

or, letting D the diagonal matrix that contains the eigenvalues of T

DV + V T = Q−1b. (3.25)

We want to solve this equation for V , because then we can compute U = QV . But
we have to observe that this is not a typical system. The idea to solve it is to take
the transpose of the expression (3.25), we obtain:

V tD + TV t = H (3.26)

where H = bt(Q−1)t and then solving N systems for every column of V t

(λi + I)V t
j = Hj j = 1, ..., N. (3.27)

This let us with a good algorithm to solve TU + UT = b for U , only computing H,
V t and V . The matrix multiplications may be a problem if we increase the number
of points. We know that the cost of this operation is N4.
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3.4 Rapid method: Fourier transform solutions

For certain classes of problems, of which the Poisson problem is one example, there
are rapid methods that can take advantage of some of the special properties of the
underlying matrix.
Problems with regular boundaries and constant coefficient stencil can often be solved
using Fourier transform or spectral techniques. The discrete inverse Fourier trans-
form in both x and y is

uj,l =
1

JL

J−1∑
m=0

L−1∑
n=0

ûmne
−ikmxe−ikny (3.28)

where the i’s in the exponentials is the imaginary number
√−1 and

x = j∆x y = l∆y

km = 2πm
J∆x

kn = 2πn
L∆y

(3.29)

At this point, implementing the discrete inverse Fourier transform could be done
simply by J + L evaluation of the summation formula (3.28). This method would
have a computational complexity of O((J + L)2) multiplication operations, which
is rather high for many areas of applications. There is, however, a method for
the discrete Fourier transform, with a complexity of only O((J + L)log(J + L))
multiplication operations: the Fast Fourier Transform (FFT). To use the FFT to
solve the equation (3.1), notice that because ∇2 is a linear operator, we can find
∇2u by taking the Laplacian of each term in the summation,

∇2uj,l =
1

JL

J−1∑
m=0

L−1∑
n=0

−(k2
m + k2

n)ûmne
−ikmxe−ikny (3.30)

but we also know that we can write the right hand side as

fjl =
1

JL

J−1∑
m=0

L−1∑
n=0

f̂mne−ikmxe−ikny (3.31)

thus term by term it must be true that

−(k2
m + k2

n)ûmn = f̂mn. (3.32)

Now f̂mn = F [f ] is simply the Fourier transform of the right-hand-side and is readily
evaluated. Thus to solve the equation (3.1) we first find the FFT of the right-
hand-side, then divide each component by k2

m + k2
n and then finding uj,l by inverse

transformation

uj,l = F−1

[
−f̂mn

(k2
m + k2

n)

]
(3.33)

The above procedure is valid for periodic boundary conditions. In other words, the
solution satisfy

ujl = uj+J,l = uj,l+L.
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For Dirichlet boundaries where u = 0 we need expand the function in terms of
discrete sin series:

ujl =
2

J

2

L

J−1∑
m=1

L−1∑
n=1

ûmnsin

(
πjm

J

)
sin

(
πln

L

)
(3.35)

this satisfy the boundary condition that u = 0 at j = 0, J and at l = 0, L. If we
substitute this expansion and the analogous one for fjl into equation (3.1), we find
that the solution procedure is the same that for periodic boundary conditions.
These and more general boundary conditions are discussed in some detail in [41].

3.5 The fast Fourier transform (FFT)

In 1965 J.W. Cooley and J. W. Tukey published a paper [59] about a special discrete
Fourier transform algorithm which they called fast Fourier transform. It was this
paper which caused the widespread dissemination of the FFT [60; 61] algorithm and
nowadays it is one of the truly great computational developments of this century.
The description of the FFT algorithm given in this section is based on the following
proof of the Daniel-Lanczos lemma, which makes it possible to write a discrete
Fourier transform length N (N even) as a sum of two discrete Fourier transforms of
length N/2:

Fk =
N−1∑
j=0

e2πijk/Nfj

=

N/2−1∑
j=0

e2πi(2j)k/Nf2j +

N/2−1∑
j=0

e2πi(2j+1)k/Nf2j+1

=

N/2−1∑
j=0

e2πijk/(N/2)f2j + W k

N/2−1∑
j=0

e2πijk/(N/2)f2j+1 (3.36)

= F e
k + W kF o

k .

F e
k (F o

k ) denotes the kth component of the Fourier transform of length N/2 formed
from the even (odd) components of the original fj’s. The transforms F e

k and F o
k

are periodic in k with period N/2, again, the required N components for Fk are
obtained.
If N/2 is even, (3.36) can be used again on F e

k and F o
k . In the next step the F e

k

becomes the two Fourier transforms F ee
k and F eo

k of length N/4. For N = 2r (with
r ∈ N) this can be carried out recursively r times, until identities of the form
F eooe···oee

k = fn for any n are achieved. At this point the patterns of the e and o
are changed to e = 0 end o = 1. From this point on, this operation is called a
bit reversal permutation. If the resulting sequence of bits is interpreted as a binary
number, then it is exactly n. It is because of the successive subdivisions of the data
into even and odd values that is equivalent to the testing of the least significant bit
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of the binary representation of n.
Therefore, the first part of the FFT algorithm is to interchange fn using a bit reversal
permutation. The second part has an outer loop which is executed log2N times and
calculates, in turn, transform of length 2, 4, 8, · · · , N . At each stage of this process,
two nested inner loops range over the sub-transforms already computed and the
elements of each transform implementing the Daniel-Lanczos lemma (3.36). During
each stage O(N) arithmetic operations are carried out. Since there are log2N stages,
the complexity of the whole FFT algorithm is of the order O(NlogN).

3.6 Cyclic reduction solvers

Evidently the FFT method works only when the original PDE has constant co-
efficients and regular boundaries. A more general set of rapid methods, however
exists for problems that are separable, in the sense of separation of variables. These
methods include cyclic reduction. Numerical Recipes [41] gives a brief explanation
of how these methods work which we do not repeat here. We will tell about a col-
lection of codes called FISHPAK packages [62]. These are a collection of generalized
cyclic reduction Fortran routines for solving more general Helmholtz problems, 3-D
Cartesian coordinates and general 2-D separable elliptic problem, for any combi-
nation of periodic or mixed boundary conditions. These codes are extremely fast
with solution time scaling like N2logN , but they were written back in the eighties
and the Fortran is inscrutable and therefore hard to modify for different boundary
conditions. In addition they still only work for separable problems and could not,
for example solve the more general problem ∇ · k∇T = ρ for a space varying con-
ductivity. However, the only solvers that can compete in time with these routines
and handle spatially varying coefficients are the iterative multi-grid solvers.

3.7 Explicit time-stepping procedure

In previous sections we have seen how we can solve a non-linear diffusion equation
as well as the Poisson equation, so we have all the elements in order to study our
specific problem. The latter we remember to be:

∂T

∂t
= ∇2T +

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
(3.37)

∇2ψ = −Ra
∂T

∂x
, (3.38)

T (x, 0) = 1; T (x, 1) = 0, (3.39)

∂T

∂x
(0, y) =

∂T

∂x
(1, y) = 0. (3.40)

We first discretize equations (3.38)-(3.40) in space by using second-order centered
differences at the grid point (i, j) for i = 1, ..., N − 1 and j = 1, ..., M − 1 (i = 0 or
N or j = 0 or M represent the points on the boundary. In particular the advection



Section 3.7. Explicit time-stepping procedure 37

term is discretized using Arakawa scheme. The resulting equations are

∂tTij = G1(Tij, ψij) (3.41)

∇2ψij = −RaG2(Tij) (3.42)

where G1 and G2 represent finite difference approximation for all the terms except
the one with time derivative in (3.42) We use second-order forward and backward
differences for the boundary condition of T .
We use a second-order predictor-corrector scheme to iterate in time

T n+1
ij = T n

ij +
∆t

2
∇2T n

ij +
∆t

2
(3J(T n

ij, ψ
n
ij)− J(T n−1

ij , ψn−1
ij )). (3.43)

More precisely, the scheme is implemented in the following way:
I. Initialization of the temperature and stream function at the time step n and also
at n − 1. We suppose that the temperature has a linear vertical distribution. The
stream function is identically zero.
II. Evaluate the intermediate temperature T n+ 1

2 by solving the implicit diffusion
equation in the horizontal direction for the first half time step

T
n+1/2
ij = T n

ij +
∆t

2
∇2T n

ij +
∆t

4
(3J(T n

ij, ψ
n
ij)− J(T n−1

ij , ψn−1
ij )) (3.44)

for i = 1, ..., N − 1 and j = 1, ..., M − 1.
III. Implement lateral boundary conditions on T

n+1/2
ij .

IV . Evaluate the temperature T n+1 solving the implicit diffusion equation along
the vertical direction for the second half time step

T n+1
ij = T

n+1/2
ij +

∆t

2
∇2T

n+1/2
ij +

∆t

4
(3J(T n

ij, ψ
n
ij)− J(T n−1

ij , ψn−1
ij )) (3.45)

for i = 1, ..., N − 1 and j = 1, ..., M − 1.
V . Implement top and bottom boundary conditions on T n+1

ij .
V I. Solve

∇2ψn+1
ij = −RaG2(T

n+1
ij ). (3.46)

by the generalized cyclic reduction routine from the FISHPACK package.
V II. Implement boundary conditions on ψn+1

ij .
V III. Go to the next time step.





Chapter 4

From Stationary Convection to
Chaos

In this Chapter, we investigate the different behaviors of the flow patterns and heat
transport in a square porous media uniformly heated from below. We start from the
onset of convection to high Rayleigh number limit where the flow is chaotic. The
Rayleigh number determines the nature of the flow and it characterizes the evolution
of the system, from conduction at Ra < 4π2, to vigorous convection, at higher val-
ues. Using the numerical methods described in Chapter 3 we determine the Rayleigh
numbers at several transitions, which modify significantly the characteristic of the
flow and the heat transport. These transitions can be of two types. The first type is
a decrease in the horizontal aspect ratio of the cells. The second type is from steady
to unsteady pattern. The present investigation considers value of Rayleigh number
starting from 44 until 1200. It will be seen later that it is within this range that
the transitions from steady to oscillatory convection and from oscillatory to chaotic
convection occur.

4.1 Results of numerical simulations

The onset of convection is defined when the parallel fringe pattern of the state of
pure heat conduction is slightly deformed to a wavy shape, indicating the appear-
ance of a vertical flow component rising upward along one of the two vertical walls.
At low Rayleigh number, Ra = 44, the convective flow begins in the most favorable
mode for that value, that consists of a roll with its axis parallel to the shorter side of
the box, namely the uni-cellular mode. The flow is steady. The single roll can turn
clockwise or counterclockwise depending on the initial condition (we have added
some noise to the initial linear temperature profile). In a single cell, the fluid is
swept horizontally toward the lateral boundary. Due to buoyancy it rises and even-
tually impacts the upper boundary layer in the corner where the side wall meets the
upper surface of the cell. In this way the fluid carries heat flux away from the hot
boundary layer. In that corner the fluid is redirected horizontally, subsequently it
becomes a dominant part of the fluctuation which sweeps along the upper boundary
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layer, exchanging heat flux directly with the sheared, cold boundary layer. The
heavier fluid goes down and crashes with the lower hot boundary layer where the
colder heat flux diffuses. Notice that this scenario does not involve the central region
of the cell in any way. It is remarkable that after the convection is fully developed
the sense of rotation of the roll remains invariant, independent of the heating rate
(until we observe transitions to new states).
Snapshots of the stream function and temperature for the solution at Ra = 44 are
shown in Fig. 4.1.
At variance with this at high Rayleigh numbers, converged solutions display a multi-
cellular convective pattern. Starting from Ra = 350, it exist two distinct possible
modes of flow, one of which is time dependent (single cell mode), the other being
steady with a three-cellular mode. The evolution of the flow is analogous to the ini-
tial onset of convection. The boundary layer becomes unstable and new upwelling
sites develop. Starting from a single roll it is possible to see a continuous devel-
opment of three weak circulations inside the primary convective roll. By further
increasing of the heating, such circulations grow, and the flows continuously trans-
form into a three-roll flow. This transition brings the system from a steady one-cell
pattern to a steady three-cell pattern.
The aim of this investigation is the synchronization between two chaotic Hele-Shaw
cells. We have to consider the synchronization between uni-cellular modes rather
than multi-cellular modes. The latter being in general stationary and therefore
not so interesting from the point of view of dynamical systems. By increasing the
Rayleigh number, we have to be careful to keep the single cell mode of convection
and this solution maybe unstable with respect to the multi-cellular modes. This
task would be proven to be delicate. The pattern selection depends from the dif-
ferent way of heating. Indeed uni-cellular structure can be permanently maintained
in the range that we have studied by a slow and controlled increase of the heat-
ing. Starting with the uni-cellular (e.g. counterclockwise) solution at Ra = 44
we drive the flow to remain into this mode by increasing the Rayleigh number by
small increments. Hence, we force the solution into the uni-cellular mode which is
unsteady for Rayleigh number larger than approximately 350. The possibility of
choosing the spatial patterns born out by the experimental solutions of Caltagirone
et al, where slight physical disturbance. A slow experimental heating produced this
effect. Whereas very rapid heating introduces a multi-cellular modes (stationary).
We infer that we speak about the most favorable mode, not about the most stable.
Once either the steady or the oscillating state is well formed, we do not know yet
if the perturbation and the change into one another is simple or not. The study
of stability requires the introduction of a random perturbation in the temperature
and the implementation of a numerical procedure to integrate stochastic partial dif-
ferential equations. E. Helfand presented an extension of the Runge-Kutta method
for stochastic ordinary differential equations [63; 64]. The implementation of this
method for partial differential equations is not trivial. We shall let this task as the-
sis’s objective.
Having chosen the time periodic mode, at Ra = 400 regular oscillations with non-
dimensional period τp appear. The evolution of the solution through a single oscil-
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a) b)

Figure 4.1: Stationary convection at Ra=44. a) The spatial pattern preferred by the flow is a
uni-cellular mode (stream-function). b) The snapshots of the temperature field show clockwise and
counterclockwise rotation of the roll.

lation period is illustrated in Fig. 4.2. The sequence is of five isothermal and five
streamline plots evenly spaced in time (τp/4). The numerical simulation is char-
acterized by one prevailing frequency, ω1 = 527.55 = 2π/τp. The power spectrum
(defined as the squared modulus of the Fourier transform of the temperature taken
at point x = 10/128,y=10/128), is particularly useful for determining the frequency
of a system. The power spectrum of the Nusselt number, plotted on log linear scale,
shows characteristics of single periodic regime. Figure 4.2 exhibits sharp spectral
lines, standing for the the dominant frequency and its harmonics. The power spec-
trum of temperature is also peaked at the same frequency.
The convective system departs from this single periodic state at Ra = 500 when

a second fundamental frequency, uncommensurable with the first, appears in the
power spectrum. A close look at the Poincaré section [65] suggests a quasi-periodic
dynamics. The concept of the Poincaré section follows from the observation of a
system in the phase space and the consideration that the direction tangential to the
flow (here flow refers to its meaning in the dynamical system theory) does not carry
much interesting information. By a suitable oriented surface in the phase space, we
can construct an invertible map on this surface following a trajectory of the flow.
The iterates of the map are given by the points where the trajectory intersects the
surface in a specified direction. In this way we reduce the phase space dimension-
ally by one, at the same time turning the continuous time flow in a discrete time
map. The discrete time n of this map is the intersection count and is usually not
simply proportional to the continuous time t of the flow. The advantage of the
Poincaré section is that it permits to figure out the organization of the trajectory
in the phase space. At Ra = 520, (Fig. 4.3), we deduce that the phase trajectory is
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Figure 4.2: Temporal characteristics of unsteady convection at Ra = 400. a) Evolution of the
temperature and the stream function over one oscillatory period. Time proceeds counterclockwise.
The period in dimensionless units is τp = 0.01183. b) Nusselt number as function of time. c)
Power spectrum of the Nusselt number, defined as the squared modulus of the Fourier transform.
Only one fundamental frequency ω1 = 527.55 and its harmonics prevail at Ra = 400. d) Power
spectrum of temperature.

inscribed in a tore T 2, which is the attractor of a bi-periodic regime. Starting from
the time series of the Nusselt number we construct the Poincaré section plotting
the sequence of time intervals between successive maxima (∆tn+1 vs ∆tn). The fre-
quency ω2 = 655.44 denotes the limit cycle frequency and ω1 = 175.33 is the second
frequency that arises at the bifurcation (Physically it corresponds to the boundary
layer oscillation instability). Figure 4.3 shows the instantaneous temperature and
the stream function fields.
Many changes are observed in the spatial structure associated with the quasi-periodic
state. The flow patterns are characterized by the appearance of a vertical portion
of flow in the middle of the lower boundary. This portion, initially infinitesimal,
grows while swept horizontally by the mean flow. By buoyancy, it rises along the
side wall, moving out the lateral wall, but the rise is not uniform as in the periodic
case, see Fig. 4.3. The flow breaks, creating a new particle of fluid which continues
to rise upward alone. At this Rayleigh number we can observe, for the first time,
the formation of thermal plumes. As an operational definition, we say that a plume
is formed when an isotherm in the boundary layer is buckled. In other words, a
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Figure 4.3: a) Snapshots of temperature and stream function for the solution at Ra = 520. At
this value of the Rayleigh number, it appears for the first time thermal plumes. They are swept
horizontally in the lower boundary layer to rise along the right lateral wall by buoyancy. b) Nusselt
number as function of time. c) The spectrum of Nu shows quasi-periodic behavior: ω2 = 655.44
is the limit cycle frequency and ω1 = 175.33 is the second frequency that is born at the secondary
bifurcation. d) Poincaré section plots the typical ”eight” of a quasi-periodic state.

plume is formed when some portion of fluid becomes nearly vertical (away from the
downstream corner). In quasi-periodic cases, no plumes are identical. The hori-
zontal position of each plume is shifted, so with each plume formation cycle differ
slightly in position relative to one another: each plume forms slightly upstream or
downstream of the main position of formation. This process occurs in the following
way: a fluctuation in the bottom boundary layer causes a plume to form just a
little bit earlier, causing a horizontal compression of the wave train (and vertical
expansion). This leads to two plumes being slightly closer to each other than they
would otherwise be. These two plumes together do a more efficient job of cleaning
cold fluid of the boundary layer than usual. This leads to a little longer induction
time for the next plume to form, a larger interval between plumes and a slightly
worse job of cleaning out the boundary layer. Thus the next plume forms a little
earlier and the flow develops a phase-modulated train of disturbance. We underline
that the steady solution shows the same generation of two additional cells.
Starting from Ra = 570 the solution returns back to a simply periodic regime. The
key element is always the formation of thermal plumes, which change as Ra in-
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Figure 4.4: Same as figure 4.3 except that Ra = 900. a) Temporal evolution of the temper-
ature and stream function over one oscillation period, τp = 0.00273. This time sequence of the
temperature shows the entire plume formation process. The overall circulation of the flow is
counterclockwise. b) Nusselt number as a function of time. c) At Ra = 900 a single frequency,
ω1 = 2293.55, and its harmonic prevail. d) Poincaré section.

creases. At Ra = 520 the plumes born around the middle of the bottom boundary
layer. They are small and grow, more in width than in height, as they are convected
across the horizontal layer. At Ra = 900 the plumes start closer to the left lateral
boundary with greater strength. They are narrow and expand vertically.
Figure 4.4 shows, at Ra = 900, the evolution of the thermal plumes and stream

function over one oscillatory cycle. Every plume is identical, modulo a shift in time.
The period, in dimensionless units, is equal to 0.00273. The power spectrum of the
Nusselt number has a single frequency, ω1 = 2293.55. The Poincaré section is very
simple, it reduces to a point. The phase trajectory is a limit cycle.
Starting from Ra = 1100, the scenario repeats. The numerical solution shows a
quasi-periodic regime.
At Ra = 1200 the amplitude of the variations in the heat transport reaches its
maximum value and a strong broad band noise appears in the power spectrum,
which is a characteristic of non-periodic motion. Exponential decay in the power
spectra at high frequency is expected for bounded smooth deterministic dynamics
[66; 67]. The Poincaré section shows a very large number of scattered points. The
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Figure 4.5: Same as figure 4.3 except that Ra = 1200. No single frequency prevails in the power
spectrum anymore. b) Convection is in the chaotic regime. c) The power spectrum on a log linear
scale illustrates the region of exponential decay. d) Poincaré section showing the scattered points.

convective regime is now chaotic. Qualitatively, however, the flow patterns appear
to follow a cycle, characterized also in this case by thermal plumes. The structure
is similar to those at lower Rayleigh numbers, except that the plumes are very tight
and stretched. This pattern repeats itself intermittently from the left of the lower
boundary without any specific regularity.
In order to gain some knowledge about the time evolution of the system one can in-
troduce some indicators as e. g. the autocorrelations of a signal [68; 69]. In general,
the measurement sl of the state at time l is regarded from a probability distribution,
p(s), for observing different values or sequences of value. The probability distribu-
tion can be inferred from the time series. The mean of the probability distribution
can be estimated by the mean of the time series

< s >=
1

N

L∑

l=1

sl (4.1)

where < · > denotes the average over time and L is the total number of mea-
surements in the time series. The variance of the probability distribution will be
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Figure 4.6: The autocorrelation function of the temperature signal at point x = 10/128; y =
10/128. a) is close up of b), τ is the lag time (τ = ν∆t).

estimated by the variance of the time series

σ2 =
1

N − 1

L∑

l=1

sl(sl− < s >)2. (4.2)

The autocorrelation at lag time ν is given by

cν =
< (sl− < s >)(sl−ν− < s >) >

σ2
. (4.3)

If we plot the values sl versus the corresponding values at fixed ν, the autocorrelation
cν quantifies how these points are related. If they are not correlated then cν = 0.
If the signal is observed over a continuous time, one can introduce autocorrelation
function C(τ) and the correlation of equation (4.3) are estimates of C(τ = ν∆t).
Obviously, C0 = 1.
Autocorrelation of signals from chaotic systems decay exponentially with increasing
lag time [65]. Our simulations indicate, indeed, that the correlation functions of
the temperature, decay exponentially (at least for the envelope of the function).
The spatial correlation function of the temperature has the same behavior. Figure
4.7 shows the spatial correlation curves between points at three different heights
(y = 1/4, y = 1/2 and y = 3/4).
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Figure 4.7: The spatial correlation function of the temperature for x ∈ [0, 1], at y = 1/4,
y = 1/2 and y = 3/4.



Chapter 5

Synchronization

In the previous chapter we have shown that by heating uniformly from below an
Hele-Shaw cell a large number of different dynamical regimes may appear: station-
ary convection, oscillatory convection, thermal plumes and turbulent flow. This
richness of different behaviors, in a rather simple geometry, seems a good candidate
in order to study possible synchronization mechanisms between two identical cells.
We give particular emphasis to the synchronization of chaotic dynamics. Indeed,
this problem has attracted much attention during the last few years because of its
role in the understanding of coupled nonlinear systems.
In this context of different behaviors many different synchronization states have
been identified: complete synchronization, phase synchronization, general synchro-
nization, etc... [23].
Here we have chosen to characterize the first discovered and certainly the simplest
form of synchronization i.e. the complete synchronization.
Different coupling schemes have been proposed in order to achieve synchronization.
A widely used coupling, and controlling, technique is the so called “pinning” tech-
nique [70; 71; 72; 73], which connects pair of points of the two systems.

5.1 Complete synchronization

For chaotic dynamics, synchronization influences not only the mean frequencies but
also the chaotic amplitudes. As a result, the signals coincide (or nearly coincide).
Let us consider the temporal evolution of two identical chaotic systems:

ẋ = f(x),

ẏ = f(y), (5.1)

where x and y represent the N -dimensional state vectors of the systems, while f
is a vector field f : Rn → Rn. As the dynamics of each variable is chaotic, in
the case of non interacting systems one sees two independent random-like processes
without any mutual correlation. Now let us introduce an interaction between the
two systems. Obviously, there is not a unique way to couple. However, we are
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Figure 5.1: Time series of ψ1 and ψ2 at the point x = 1/3; y = 1/3. a) Complete synchronization
for steady convection at Ra = 44. Complete synchronization for periodic convection at Ra = 400.
b) At the beginning the time series are out of phase. c) Under the presence of the coupling the
periodic oscillations come in phase.

looking for a contractive coupling that tends to make the differences |x−y| smaller
and does not affect the symmetric synchronous state x = y. Therefore, we demand
that the coupling force were proportional to the differences of the state of the two
systems and vanishes for coinciding state.
A bidirectional coupling scheme is obtained by introducing the following additional
dissipation term:

ẋ = f(x) + C · (y − x)

ẏ = f(y) + C · (x− y) (5.2)

where C is a n× n matrix, whose coefficients rule the dissipative coupling. If there
is no coupling the two systems are completely independent and uncorrelated; with
small coupling the trajectory of the signals will move closer due to the attraction
between the two states. If the coupling is strong enough the attraction wins and
eventually it can lead to a complete synchronized state.

5.1.1 All internal points are connectors

Starting from two identical Hele-Shaw cells, we introduce a thermal bidirectional
coupling between all the internal points. Adding the dissipation term to the equa-
tions (3.42) and (3.43), the systems are governed now by

I





∂T (1)

∂t
= ∇2T (1) + J(T (1), ψ(1)) + ε(T (2) − T (1))

∇2ψ(1) = −RaG2(T
(1))
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Figure 5.2: Pearson’s coefficient (see text for definition) vs the thermal coupling ε.

II





T (2)

∂t
= ∇2T (2) + J(T (2), ψ(2)) + ε(T (1) − T (2))

∇2ψ(2) = −RaG2(T
(2))

where the indexes 1 and 2 refer to the two systems, ε is the thermal coupling and is
applied in all the interior points (i, j = 1, ..., N − 1).
Before presenting the results for the synchronization of chaotic systems, we want to
briefly discuss the cases of steady and periodic convection.
At Ra = 44, two systems with a single convective cell, the first system with clockwise
rotation, the second one with counterclockwise rotation are prepared. By setting the
thermal coupling ε, which value lies in the interval [0.35, 1], synchronization between
the two cells is achieved. The cell of the first system begins to turn counterclockwise.
The figure 5.1a shows complete coincidence of the two systems after some transient,
for the coupling ε = 0.5.
For the periodic case, Ra = 400, the two cells are prepared with counterclockwise
rotation but they are initially out of phase, see Fig. 5.1b. This can be done by
taking as initial conditions for the second system the final state of the first after
a time of exactly half period. By applying a thermal coupling ε = 0.05 after 1000
iterations, the two periodic states return in phase, see figure 5.1c. We underline that
this is the simplest case. We pass through two different states of synchronization:
from synchronization in anti-phase to synchronization in phase.
Let us now come to discuss the case of chaotic dynamics at Ra = 1200. In this

case, the correlation function gains much interest because it is one central measure
for quantifying synchrony. Recent papers illustrate the power of the correlation in
measuring the synchrony [74; 75; 76]. The most common way to quantify the degree
of synchronization between two variables is by monitoring the Pearson’s coefficient
γ, or zero-lag cross-correlation

γ =
< (T1− < T1 >)(T2− < T2 >) >

σ1σ2

(5.4)

where we recall that <> and σ2 denote a full space-time average and variance, re-
spectively, and T1 and T2 are the temperature field of the two systems. Precisely,
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Figure 5.3: a) Uncoupled Hele-Shaw cells, ψ1 vs ψ2 (ε = 0, x = 1/3; y = 1/3). b) Time series of
the stream function below the synchronization threshold. c) and d) Complete synchronization in
coupled Hele-Shaw cells (ε = 0.05). The states of the systems are identical.

when γ = 0 the two fields are linearly uncorrelated; γ = 1 marks complete corre-
lation and γ = −1 indicates that the fields are negatively correlated. Figure 5.2
reports the Pearson’s coefficient as function of the thermal coupling ε. The results
indicate that for value of the coupling smaller than 0.02 the Pearson’s coefficient is
almost one. But, as we will see later, this not means the appearance of a complete
synchronization state for these low values of the coupling.
The cells have been prepared both with counterclockwise rotation but different ini-
tial conditions. The proper way to do this is analog to what we did for the periodic
case. In order to see the differences between the systems we plot the variables of
system I vs the variables of system II, (a Lissajous-type plot) as in Fig. 5.3a. Of
course, the time series give us the same information as in Fig. 5.3b.
We connect the two systems with couplings ε = 0.5, 0.05, 0.02, 0.01 at the dimen-

sionless time t = 0.01. Once we get synchronization, the states of the systems are
identical, as it can be easy seen on the plot ψ1 vs. ψ2, Fig. 5.3c. The trajectory lies
on the diagonal ψ1 = ψ2. However, it is important to note that the coupling does
not destroy the chaotic dynamics, but the oscillations are nearly identical, as shown
in figure 5.3d.
In order to verify the complete synchronization we have defined the synchronization
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Figure 5.4: Synchronization error E (see text for definition), for several values of the coupling
strength. The convergence rate is proportional to ε. For ε = 0.01 synchronization is not achieved.

error as:

E =
∑

r

|T1(r)− T2(r)| (5.5)

where r stands for all the interior points. Another important parameter for charac-
terizing the synchronization is the time that we have to wait in order to obtain the
perfect coincidence of the trajectories of the two systems. The error has a practi-
cal importance, in fact we decide to stop the program when the error is less than
10−6, a value for which we are sure to have reach a synchronized state. In figure
5.4 the error is plotted for different values of the coupling. Obviously, the rate of
convergence to the synchronized state is faster for stronger couplings. For weaker
couplings the transient times increase. There is a critical value of ε below which
synchronization is no longer obtained. The space-time plots of the cells taken at
height h = 10/128 (from the bottom wall) are shown in Fig. 5.5, showing the dy-
namics of the plumes drifting to the right wall after being created. At time t = 0.01
the coupling is switched on with ε = 0.5. Immediately after the coupling is set,
the states are still different but come close one to another and they converge slowly
towards the synchronized state.

5.1.2 Coupling through the lateral walls (only)

Until now, we have shown theoretically that synchronization between two Hele-
Shaw cells is possible for a sufficiently large coupling. We want to consider also
the feasibility from the experimental point of view. This is not an easy task. An
obvious limitation is how to implement the coupling between the two convective
cells without perturbing too much the system. The coupling technique used thus
far consisted in connecting the whole spatial domain. This is not clear yet how to
realize such a connection between all the internal points of the systems. This may
also be impractical in experiments. On the other hand, because of the smallness of
the spatial correlation length (see figure 4.7), it seems (at least intuitively) that we
need to put several internal connectors between the two systems. This number of
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Figure 5.5: Space-time plots of the two convective cells at h = 10/128. At time t = 0.01 the
coupling (ε = 0.5) is switched on.

connectors must be finite and as small as possible. The reason for which we do not
couple in the whole spatial domain is that the uncoupled areas receive correlation
with the coupled areas that are in their neighborhood. They receive the information
about the dynamics through the internal spatial diffusion inside the system. In
addition we should mention also that the experimental measuring devices have a
finite time resolution and measure local spatial information of some observable.
Let us now give a brief account of the experiment. It has been thought to work by
using the Peltier effect in order to put or extract heat from the system. In 1934
J. Peltier discovered that the passage of an electric current through the junction
of two dissimilar conductors can either cool or heat this junction, depending on
the direction of the current. Heat generation or absorption rates are proportional
to the magnitude of the current and also the temperature of the junction. Let us
now return to our numerical simulation, the cells are prepared with different initial
conditions. Both cells have Peltier devices on each lateral boundary. The position of
them is the same for the two cells. The temperature of the fluid around each Peltier
device is constantly measured. A same fluid’s parcel has a different temperature
in the two cells. The Peltier device in contact with warmer fluid will extract heat
and locally cools the surrounding fluid, the corresponding device in the other cell
will inject heat. This will last until the temperature measured in both systems are
equilibrated.
In order to test the feasibility of this experimental setup, we are using controllers
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only belonging to the lateral walls i.e. 256 mesh points. With this particular choice
the systems are governed always by the same equations (5.3), where the term ε(T 2,1

i,j −
T 1,2

i,j ) appears when i = 1, ..., N − 1, but only j = 1 and j = N − 1. An inspection of
the synchronization errors suggest that this type of connection is not strong enough
to achieve synchronization. From Fig. 5.6, we observe that the synchronization
error increases in time by using a very strong coupling, ε = 3.

5.1.3 Finite number of internal points are used as connec-
tors

The failed attemp of synchronization through the lateral walls brings us to investi-
gate the minimal number of “internal” points necessary in order to obtain synchro-
nization. In experiment one will try to use as few controllers as possible.
The simplest way to start investigating the minimal number of controllers is to put

the connectors every two grid points and, in case of success, following the reduction
of connectors in this way. This strategy permits to get synchronization, but we
observe a change in the organization of the pattern structure, see figure 5.7. For a
connector every two grid points, the flow passes from a single roll cell (chaotic) to a
three-cellular convection mode (stationary). The convergence to the synchronization
state is not fast. Here the synchronization drastically affect the final dynamical state
of the system i.e. we have chaos suppression. Presumably, the basin of attraction of
the single chaotic cell is quite narrow and a sparse and strong coupling will lead to
fall in the three-cellular steady solution. The reason is that this solution is selected
when strong perturbations are applied to the single chaotic cell. In order to avoid
to destroy the single cell solution, we have to increase very slowly the coupling from
zero to its nominal value. Unfortunately, all attempts to keep the single mode with
less connectors have failed so far. Even worse, is the case of a connector every four
grid points, in that case the synchronization is no longer achieved and the solution
single mode is destroyed into a two-cellular solution that is still chaotic.
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Figure 5.7: The synchronization error obtained by connecting all the points, every two points
and every four points. The coupling parameter, ε = 0.5, is set at t = 0.01. For a loose connection
(every two points) a new three-cellular stationary structure appears. For a connector every four
points, synchronization is not achieved.



Conclusions, discussions and
further works

In this work we have studied possible ways to synchronize two Hele-Shaw cells. This
objective has required first to study the dynamics of a single Hele-Shaw cell. The
Hele-Shaw cell has been defined in the first chapter and it is interesting for us as a
simple system possessing a boundary layer instability at reasonably large Rayleigh
number. There is no analytical tools available for solving nonlinear complicated
PDE. Therefore, in chapter 2 and 3, we have recalled the numerical techniques
that permit to calculate the time evolution of the flow inside the convective cell.
In Chapter 4, we have displayed the results of the integration of a Hele-Shaw cell
for different values of the Rayleigh number. By increasing this parameter, we pass
from stationary to oscillatory and chaotic convection with also formation of thermal
plumes. Thermal plumes are generated in the lower unstable boundary layer.

One thing that comes clear from reading Chapter 4, is the dynamical richness of
the Hele-Shaw cell. For a fixed value of the Rayleigh number, the system exhibits
multistability. Several solutions are possible depending on the initial conditions.
The question of stability of these multiple solutions has not been considered in this
thesis and is the first objective that we plan to pursue in the future. A “phase” dia-
gram is the goal, i.e. for a fixed value of the Rayleigh number what are the solutions
stable and unstable and for each of the stable solution what is the basin of attraction
of the solution. This study will certainly been time consuming but some tools can
help in this task as e.g. Auto2000 [77] ( a bifurcation analysis package for ODE).
In the same objective, we plan to perturb the solutions with different type of noise
(starting from white Gaussian noise and then more complicated “colored” noise) in
order to study how robust the solutions are. In the process of drawing the “phase”
diagram of the Hele-Shaw cell, it may be useful to reduce the PDE to a large set of
ODE as it has been done by Dauby [78] in the case of Benard-Marangoni convection
in small containers.

We thought interesting to use the synchronization techniques in this realistic
PDE system. In Chapter 5, we have presented some preliminary results on the
synchronization of two Hele-Shaw cells. Synchronization is possible if the cells are
coupled with all the internal points and a sufficient strong coupling. These require-
ments are quite demanding and in view of future experimental realization not very
encouraging. Let us recall that synchronization through the lateral walls failed as
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well as for a loose coupling when only every 4 grid points were connected in space,
as it is detailed in the end of Chapter 5. These first numerical results are not very
promising for experimental realization but we are planning to use a new technique
for control based on the Floquet theory [79] that has permitted giant improvement
in the control of spatial structures in semiconductor devices. Also in the connection
with experiments, we want to use finite area of coupling rather than the less realistic
“pinning” control used in Chapter 5, this will be based on some recent work of Junge
and Parlitz [72].

As it is often the case, this investigation has opened more doors than has given
definitive answers.
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