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Particle flow rate in silos under rotational shear
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Very recently, To et al. have experimentally explored granular flow in a cylindrical silo, with a bottom wall
that rotates horizontally with respect to the lateral wall [Phys. Rev. E 100, 012906 (2019)]. Here we numerically
reproduce their experimental findings, in particular, the peculiar behavior of the mass flow rate Q as a function
of the frequency of rotation f . Namely, we find that for small outlet diameters D the flow rate increased with
f , while for larger D a nonmonotonic behavior is confirmed. Furthermore, using a coarse-graining technique,
we compute the macroscopic density, momentum, and the stress tensor fields. These results show conclusively
that changes in the discharge process are directly related to changes in the flow pattern from funnel flow to mass
flow. Moreover, by decomposing the mass flux (linear momentum field) at the orifice into two main factors,
macroscopic velocity and density fields, we obtain that the nonmonotonic behavior of the linear momentum is
caused by density changes rather than by changes in the macroscopic velocity. In addition, by analyzing the
spatial distribution of the kinetic stress, we find that for small orifices increasing rotational shear enhances the
mean kinetic pressure 〈pk〉 and the system dilatancy. This reduces the stability of the arches, and, consequently,
the volumetric flow rate increases monotonically. For large orifices, however, we detected that 〈pk〉 changes
nonmonotonically, which might explain the nonmonotonic behavior of Q when varying the rotational shear.
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I. INTRODUCTION

Flows involving particulate systems are commonly found
in many engineering applications and natural processes [1–3].
In general, granular flows are complex flows involving sev-
eral time and length scales, ranging from the scale of the
particle deformation to the container dimensions. In the past,
significant experimental and theoretical efforts were made to
understand the macroscopic response of granular media in
terms of their local particle-particle interactions [1–3].

The flow of particles out of a silo is a paradigmatic example
of granular flow [4–8]. Decades ago, Beverloo [4] proposed
a nonlinear phenomenological correlation between the silo
discharge rate Q and the outlet diameter D. Namely, Q ∝
(D − kd )5/2, where d is the grain diameter and k is a fitting
parameter. This formulation rests on the assumption that the
velocity of the grains scales with the outlet diameter as

√
D,

and it uses an effective size D − kd . For sufficiently large
outlets, when the discharge is continuous, the correlation Q ∝
D5/2 has been tested extensively. However, for smaller outlet
sizes, the flow becomes intermittent, and the system clogs
randomly, and, consequently, Beverloo’s correlation fails to
predict the flow rate values.

More recently, researchers validated an alternative formu-
lation, which also covers the region of small orifices where
clogs frequently occur [8]. It accounts for the dilatancy of the
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system, which significantly increases with decreasing orifice
diameter D such that

Q = C(1 − α1e−D/α2 )D5/2, (1)

where the constant C depends on the grain diameter and the
curvature of the density and velocity profiles at the orifice.
Note that in Eq. (1), the exponential correction accounts for
the dilatancy of the flow in relation to the aperture size. Thus,
it mimics the dilatancy dependency with the orifice diameter
D, using an exponential saturation to the value φ∞, which
corresponds to the limit of big orifices, and α1 and α2 are
fitting parameters.

In this framework, there is an interesting theoretical ques-
tion, whether the clogging probability becomes zero above
a well-defined critical orifice size or it decreases exponen-
tially with increasing D [9–11]. Practically, in systems with
orifice size smaller than D∗ ≈ 5d , the formation of arches
causes flow fluctuations, and the system will eventually clog.
Moreover, it is known that introducing vibrations significantly
changes the stability of the arches [12,13], as well as the distri-
bution of unclogging times [14,15]. However, in determining
the macroscopic flow rate, vibrations play a very nontrivial
role. Years ago, it was experimentally observed that horizontal
vibrations tend to enhance the flow rate, whereas vertical
vibrations tend to decrease it, as a function of the vibration
velocity [16,17]. Although, very recently, Pascot et al. found
a nonmonotonic behavior of the flow rate in a quasi-two-
dimensional (2D) silo under vertical vibrations, depending on
the vibration amplitude [18], passing from a regime where

2470-0045/2020/102(4)/042902(9) 042902-1 ©2020 American Physical Society

https://orcid.org/0000-0001-7955-9066
https://orcid.org/0000-0002-8930-1947
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.042902&domain=pdf&date_stamp=2020-10-12
https://doi.org/10.1103/PhysRevE.100.012906
https://doi.org/10.1103/PhysRevE.102.042902


D. HERNÁNDEZ-DELFIN et al. PHYSICAL REVIEW E 102, 042902 (2020)

the flow rate diminishes at low amplitudes to another regime
where the flow rate increases.

Very recently, To et al. explored the discharge of a cylindri-
cal silo with a rotating bottom [19]. Interestingly, they found
continuous flow for orifice sizes, notably smaller than D∗.
Previously, a numerical study of a similar system resulted in
an increasing discharge rate with increasing shear rate, which
was quantified by the Froude number Fr = L2w2/g, where
w is the rotation speed and L a characteristic length scale
[20]. Despite considerable research effort examining clogged
and nonclogged states in silo flow, a well-founded theory to
successfully explain this complex response is still lacking.

When investigating granular flows, the researchers face
several experimental restrictions, and very often it is not
possible to address 3D system behavior with all the needed
details. In this framework, discrete element modeling (DEM)
is a proven alternative to examine granular systems under
different boundary conditions [21]. Numerically, DEM treats
each particle of a granular system individually, accounting for
the interaction between neighboring particles, which depends
on the particle shape, friction, and elasticity. Thus, DEM
provides the macroscopic response of granular media un-
der specific boundary conditions [22–27], and all the system
micromechanical details are crucial to understanding these
responses.

The continuous description of granular flows [28–30] is
another approach which is often an efficient tool when deal-
ing with industrial and engineering applications. The DEM
data, i.e., velocity, position, and contacts, also allow build-
ing continuum fields, using coarse-grained average techniques
[31–35]. As a result, continuum fields of momentum, density,
and stresses are derived. Importantly, these coarse-grained
fields satisfy the mass and momentum balance equations
exactly at any given time. Moreover, they are extremely use-
ful for identifying relevant length and timescales [22,23], as
well as other macroscopic changes like detecting shear bands
[36], particle segregation [37], and other dynamic transitions
[24,25].

In this work, we numerically analyzed the granular flow in
a silo with a rotating bottom. This system had been explored
experimentally very recently [19] and motivated the numerical
and theoretical analysis presented here. The paper is organized
as follows: In Sec. II, we explain the DEM algorithm and
the coarse-grained formulation [32]. In Sec. III, the numerical
results are presented and discussed in detail, shedding light on
the system micromechanics and its relation with the system
macroscopic response under this specific boundary condition.

II. NUMERICAL MODEL

Figure 1 illustrates the simulated system, which resembles
the experimental setup described in Ref. [19]. The system
consists of a cylindrical container of height h = 40 cm and
radius Rc = 9.5 cm, with a circular aperture at the bottom
wall and particles with d = 5.8 mm. The novelty introduced
in Ref. [19] was that the bottom of the silo could rotate about
the axis of the silo, while the cylindrical wall was at rest. As in
the experiment [19], we perform a systematic study, varying
the frequency of rotation of the bottom wall from f = 0.0 to
f = 1.0 (� f = 0.1) all in Hz, and the radius of the orifice R.

FIG. 1. Sketch of the numerical system, which resembles the
experimental setup described in Ref. [19]. Dc = 2Rc is the diameter
of the container.

We use a DEM implementation, consisting of a hybrid
central processing unit (CPU)/graphics processing unit (GPU)
algorithm, which allows the evaluation of the dynamics of
several hundred thousand particles [25,38]. For each particle
i = 1 · · · N , the DEM algorithm solves the three translational
degrees of freedom, and the rotational movement is described
by a quaternion formalism. The interaction force between
particle i and particle j reads,

	Fi j = (
knδn + γnv

n
r

) × n̂ + (
ktξ + γtv

t
r

) × t̂ .

Here we use a Hertz-Mindlin model [21], and

kn = 4
3Y

√
Reδn kt = 8G

√
Reδn,

where the parameters Re, Y , and G are the equivalent radius,
Young modulus, and shear modulus, respectively. Moreover,
the normal and tangential dissipation factors can be calculated
as

γn = 2
√

5
6β

√
Snm∗ γt = 2

√
5
6β

√
St m∗,

where Sn = 2Y
√

Reδn, St = 8G
√

Reδn, m∗ = mi+mj

mimj
, and β =

ln(en )√
ln2(en )+π2

. The parameter en is the normal restitution coeffi-

cient of the particles. The tangential relative displacement 	ξ is
kept orthogonal to the normal vector and it is truncated as nec-
essary to satisfy the Coulomb constraint | 	Ft

i j | � μ| 	F n
i j |, where

μ is the friction coefficient. Finally, 	τi j = 	bi j× 	Fi j accounts for
the torque corresponding to each contacting force. Here 	bi j is
the branch vector from the center of particle i to the contact
point between particle i and particle j.

The translational equations of motion of each particle are
integrated using a Verlet velocity algorithm [39], and a Fin-
cham’s leap-frog algorithm is used for the rotational ones
[40]. In all the simulations presented here, the system is
composed of N = 30 144 particles and the contact parameters
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correspond approximately to particles with Young’s modulus
Y = 3.0 GPa (G = Y/30), density ρp = 2655 kg/m3, normal
restitution coefficient en = 0.9, and friction μ = 0.5. The
particle-wall interaction is modeled using the same collision
parameters used for particle-particle interaction. The integra-
tion time step is set to �t = 1.0×10−6 s [41], and all the other
parameters are chosen to match the experimental conditions of
Ref. [19].

A. Coarse-graining procedure

When focusing on the macroscopic properties of granular
flow, we need to obtain continuous fields from the microscopic
details. For this, we use a coarse-graining method [32–35],
which is a well-known micromacro mapping technique. From
the positions 	ri(t ) and velocities 	vi(t ) of the particles at time
t in the numerical simulation, according to Refs. [32–35], the
microscopic mass density of a granular flow, ρ(	r, t ), is defined
by

ρ(	r, t ) =
N∑

i=1

miφ[	r − 	ri(t )], (2)

where the sum runs over all the particles within the system and
φ[	r − 	ri(t )] is an integrable coarse-graining function. Simi-
larly, the coarse-grained momentum density function, P(	r, t ),
is defined by

	P(	r, t ) =
N∑

i=1

mi	vi(t )φ[	r − 	ri(t )]. (3)

The macroscopic velocity field, 	V (	r, t ), is then defined as the
ratio of momentum and density fields,

	V (	r, t ) = 	P(	r, t )/ρ(	r, t ). (4)

To define the mean stress field, we use a very elegant
and mathematically consistent definition of mean stress σαβ

introduced by Goldhirsch [31,32]. Following his approach, the
total stress field σαβ is composed of a kinetic stress field σ k

αβ

and a contact stress field σ c
αβ defined as follows. The mean

contact stress tensor is

σ c
αβ = −1

2

N∑
i=1

Nci∑
j=1

fi jαri jβ

∫ 1

0
φ(	r − 	ri + s	ri j )ds, (5)

where the sum runs over all the contacting particles i, j, whose
center of mass are at 	ri and 	r j , respectively. Moreover, 	fi j

accounts for the force exerted by particle j on particle i and
	ri j ≡ 	ri − 	r j .

Similarly, the mean kinetic stress field is

σ k
αβ = −

N∑
i

miv
′
iαv′

iβφ[	r − 	ri(t )], (6)

where 	v′
i is the fluctuation of the velocity of particle i, with

respect to the macroscopic velocity field.

	v′
i (t, 	r) = 	vi(t ) − 	V (	r, t ). (7)

Based on the previous theoretical framework, we imple-
ment a postprocessing tool, which allows us to examine all
the micromechanical properties of the particulate flow.

FIG. 2. Discharged mass M(t ) versus time, obtained for various
values of the orifice diameter D and frequency of rotation f .

III. RESULTS AND DISCUSSION

A. Particle flow rate behavior

As a starting point, we explore the impact of the frequency
of rotation f on the macroscopic response of the system,
namely the particle flow rate Q. Aiming for this objective,
we carried out a systematic study while varying the orifice
size D and f . Figure 2 illustrates the discharged mass M(t )
versus time, obtained for various values of D and f . Note that
the shear perturbation introduced by the motion of the bottom
wall leads to a continuous particle flow, even for orifices as
small as D = 11.8 mm ≈2 in terms of the particle diameter.
As expected, the flow fluctuation decreases when the size
of the orifice increases. Thus, in all cases, we can identify
continuous flowing intervals where the discharged mass M(t )
increases linearly with time. It is important to mention that in
static conditions (i.e., f = 0), at D lower than approximately
4.5×d , the flow is quickly interrupted by the formation of
stable particle arches and permanent clogs appear.

Figure 3 shows the flow rate Q as a function of the exit
size D for three values of the rotational frequency f = 0.1,

0.3, 1.0 in Hz. The particle flow rate rises nonlinearly as the
orifice size increases, approaching the expected limit of Bev-
erloo correlation D

5
2 [4]. This tendency was well described by

Eq. (1) of the phenomenological model introduced in Ref. [8].
The best fits according to Eq. (1) are presented by the con-
tinuous lines in Fig. 3. In all cases, we find that the fitting
parameter C is practically constant within our numerical un-
certainties, regardless of the changes in rotation frequency.
However, both α1 and α2 change monotonically with f , sug-
gesting that the magnitude of the shear perturbation influences
the system dilatancy in the region around the orifice.

Interestingly, Eq. (1) implies zero mass flow rate at orifice
size Dmin = α2 ln α1. Using the obtained α1 and α2 sets of
values from the fittings, the inset of Fig. 3 shows the plot
of Dmin vs. f dependence. In the explored regime, the data
seem to fall on a decaying straight line when increasing the
rotational frequency. However, one should expect Dmin to
approach nonlinearly to the physical limit Dmin = d when f
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FIG. 3. Mean flow rate Q versus exit diameter D, obtained for
three different values of the frequency of rotation. Lines are best fits
using Eq. (1) as proposed in Ref. [8]. The cross symbols represent
the experimental data from Ref. [19].

increases indefinitely. The value of Dmin( f ) can be interpreted
as the transition orifice diameter that separates the intermittent
flow regime to the permanent clogged one, and α1 and α2 carry
information of the clogged-intermittent flow transition. Al-
though we focused our attention on large-enough orifice sizes
that guaranteed continuous flow conditions, the extrapolation
of Dmin( f = 0) resulted in approximately 1.52×d , which is in
good agreement with previous experimental findings [5].

Figure 4 shows the variation of flow rate Q with respect to
f , obtained for various orifice sizes. It is important to mention
that the data of Q are time-averaged values computed dur-
ing flowing intervals. This becomes relevant for small orifice
sizes (D � 3.3 d) when flow rate fluctuations are signifi-
cant. For convenience, the flow rate values are rescaled with
the value Q f =1, which corresponds to f = 1.0 Hz. Intrigu-
ingly, depending on the size of the aperture D, two distinct

FIG. 4. Normalized mean flow rate versus frequency of rotation
f , obtained for various exit diameters D. The error bars represent
95% confidential intervals. In the case f = 0, permanent clogs de-
velop when D/d < 4.8.

FIG. 5. Normalized flow rate versus rotational frequency f for a
silo with exit diameter D = 28 mm (a), 30 mm (b), 36 mm (c), and
48 mm (d). In each case, the error bars represent confidence intervals
for the mean with 95% of confidence level. In all cases, the cross
symbols represent the experimental data from Ref. [19].

behaviors emerge. When D � 3.3 d , the flow rate Q is a
strongly increasing function of f . For D > 3.3 d , however, Q
changes smoothly with f , denoting a weakly nonmonotonic
behavior. Taking a closer look at the second regime, Fig. 5
illustrates the data obtained for large orifices, focusing on
the specific data range. Even though the changes are of the
order of 5% of Q f =1, the existence of a minimum is obvious,
denoting a change in the discharge process, i.e., the flow rate
decreases for low rotation speeds starting from f = 0, and

FIG. 6. Color map representing the packing fraction spatial pro-
files ϕ(r, z, t ) obtained for D = 36 mm (6.20 D/d ) and various
rotational frequencies in row I ( f = 0 Hz), in row II ( f = 0.3 Hz),
and in row III ( f = 1.0 Hz). The corresponding time is indicated
in the top panel. In computation, we use a truncated Gaussian
coarse-graining function φ(	r) with a coarse-grained scale equal to
the particle radius.
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FIG. 7. Color map representing the velocity field v(r, z, t ) ob-
tained for D = 36 mm (6.20 D/d ) and various rotational frequencies
in row I ( f = 0 Hz), in row II ( f = 0.3 Hz), and in row III
( f = 1.0 Hz). The streamlines are also illustrated. The corresponding
time is indicated in the top panel. In computation, we use a truncated
Gaussian coarse-graining function φ(	r) with a coarse-grained scale
equal to the particle radius.

then at a certain value of f , it starts to increase. Very recently,
Kiwing To and coworkers [19] found this trend experimen-
tally. Remarkably, our numerical procedure reproduced those
outcomes quantitatively with high accuracy.

The two most frequent flow patterns in silos and bins are
the funnel flow and mass flow. Thus, when the stress profile
along the silo is not smooth enough to ensure sliding along
its walls, a funnel flow develops. Consequently, particles flow

FIG. 8. Color map representing the azimuthal velocity field
vθ (r, z, t ) obtained for D = 36 mm (6.20 D/d ) and various rotational
frequencies in row I ( f = 0 Hz), in row II ( f = 0.3 Hz), and in row
III ( f = 1.0 Hz). The corresponding time is indicated on the top
panel. In computation, we use a truncated Gaussian coarse-graining
function φ(	r) with a coarse-grained scale equal to the particle radius.

FIG. 9. Spatial profiles at the orifice (z = 0) for D = 36 mm
(6.20 D/d ) in (a) average density field 〈ϕ(r)〉, (b) average momen-
tum on the vertical direction 〈Pz(r)〉, and (c) average velocity on
the vertical direction 〈Vz(r)〉. In each case, finding corresponding to
rotational frequency [ f = 0; 0.3; 1.0] in Hz are shown.

through a channel at the silo center and a stagnant zone de-
velops close to the walls. In mass flow, however, the stress
profile is smooth enough to ensure the flow of all the particles
within the system. In Ref. [19], the authors speculated that the
change in the discharge process with rotational shear might
be related to a crossover in the flow pattern from a funnel
flow to mass flow. While their arguments were based only
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FIG. 10. Spatial profiles of kinetic pressure 〈pk (r, z)〉 = Tr(〈σ k (r, z)〉t ), time-averaged during flowing states. The figures display data
obtained for two sizes of the orifice; row I: D = 20 mm (3.45 D/d ) and row II: D = 36 mm (6.20 D/d ). The corresponding rotational
frequency is indicated in the top panel. In computation, we use a truncated Gaussian coarse-graining function φ(	r) with a coarse-grained scale
equal to the particle radius.

on visual inspection of the top surface of their experimental
system, we can directly observe the change in the flow pat-
tern from the macroscopic fields measured in our numerical
simulations.

B. Continuous field view

The numerical simulations allow us to access the microme-
chanical details of the granular flow, both inside the silo and
at the orifice. Using the DEM data of each individual par-
ticle, we computed the macroscopic fields: volume fraction
ϕ(	r, t ) = ρ(	r, t )/ρp, macroscopic velocity 	V (	r, t ), and kinetic
stress σ k (	r, t ). Taking advantage of the cylindrical symmetry,
we average the vertical and radial components of the studied
quantities within an azimuthal representative volume element
of uniform size. As a consequence, the macroscopic fields
result in cylindrical coordinates r and z in units of the radius
Rc of the cylindrical silo.

Taking advantage of a detailed continuum description, we
clarify the nature of the change in the discharge process, i.e.,
the flow rate decreasing for low rotation speeds, followed by
an enhancement for high rotation speeds. Figure 6 illustrates
the volume fraction fields ϕ(r, z, t ) as color maps, cover-
ing the entire system. The data are displayed in three rows,
which correspond to three different rotational frequencies
[ f = 0 ; 0.3; 1.0] in Hz, respectively. Moreover, the fields
allow us to visualize the time evolution, and each column
corresponds to a specific time [t = 3; 6; 9; 11] in seconds.
Note that in the static case ( f = 0) funnel flow develops: The
particles mainly flow through the central core of the silo (see
also supplementary material). As a result, the volume fraction
field ϕ(ρ, z, t ) is heterogeneous, a shear band develops, and a
stagnant region is observed close to the lateral wall. Moreover,
right from the beginning of the process, a depression appears
at the center of the top surface, and its size increases as the
silo empties.

When the bottom wall rotates (Fig. 6, rows II and III),
however, particles located close to the base are mobilized.
Consequently, the rotational shear perturbs the system even
at large distances from the bottom, reordering events concate-
nate, and the system fluidizes significantly. As a result, no
stagnant region forms, the top surface remains flat, and the
appearance of the depression is notably delayed. All of these
are signatures of mass flow behavior. Pascot et al. [18] found
similar behavior in a quasi-2D silo under vertical vibrations:
At low vibration amplitude, an increase of vibrations reduces

the size of the stagnant zones, and, consequently, the flow rate
decreases as well.

The differences in the bulk flow patterns are more evi-
denced by the spatial features of the velocity field 	V (r, z, t ).
Figure 7 displays the streamlines of 	V (r, z, t ), while the colors
represent the magnitude of the speed. When the bottom of
the silo is not moving (row I), the velocity field is rather
heterogeneous, and strong velocity gradients emerge in both
radial and vertical directions. Besides, the streamlines are
considerably curved, drawing a complex flow pattern over the
whole system. Note that at the center of the silo, the magnitude
of the speed v(r, z, t ) is significantly larger, in comparison
with the region close to walls (stagnant zone), and v(r, z, t )
rises notably in the region of the orifice.

On the other hand, the movement of the bottom wall
perturbs the systems dynamics significantly, resulting in pro-
nounced changes in the velocity field (Fig. 7, rows II and III).
It induces smooth enough conditions, which ensure that par-
ticles in the whole container can move downward. We found
that the down-up collisional energy transmission reduces the
strength of the velocity gradients in both radial (not shown)
and vertical directions. Thus, as the rotational speed increases,
the perturbation impacts higher locations, where the velocity
gradient in the radial direction practically diminishes.

Figure 8 displays the azimuthal velocity vθ to complement
the results presented in Fig. 7 and reaffirm the fact that the
stagnant zone is mobilized when f is high enough. Comparing
the rows, one can see that the impact of the rotational shear af-
fects not only the radial dependency of the tangential velocity
but also its dependency with the height.

Let us focus on the region near the orifice, where we
perform a quantitative analysis of the macroscopic fields,
examining their relation with the resulting particle flow rate
Q. First, we compute the macroscopic solid fraction ϕ(r, z, t ),
momentum 	P(r, z, t ), and velocity 	V (r, z, t ) fields at the cross
section of the orifice, located at z = 0, assuming that the
system reaches a steady state such that the time average of
the fields are well defined, namely 〈ϕ(r)〉, 〈 	P(r)〉, and 〈 	V (r)〉.
Figure 9 displays the average density field 〈ϕ(r)〉, the av-
erage vertical momentum 〈Pz(r)〉, and the average vertical
velocity 〈Vz(r)〉 for three values of the rotational frequency
[ f = 0 ; 0.3; 1.0] in Hz. Interestingly, the vertical momentum
[Fig. 9(b)] has a weak but noticeable nonmonotonic behavior
when changing f , i.e., the values of 〈Pz(r)〉 at the orifice are
larger for f = 0 and f = 1.0 Hz compared to the case of
f = 0.3 Hz. Besides, the same applies to the density profiles
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〈ϕ(r)〉. The velocity profiles, however, change less, and the
change is monotonic with rotation speed.

Mass conservation requires that the particle flow rate cross-
ing the section of the orifice is Q = ∫

S
	P · d 	A = ∫

S ρ · 	V · d 	A.
Thus, the data for 〈Pz(r)〉 [Fig. 9(b)] at the orifice are consis-
tent with the nonmonotonic behavior of the Q vs. f curves
calculated from particle data (Fig. 5) and those obtained
experimentally (Fig. 7 of Ref. [19]). Stepping forward, our
numerical data suggest that the nonmonotonic behavior of the
momentum is rather caused by solid-fraction changes than
by macroscopic velocity changes. Thus, the micromechanical
analysis clearly indicates that the shear perturbation created
by the rotating wall induces a nontrivial system dilatancy in
the region of the orifice and, consequently, a nonmonotonic
behavior of the flow rate when changing the rotation speed.

In granular flows, the kinetic stress, which is the stress
associated with velocity fluctuations, can be used to identify
relevant length and timescales as well as dynamic transitions
[24,25]. Figure 10 displays color maps that represent the
spatial profiles of kinetic pressure 〈pk (r, z)〉, which is defined
as the trace of the kinetic stress tensor [Eq. (6)], namely
〈pk (r, z)〉 = Tr(〈σ k (r, z)〉t ). For clarity, Fig. 10 illustrates data
for two sizes of the orifice, row I: D = 20 mm = 3.45 D/d ,
and row II: D = 36 mm = 6.20 D/d , at rotational frequency
from f = 0.0 Hz to f = 1.0 Hz. When computing the fields,
we use a truncated Gaussian coarse-graining function φ(	r)
with a coarse-grained scale equal to the particle radius, and
the color maps represent the time-averaged values computed
during flowing intervals. In general, we find that the values
of kinetic pressure are more significant in the region of the
orifice and are diminishing with height. This suggests that the
mass transport in the silo is mainly advective. However, as
the particles get closer to the exit, their individual movements
decorrelate from the global flow. Both for static conditions or
for systems with rotating bottom, a region resembling a free
fall arch is observed, where the kinetic pressure is maximum.
After crossing this region, the particles fall mainly driven by
gravity. Interestingly, in row II one can see a slightly non-
monotonic change in the color map intensity, when increasing
the frequency.

In order to better quantify the effect of rotation speed on
the stress associated with velocity fluctuations, we calculated
the mean kinetic pressure 〈pk〉 = Tr(〈σ k〉ts) in the region of
the orifice. This was done by averaging the mean kinetic
pressure in a cylindrical region centered at the orifice with
a height of δh = R and a radius of R. Here R = D/2 is the
radius of the orifice (see dashed rectangles in Fig. 10). As we
see in Fig. 11(a), for small orifices, the mean kinetic pres-
sure increases monotonically with increasing rotation speed.
Presumably, the rotational shear induces a monotonically in-
creasing dilatancy, which reduces the stability of the arches.
As a result, the volumetric flow rate also increases mono-
tonically. For large orifices [see Fig. 11(b)], however, we
observe that the kinetic pressure 〈pk〉 changes nonmonoton-
ically. It drops to a minimum value (about 95% of its value
at f = 1 Hz) at some intermediate values of f . In this range,
the region with maximum kinetic pressure gets slightly more
diffused than at small or large values of f (see Fig. 10).
Apparently, this nonmonotonic trend in the kinetic pressure
is connected to changes in the discharge process, a flow rate

FIG. 11. Mean kinetic pressure 〈pk〉 = Tr(〈σ k〉ts ), averaged in
the region of the orifice as a function of the rotation frequency f .
(a) Data obtained for D = 15 mm, D = 20 mm, and D = 36 mm.
(b) Data 〈pk〉1=(〈pk〉 normalized by its value at f = 1 Hz) for
D = 28 mm, D = 30 mm, D = 36 mm, and D = 48 mm. In each
case, the error bars represent confidence intervals for the mean with
95% of confidence level.

decreasing for low rotation speed, whereas flow rate enhance-
ment for high rotation speed [19].

Summarizing, we reported DEM simulations and coarse-
graining analysis, which reproduced a granular flow quanti-
tatively in a cylindrical silo, with a bottom wall that rotates
horizontally with respect to the lateral wall [19]. We find that
depending on the size of the aperture D, two distinct behaviors
emerge. For small orifices, the flow rate Q results in a strongly
increasing function of the rotational frequency f . For large
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D, however, Q changes smoothly with f , denoting a slightly
nonmonotonic behavior. Stepping forward, our findings shed
light on the nature of the flow when changing the rotational
frequency and prove that changes in the discharge process are
directly related to changes in the flow pattern, from funnel
flow to mass flow, with increasing f . We also observe that
the momentum profiles at the orifice present a nonmonotonic
behavior when changing f . Remarkably, these findings are
consistent with the nonmonotonic behavior of the flow rate
obtained from particle data numerically and in laboratory
experiments [19]. Additionally, a close examination of the
density and velocity profiles indicates that the nonmonotonic
behavior of the momentum is caused by the change in density
instead of the changes in macroscopic velocity. Examining the
profiles of kinetic stress, for small orifices, we show that the
rotational shear induces a monotonically increasing kinetic

pressure pk and dilatancy. This seems to reduce the stability of
arches, and, as a result, the volumetric flow rate monotonically
increases as well. For large orifices, however, we detected that
the mean kinetic pressure 〈pk〉 changes nonmonotonically,
which explains the nonmonotonic behavior of Q with the
strength of the rotational shear.
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