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Glossary

Arch Set of mutually stabilizing particles, mean-
ing that if any one of them is removed the
whole set will collapse.

Clogging Halt of the flow of macroscopic parti-
cles caused by the development of a local
structure (an arch in two dimensions or a
dome in three) which brings the whole system
to a rest state.

Granular matter Material composed of inde-
pendent, macroscopic particles that interact
solely by contacts or collisions. As the latter
are intrinsically dissipative, energy is not con-
served, and therefore, the system typically
adopts metastable configurations.

Granular Silo Container in which granular mat-
ter is stored. The emptying of silos is generally
performed through an orifice at the bottom,
although other alternatives (such as the dis-
charge through lateral orifices or by means of
extraction belts) are also possible.

Unclogging Destabilization of a clogging arch
by means of an energy input which must be
external for the case of inert granular media,
but can be also internal for other systems such
as active matter.

Definition of the Subject

Clogging is defined as an arrest of the flow of
macroscopic particles caused by the formation of
a local arrangement that is generally metastable.
Usually, clogging occurs at bottlenecks when the
neck-to-particle size ratio is slightly above the
unity. Although clogs may appear in a wide vari-
ety of systems – such as cells, colloids, or live
beings – we will focus here on clogging in gran-
ular matter as a prototypical and simple case.
Understanding clogging in granular systems is
important from the industrial and environmental
viewpoint. Indeed, clogging in silos or hoppers
may completely halt a production line in food or
pharmaceutical industries. Also, a safe and effi-
cient handling of raw materials in mining is
important to prevent environmental harm and to
reduce production costs. But even in granular
matter, understanding clogging poses a tough
challenge as the arch formation is essentially a
local phenomenon that drives the whole system
to a sudden arrest. Contrary to other physical
processes like jamming, the definition of average
magnitudes – such as volume fraction, for
instance – is not straightforward.

Clogging is intimately related to the formation
of arches and their stability. Therefore, introduc-
ing an excitation at the outlet or nearby can be a
suitable strategy to destroy the clog and resume
the flow. Thus, when a vibration is applied at the
bottom of a silo, the flowmay become intermittent
resembling the dynamics observed in other active
systems flowing through constrictions. The phys-
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ics underlying clogging, on one side, and
unclogging, on the other side, is not the same, as
revealed by the different nature of their statistical
properties. In the following sections we will deep
into this question and others, such as the argu-
ments on the existence or not of a critical outlet
size above which clogging is not possible, a sub-
ject discussed since mid last century.

Introduction

The dense flow of granular materials through a
narrowing is a complex situation. At the bottle-
neck, the system undergoes a transition from fluid
like behavior (above the opening) to gas like
behavior (after the neck, where the contacts
among particles are sparse). This flow becomes
even more complicated when the aperture is only
a few times larger than the typical particle size; in
this scenario there exists the possibility that a
metastable structure forms spanning the whole
outlet, causing a complete arrest of the grains.

Although by the end of the last century an
abundant number of devices were created – and
even patented – to prevent clogging, the problem
fundamentals were only scarcely studied at that
time. As a matter of fact, most of the works were
aimed at determining the size of the outlet that
guaranteed a continuous flow through the silo
outlet (Arnold and McLean 1976; Drescher et al.
1995; Jenike 1964; Walker 1966). Conversely,
there was a remarkable interest on investigating
the flow properties in the silo discharge; the focus
was mostly put on the flow rate dependence on the
outlet size (Beverloo et al. 1961). In most cases,
the orifices were large enough to prevent clog-
ging, which was considered as an aside problem
to be avoided. Indeed, from an applied point of
view, clogging avoidance was the main concern at
that time and this is reflected on the focus of the
investigations that were performed.

In the last two decades, the study of clogging in
granular silos has regained the attention of the
scientific community. Among others, two reasons
may be pointed out for this appealing. First, clog-
ging is an apparently simple everyday problem
(we all have to shake the saltcellar to pour salt in

our food) with a fundamental interest, where deep
questions arise, and it is accessible to researchers
with limited resources. Second, given the inert
nature of the grains, clogging in silos has been
taken as a standard against which to compare
clogging in other, more complex systems. As
examples, we pinpoint the flow through bottle-
necks of colloids, microbial populations, mechan-
ically self-driven robots, suspensions, pedestrians,
animals, and other kinds of activematter. Given the
different nature of the particles composing these
systems, it becomes obvious that the analogies are
only qualitative; despite this, some of the models
and analytical approaches introduced for the gran-
ular case can be used as a starting point for more
sophisticated elaborations pertinent to those other
systems.

Remarkably, the number of applications in
which clogging is a paramount concern is much
larger if all these related many-body systems are
included. For example, clogging of a dense micro-
particle suspension can occlude microchannel
constrictions, a behavior that is exploited in med-
icine to provoke embolization of blood vessels in
order to shrink a tumor. Besides, the formation of
clogs in suspensions of larger particles is crucial in
determining the lifetime of subsurface flow treat-
ments, a widely used alternative to remove pollut-
ants from wastewater. Similarly, clogging of
suspended hydrated particles is a major issue
concerning oil and gas transport through pipe-
lines. A reasonable understanding of clogging is
also necessary to guarantee a good performance of
slit-structures, which are rigid barriers with one or
more slits built in craggy mountains to reduce
avalanche hazard. Last but not least, clogging
has also occasionally happened in crowds trying
to evacuate enclosed areas in highly competitive
and dire situations.

In all the examples given above, a geometrical
constriction (i.e., a bottleneck) is at play. How-
ever, it has been recently shown that this specific
geometry is not imperative to observe clogging.
Indeed, if the particles are sufficiently confined, a
blockage may also show up in a straight channel.
This happens for instance in underground mining,
where raw materials driven by gravity are con-
veyed through vertical pipes from one level of the
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mine to another. In this case, the blocking arches
do not rest on the silo bottom or hopper walls, but
lean against the vertical walls of the pipe. This is
possible due to frictional forces, and the effect is
magnified because of the geometrical frustration
introduced by the flat faceted stones that are typ-
ically transported in these channels. Although
here we will focus on the bottleneck geometry,
several works about clogging in straight channels
and obstacle arrays – an interesting configuration
that may turn out to be useful for linking clogging
and jamming behavior – will also be described.

Clogging

Clogging as a Stochastic Process
Let us consider a container full of grains
discharged through an orifice at the bottom
which is only a few times larger than the typical
particle size. In this scenario, the probability that a
clogging arch develops is constant over time, that
is, it is a Poisson process. This fact implies that:

1. There is no way to predict exactly when the
system will get clogged.

2. Clogging is a history independent process:
even if the system has been flowing for a lot
of time, the probability of getting clogged
remains the same.

3. If we define the avalanche size as the number
of grains flowing out the silo before an arch
clogs it, the distribution of these sizes will
follow an exponential tail.

4. There is no correlation among the size of con-
secutive avalanches.

5. The average avalanche size is well defined.

The first evidence of the exponential nature of
the avalanche size distribution was reported by
Clément et al. (2000) as shown in Fig. 1. Subse-
quently, Zuriguel et al. corroborated this feature
and provided an interpretation in terms of a prob-
abilistic model (Zuriguel et al. 2003). The idea
was to assign the same probability of clogging pc
to all particles inside the silo. Therefore, the prob-
ability that a particle passes through the outlet
without forming a clog can be written as pp ¼ 1 –

pc, and the probability of getting an avalanche of
s particles can be described by Eq. 1 (note that the
original equation proposed was n sð Þ ¼ psp p

2
c as it

was considered also the precedent clogging event
but it was posteriorly (Zuriguel et al. 2005)
corrected to Eq. 1).

n sð Þ ¼ psp pc ð1Þ

That is, the probability of getting an avalanche
of size s is obtained by multiplying s times the
probability that a particle passes through the exit
and one time the probability that the particle clogs
it. This definition allows a straightforward con-
nection between the first moment of the distribu-
tion (the mean avalanche size) and pc (Janda et al.
2008):

sh i ¼ pp
pc

ð2Þ

In most of the scenarios investigated the ava-
lanches are larger than about 100 particles. In this
case pp ’ 1, and therefore sh i ’ p�1

c .
Another salient feature reported in Zuriguel

et al. (2003) was the apparent lack of correlation
among the size of consecutive avalanches (see
Fig. 2). If we accept the hypothesis of lack of
memory in the passage of particles within a single
avalanche, it is not surprising that the statistics of
consecutive avalanches are independent.

Although the probabilistic model leading to
Eq. 1 was obtained by assigning to each particle
a given probability of forming a clog, the same
reasoning is valid if groups of particles are con-
sidered instead, as stated in Zuriguel et al. (2003).
Indeed, it is obvious that the development of a
clogging arch is a process involving several par-
ticles. In order to account for this issue, Masuda
et al. (2014) devised a model in which the arch
formation region was split into discrete sites that
can contain at most one particle. By defining a
particle inflow rate a and different outflow rates
depending on the occupancy of neighboring sites
(see Fig. 3), different dynamics were observed
including flow intermittency and clog formation.
The later occurred when all sites were filled.

Statistical Mechanics of Clogging 3



Remarkably, this model recovers the exponential
distribution of avalanche sizes.

A similar approach of dividing the space in
cells was in fact implemented a decade before by
Helbing and coworkers in a work (Helbing et al.
2006) where they presented an analytical model
which served for both granular bottleneck flows
and pedestrian escape dynamics through a
narrowing. Based on a continuity equation in
polar coordinates, they observed shockwaves
when the inflow exceeds the maximum outflow.
More importantly for the case we are analyzing
here, their model gave rise to three different
regimes depending on the exit size: no flow for
small exits, intermittent flow for medium size
doors, and continuous flow for large enough open-
ings. In the intermittent flow scenario, exponen-
tially distributed avalanche sizes were reported in
good agreement with experimental data.

Up to now, we have described several works
where the exponential distribution of avalanche
sizes is observed and explained in different, but
similar, ways. All share the idea that clogging is a
stochastic process where the probability of a clog
depends on the outlet size, as will be explained
below. The exponential distribution of avalanches
is considered as a hallmark of the flow of discrete
particles through bottlenecks and has been also
reproduced by many authors in different geome-
tries and scenarios (Kondic 2014; Pérez 2008;
Sheldon and Durian 2010). Nevertheless, there is
an exception to this accepted rule: when the orifice
is strongly asymmetric the avalanche statistics

resemble more a power law than an exponential
distribution. This was discovered by Saraf and
Franklin when working with wedge hoppers hav-
ing an orifice that was around 20 times longer than
wider (Saraf and Franklin 2011). The explanation
given for this feature assumed that the clogging
probability of strings of particles depends on their
orientation. By considering a uniform distribution
of probabilities and integrating over all the allow-
able string orientations, an expression is obtained
for the avalanche size distribution that depends on
the exit geometry. In particular, the well-known
exponential distribution is generated for isometric
(round) orifices, whereas for anisometric exits the
expression tends to an asymptotic value that
scales as n(s) ~ s�2.

Does a Critical Outlet Size Exist?
The supply of a continuous flow of grains through
the orifice (i.e., preventing clog formation) was
the ambition of the pioneering engineers who
studied silo clogging. For this reason, the research
since the 1960s has been primarily focused in
finding the outlet size that guaranteed a complete
absence of clogging (Arnold and McLean 1976;
Drescher et al. 1995; Jenike 1964; Walker 1966).
The approach followed in these works was to set
up the stress-strain rate relations and analyze the
critical factors which ensured continuous gravity
flow. From this, a typical orifice value of around
5 to 10 times the particle size was found for non-
cohesive grains.

Statistical Mechanics of
Clogging, Fig. 1 Rescaled
mass distributions of
avalanches for different
outlet sizes a, as indicated in
the legend. Pa(M) is the
probability density for an
avalanche with mass M for
an outlet size a. The average
avalanche mass is hMai.
The solid line displays an
exponential decay.
(Reprinted from Clément
et al. (2000))
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Instead, modern approaches involve statistical
analysis of the avalanche sizes or clogging prob-
ability, and their dependence on the outlet size. In
the following subsection we summarize some
recent advances in this area.

Statistics of Avalanches
In their trailblazing work K. To et al. (2001)
measured a quantity they called J – the probability
that a two-dimensional silo filled with a fixed
number of grains gets jammed before emptied –
for different outlet sizes (Fig. 4). The most salient
feature they observed was a strong dependence of
J on the outlet size, which suggested a transition to
a state where J ¼ 0 (i.e., complete absence of
clogging) for an opening size of around 5 to 7 par-
ticle diameters. In order to describe this transition,
the authors developed a model in which the clog-
ging arch was envisaged as a restricted random
walker. In this model, the particles conforming the
arch took random positions with some restrictions:

1. The random walker goes from left to right.
2. The arch has to be convex at all sites to guar-

antee its stability.
3. The particles cannot interpenetrate each other.
4. The total span of the arch has to be larger than

the outlet size.

This model successfully described the jam-
ming probability dependence on the outlet size
for the experimental conditions implemented in
that work, showing values of J tending to zero for
large enough outlet sizes. However, the question
about the existence of a transition (in the thermody-
namic sense) from a jammed state to an unjammed
one remained open.

This problem was approached by Zuriguel
et al. (2005), who used a three-dimensional silo
to experimentally investigate the clogging proba-
bility in a wide range of outlet sizes, including
some cases with a very low probability of clog-
ging. Remarkably, they explored outlet sizes in
which the mean avalanche size was above 106

Statistical Mechanics of
Clogging, Fig. 3 Arch
formation model in which
the arch region is divided in
several cells of about the
size of a particle (top). In the
bottom, one-dimensional
projection of the arch where
arrows into a site represent a
particle “inflow” at a rate a.
The arrows pointing out of
sites indicate the “outflow”
which is defined by three-
site interactions. When a
filled site is besides an
empty site, the outflow rate
is defined by b. When a
filled cell is surrounded by
two filled cells, the outflow
rate is g; and when a filled
cell is between a filled cell
and a boundary, the outflow
rate is d. (Reprinted from
Masuda et al. (2014))
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particles and proposed Eq. 3 as the best fitting
expression for their data. As it is evidenced in
Fig. 5, the fitting was quite good with the following
parameter values: g ¼ 6.9� 0.2, A¼ 9900� 100,
and Rc¼ 4.94� 0.03. Notably, the figure obtained
for the critical outlet size was similar to previous
predictions based on the stress-strain rate relations
reported at the end of the twentieth century. The
unusually high value of the exponent, apart from
manifesting the strong dependence of the ava-
lanche size on the outlet size, also hinted to the
need of looking for another order parameter

(instead of the avalanche size) that better describes
the clogging transition. In addition, it was shown
that R – the outlet size rescaled by the particle
diameter – is the most important parameter on
determining the clogging probability. In fact,
experiments with different outlet sizes and particle
diameters, but the same R, displayed very similar
results (Fig. 5, right). Also, the effect on clogging
of the material properties of the particles was
revealed to be rather small.

sh i ¼ A

Rc � Rð Þg ð3Þ

Statistical Mechanics of
Clogging, Fig. 4 Left:
probability that a silo gets
jammed J versus the outlet
size. Data correspond to
hoppers of different angles
f: circles (f ¼ 34�),
triangles (f ¼ 60�), and
squares (f ¼ 75�). Right:
Sketch of an arch clogging a
hopper of angle f with an
exit size R. The angles
among consecutive
particles are defined, from
left to right, as y1, y2,. . .
yn–1. (Reprinted from To
et al. (2001))
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Shortly after the introduction of this power law
fit, K. To suggested that two other expressions
were able to fit the data equally well (at least for
experiments in two-dimensional silos) (To 2005).
One of such expressions (Eq. 4) was a stretched
exponential which did not involve a critical outlet
size. Later on, this result was given additional
support by Janda et al. (2008) for the two-
dimensional case, a scenario for which the origin
of the equation was related with the statistics of
the arch lengths obtained in static deposits of
grains. Nevertheless, the goodness of Eq. 4 to fit
the outcomes of a three-dimensional silo was
challenged, suggesting that the fitting was neither
satisfactory when raising R to a power of 3 (the
dimension of the system).

sh i ¼ A eBR2 ð4Þ

Following another line of reasoning, Thomas
and Durian (2015) build upon experimental data
of avalanche sizes in a wide variety of situations
(hoppers with several tilt angles, orifices with
different geometries, particles of diverse nature,
and so on) to show that the three fitting expres-
sions proposed by K. To worked nicely in three
dimensions (Fig. 6). Moreover, the origin of the

sh i ¼ AeBR3

relationship was justified by

considering all possible arch configurations and
evaluating the amount of them that would be
effectively able to block the orifice. The same
approach was afterwards further elaborated by
researchers of the same group (Koivisto and
Durian 2017) to successfully evaluate the effect
of interstitial fluid on the clogging probability.

Dynamical Signatures of Clogging
An alternative way of approaching the question of
whether there is a critical outlet size above which
clogging would never happen is to look for
dynamical flow features that could reveal any
difference at both sides of the hypothetical transi-
tion point. The first proof of the existence of such
differences was reported by Longhi et al. (2002) in
a work where they characterize the impulses
delivered to the wall of a 2D hopper. They found
that the distribution of impulses decayed expo-
nentially for impulses above the average, in the
same way that the forces in a static granular pack-
ing do (Mueth et al. 1998). This happens indepen-
dently on the hopper size, which only affects the
impulse distribution for values below the average.
However, these small impulses display a smooth
evolution when going from continuous to inter-
mittently jamming flows; so there was not any
signature of a proper clogging transition. Never-
theless, as reported in the same work, the

a b

Statistical Mechanics of Clogging, Fig. 5 Left: mean
avalanche size versus the exit size R. In the inset, mean
avalanche size versus (Rc – R)�1 in logarithmic scale. In
both cases the fit corresponds to Eq. 3 with the parameters
indicated in the text. Right: mean avalanche size vs R in a

semilogarithmic scale; data correspond to spherical grains
of different materials (delrin, glass, lead, and steel) and
different particle diameters (from 1 to 3 mm). (Reprinted
from Zuriguel et al. (2005))
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distributions of time intervals among consecutive
collisions did hint an approach to jamming as they
tend to a power law distribution with an exponent
�3/2 when the outlet size was progressively
reduced (see Fig. 7).

An additional signature of clogging has been
identified by analyzing the fluctuations of the flow
rate. In this regard, Janda et al. (2009a)
implemented high-speed video recordings to
detect the passage of every individual grain
through the outlet. With this information the
flow rate was calculated in very short temporal
windows (of the order of 0.1 s) for different outlet
sizes. Interestingly, the distributions of the instan-
taneous flow rate q were Gaussian for large outlet
sizes (where clogging never happens), whereas
they became strongly asymmetric for small outlet
sizes (where clogging eventually occurs). In the
latter case, a strong increase of the number of

events toward small values of q was found,
displaying a peak at q ¼ 0 that was related with
the formation of unstable clogs (see Fig. 8).
Therefore, a relationship between the appearance
of unstable clogs and stable ones was established,
and it was suggested that the total absence of
unstable clogs for large outlet sizes was reflecting
the existence of a “clogging free” region.

A similar increasing of the fluctuations when
reducing the outlet size was reported by Thomas
and Durian (2016). In particular, they measured
the relative velocity fluctuations and the skewness
of the velocity distribution. They also quantified
the intermittency by means of a descriptor based
on the two-sample Kolmogorov-Smirnov
statistic. All these estimators were shown to
grow for flows more prone to clogging, that is,
when the outlet size was reduced. However, the
evolution of these magnitudes with R was smooth

Statistical Mechanics of
Clogging, Fig. 6 Left:
mean avalanche size
(in grams) versus the exit
size. Data for hopers with
different tilt angles as
indicated in the legend. The
three line types represent
different fitting alternatives.
Right: the same data and fits
using the outlet size raised
to the third power in the
abscissa axis. (Reprinted
from Thomas and Durian
(2015))
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and no discontinuity or kink was observed for a
hypothetical critical outlet size. Therefore, this
analysis undermined the hypothesis of a critical
outlet size, supporting instead the notion that
clogging is always possible, irrespective of the
outlet size.

Incipient Clogging Let us finally mention here a
couple of works where different dynamical signa-
tures of incipient clog formation were reported. In
1993, Sakaguchi et al. (1993) suggested that the
flow in a 2D silo with a small orifice consisted on
an alternation of flows coming from both sides of
the outlet. At the instant when the transition (flow

from one side to flow from the other side) occurred,
the grains collided, thus facilitating the formation
of the arches that would lead to clogging. Alterna-
tively, Tewari et al. (2013) performed numerical
simulations of silo discharge and gridded the
space into a number of boxes in which the vertical
velocity was calculated. Then, the boxes with an
instantaneous velocity below half the average were
assigned to clusters. From these data, it was
observed that just before the appearance of a clog,
there was a notable increase of the area covered by
these clusters comprising regions with a markedly
low velocity. In the same way, after the flow was
resumed, the area of these clusters decreased, as

Statistical Mechanics of
Clogging,
Fig. 7 Logarithmic plot of
the probability distributions
P(t) of the time intervals t
between collisions, for
opening sizes ranging from
R ¼ 3 (top series) to R ¼ 16
(bottom). (Reprinted from
Longhi et al. (2002))
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Statistical Mechanics of Clogging,
Fig. 8 Instantaneous flow rate (in number of particles
per unit time) measured at short time windows
(of 150 ms). The line at the top corresponds to an orifice

size of R ¼ 9.5, and the one at the bottom to an orifice of
R ¼ 4.3. The arrows mark two events where the flow has
ceased for a time longer than the window. (Reprinted from
Janda et al. (2009a))
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displayed in Fig. 9. Moreover, clog formation was
associated to the development of vortices at the
corners of the hopper that extended inwards, even-
tually arresting the flow.

Effect of Other Variables
Clearly, the parameter that mainly determines the
clogging probability (and hence, the avalanche
size) is the ratio R among the outlet and the
particle size. As displayed above (Fig. 5b), its
effect is so important that an increase from
R ¼ 3 to R ¼ 4 leads to a growth of the avalanche
size by more than 100 times. Due to this dramatic
dependence, the main way to analyze the influ-
ence of other variables has been to keep a strictly
constant outlet size (sometimes a variation of a
tenth of millimeter may conceal the effect of other
quantities). A time-consuming alternative consists
of repeating a series of experiments for all the
range of outlet sizes changing an additional
parameter.

The latter was, indeed, the strategy followed by
K. To and collaborators to analyze the role of the
hopper angle (To et al. 2001). Oddly enough, they
observed that for small andmedium hopper angles
(close to a flat bottomed silo) this parameter had a
negligible effect on the probability of clogging
(f ¼ 34� and f ¼ 60� displayed almost the
same values). Nevertheless, clogging was dramat-
ically reduced when using a hopper of f ¼ 75�.
This strongly nonlinear dependence has been
recently confirmed and explained by considering
the angles among the particles conforming the
arch (López-Rodríguez et al. 2019) in a two-
dimensional silo. This approach revealed that
increasing the hopper angle extended the number
of forbidden arch configurations, that is, those that
would imply interparticle angles that could not be
stabilized with typical friction forces. Although
this interpretation has not been yet extrapolated
to three-dimensional silos, recent results reported
in Parretta and Grillo (2019) are perfectly com-
patible with it. In Arches (devoted to the geometry
of clogging arches) we will come back to the role
of particle angles in the arch stability.

A similar line of reasoning could be valid to
deal with clogging in lateral and inclined orifices.
In two manuscripts from Durian’s group (Sheldon

and Durian 2010; Thomas and Durian 2013), a
clogging phase diagram was suggested when con-
sidering its dependence on two parameters: the
outlet size and the tilt angle of the silo (Fig. 10).
Remark that it is tempting to consider silo tilt as a
situation similar to using different hopper angles,
but there are conspicuous differences. For
instance, it was reported that for a given outlet
size the clogging probability grows when increas-
ing the tilt angle (opposite to the hopper case).
Moreover, by implementing experiments in both,
symmetric orifices (circular) and asymmetric ones
(slits), these authors showed that the behavior in
all these systems could be encompassed by using
the projected area of the aperture over the average
flow direction (instead of the gravity direction) as
depicted in Fig. 10. In principle, this collapse of
the transition points should be also valid for
completely vertical orifices, a scenario where the
wall width is capital (Davies and Desai 2008;
Serrano et al. 2014; Zhou et al. 2017).

Certainly, one of the most surprising features
concerning clogging appears when an obstacle is
placed above the orifice (Lozano et al. 2012a;
Zuriguel et al. 2011). This geometrical constraint,
which a priori would restrict the flow of grains,
turns to be beneficial if the obstacle position is
carefully selected. Indeed, the effect can be utterly
remarkable, as in some cases the avalanche size is
increased by more than one hundred times. The
physical origin of this behavior was speculated to
be related with the arch stabilization process.
According to this argument, in a usual silo without
an obstacle, a stable arch can develop when a
group of particles collides above the orifice due
to the confinement imposed by the particles com-
ing from above. On the contrary, for some obsta-
cle positions, there is an effective reduction of
pressure above the orifice that allows the colliding
particles to be ejected upwards, thus preventing
the formation of a stable arch. A demonstration of
this behavior was numerically given in Zuriguel
et al. (2011) by simulating clogging in silos filled
with thin layers of grains. In fact, reducing the
height of the granular column inside the silo
caused an increase of the mean avalanche size
comparable to the one obtained when placing the
obstacle. In addition, in Lozano et al. (2012a) it

Statistical Mechanics of Clogging 11



Statistical Mechanics of
Clogging, Fig. 9 Tempo-
ral evolution of the area
covered by connected clus-
ters of low velocity regions
(where the vertical velocity
is less than half the average)
near the orifice. As it can be
seen, the area starts growing
before the formation of a
clog and decreases when the
flow is resumed. (Reprinted
from Tewari et al. (2013))

Statistical Mechanics of Clogging, Fig. 10 Top: sketch
of the orifice indicating the unit vectors bn (normal to the
plane of the aperture) and bv (average flow direction, as
defined by bisecting the region where the grains flow)
when the tilt angle y is (a) less than, and (b) greater than,
the angle of repose yr. Bottom: Clogging transition

diagram for holes and slits and different types of particles.
The y-axis is the component bv � bnof the unit vectors defined
above and the x-axis is the area of the hole normalized by
the critical hole area at zero tilt angle. (Reprinted from
Thomas and Durian (2013))
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was shown that the clogging reduction effect
increased when enlarging the outlet size (see
Fig. 11). This can be understood if we consider
that the system becomes more sensitive to pertur-
bations when approaching the hypothetical criti-
cal outlet size. Although these features were
originally reported using a circular obstacle,
other authors have implemented different shapes,
such as triangular, inverted-triangular, and a hor-
izontal bar (Endo et al. 2017). Among these
forms, the triangular obstacle and the horizontal
bar were shown to be the most effective to prevent
clogging. These authors also attribute the clog-
ging reduction to a decrease in the packing frac-
tion at the exit region. Even though this
justification seems different from the pressure
reduction explained above, it should be noted

that both variables are strongly coupled in granu-
lar materials.

Implementing multiple orifices in a silo
appears as a natural extension of previous inves-
tigations with a single orifice (Kunte et al. 2014;
Mondal and Sharma 2014). In this system, if two
orifices are sufficiently close to each other, it is
possible to obtain an intermittent flow. The reason
is that if an arch blocks only one of the orifices, the
flow through the other one can cause the destabi-
lization of the former and restart the flow through
it. This behavior has been observed in three-
(Mondal and Sharma 2014) and two-dimensional
silos (Kunte et al. 2014) and can be used to reduce
the overall clogging probability. As could be
expected, the distance between both orifices
emerges as a key variable. If the orifices are far

Statistical Mechanics of
Clogging, Fig. 11 Left:
photograph of an arch
formed above the outlet.
R is the length (or size) of
the outlet and h is the
distance from the bottom of
the obstacle to the outlet.
Right: mean avalanche size
versus the obstacle position
for silos with three different
outlet sizes (from bottom to
top: R¼ 3.13, R¼ 4.20 and
R ¼ 4.55). The horizontal
lines correspond to the
mean avalanche size
without obstacle for each
outlet size. (Reprinted from
Lozano et al. (2012a))
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enough, the effect is negligible and the system
behaves as if there were two independent silos;
otherwise, when the orifices are close to each
other, the interaction becomes increasingly impor-
tant. Besides, it is interesting to note that the
intermittent blocking and unblocking of both ori-
fices can provoke the mixing of the granular mat-
ter, as reported in (Kamath et al. 2014).

Another variable that is known to strongly
affect the clogging probability and is intimately
related with the effect of the obstacle described
above is the density of particles in the outlet
neighborhood. In fact, if the number of particles
above the orifice is controlled by modifying the
inflow rate of grains into the silo, it can be
observed that there is a threshold value above
which the grains start to accumulate. Only in this
scenario, and if the orifice is small enough, clog-
ging may appear (Hou et al. 2003; Kohring et al.
1995). In this sense, a connection can be made
with an experimental work of Roussel et al. where
a suspension of grains was made to pass through a
mesh with a typical hole size slightly larger than
the particle size (Roussel et al. 2007). In particu-
lar, it was shown that the proportion of material
that was trapped in the mesh (called residual R)
strongly depended on the hole size but also on the
number of particles per volume unit (solid frac-
tion). Indeed, for outlet sizes as small as two times
the particle size (where clogging in a standard silo
happens very quickly) it was found that R is

negligible for 4% solid fraction samples
(Fig. 12). This behavior was reproduced with a
model in which the likelihood of clogging was
linked to the probability that a given number of
particles coincide above an orifice; therefore,
higher packing fractions lead to higher probabili-
ties of clogging. The dependence on the outlet size
was reproduced by determining that the number of
particles necessary to form a clog, n, depended on
the hole size as n ¼ gR2. Interestingly, the trend
displayed by the residual as a function of R shown
in Fig. 12 closely resembles the one reported by
To for the probability that a silo with a single
orifice jams before emptied (J), as shown in
Fig. 4, left. Finally, let us mention that the depen-
dence of the clogging probability on the concen-
tration of particles above the orifice has been also
observed in a recent work of Koivisto and Durian,
as well as in complementary experiments of fluid
driven flow of suspensions through single orifices
performed by Wu and coworkers (Guariguata
et al. 2012; Lafond et al. 2013).

Regarding the dependence of the clogging
probability on the packing fraction above the ori-
fice, Uñac et al. went a step further and revealed
the importance of the grain arrangements in the
development of clogging inside the silo prior the
discharge (Uñac et al. 2012). Their protocol
consisted in applying a series of taps of an inten-
sity G to a column of grains previous to their
discharge through an orifice at the bottom of the

Statistical Mechanics of
Clogging, Fig. 12 Pro-
portion of material trapped
in the mesh (R) as a function
of the mesh hole, in a sus-
pension of particles of dif-
ferent solid fractions as
indicated in the legend.
(Reprinted from Roussel
et al. (2007))
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column. Remarkably, very low values of G –
which are known to induce very high values of
volume fraction – lead to very small avalanche
sizes, that is, high probability of clogging
(Fig. 13). Nevertheless, the authors also reported
that samples with the same volume fraction but
generated with a different intensity of tapping
gave rise to a different clogging probability. This
fact revealed that, in very dense granular matter,
the volume fraction is not a good macroscopic
parameter for predicting the size of the avalanches
that would flow through a given aperture.

Influence of Particles Properties
Apart from the morphology of the exit or the
concentration of particles above the orifice, clog-
ging is also affected by the properties of the
grains. After a revision of the articles dealing
with this issue, it can be concluded that the
shape of the grains and the grain to grain friction
are the two most influential ones concerning the
development of clogging.

It was K. To in his pioneer work (To et al.
2001) who first analyzed the role of friction in
the development of clogging from a statistical
point of view. He observed that the probability
of clogging increased when using toothed disks
instead smooth ones (Fig. 14). This phenomenon
was linked to the appearance of local convexities
in the arches; that is, particles hanging below the
line joining the center of their two neighbors. Of
course, these configurations are only possible
because of friction. Independent confirmation

came a few years later when Pournin et al. studied
the effect of friction in a systematic way combin-
ing experimental and numerical approaches
(Pournin et al. 2007). They observed that clogging
decreased when reducing the friction coefficient
m; indeed, for the limit case of m ¼ 0 (analyzed
numerically) clogging was dramatically reduced.
Clearly, in this unrealistic situation, arches can
only adopt regular shapes, and local convexities
are forbidden as it was previously illustrated when
inspecting the arches developed in a granular col-
umn (Pugnaloni et al. 2006).

Experimentally, this issue was confirmed by
using frictionless (or almost frictionless) hydrogel
particles (Ashour et al. 2017a; Hong et al. 2017).
In these works it was reported that even for very
narrow bottlenecks (of around 2 or 2.5 times the
particle size) the probability of clogging was very
small. Interestingly, Hong et al. (2017) demon-
strated that using droplets (which are frictionless
and deformable at the same time) flow can be
attained even for an outlet size equal to the parti-
cles. In addition, it was shown (Ashour et al.
2017a) that reducing the friction coefficient pre-
vented the pressure saturation at the bottom of the
silo, a phenomenon known as the Janssen effect
(Janssen 1895).

As mentioned above, the other outstanding
property of grains regarding clogging is the parti-
cle shape (Ashour et al. 2017b; Goldberg et al.
2018; Tang and Behringer 2016; Vamsi Krishna
Reddy et al. 2018). Tang and Behringer observed
that clogging in a 2D silo was enhanced when

Statistical Mechanics of
Clogging, Fig. 13 Mean
avalanche size versus the
intensity of taps used to
prepare the sample before
opening the orifice at the
bottom. (Reprinted from
Uñac et al. (2012))
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using elliptical cylinders because they align with
each other, thus increasing the probability of
forming stable arches. Also, they suggested that
the relevant particle length scale to compare the
behavior of ellipses and isotropic grains is the
major diameter of the former, and they demon-
strated that the number of particles conforming the
arch was considerably higher when using aniso-
tropic grains. In a subsequent work, Ashour et al.
(Ashour et al. 2017b) confirmed this observation
in a 3D silo, and correlated it with the preference
of the elongated particles to orient with the longer
axis perpendicular to the clogging dome. This
orientation was quantified by using X-ray tomog-
raphy. Again, in this work it was found that an
increasing aspect ratio of the grains leads to higher
clogging probabilities compared to spherical
grains. Notably, for aspect ratios smaller than 6,
the mean avalanche size dependence on the outlet
size nicely agreed with the divergent fitting
expression (Eq. 3) proposed for discs, which was
already found to be valid for rice grains (Zuriguel
et al. 2005). Nevertheless, a new feature was
discovered for particles with aspect ratios larger
than 6: whereas for small outlet sizes the mean
avalanche size dependence on the outlet size
resembles all the other cases, above a given outlet
size the experimental data fall below the expected
values given by the fitting curves. For even higher

aspect rations (above 8) the development of rat-
holes (completely emptied regions in the central
part of the silo surrounded by material close to the
lateral wall) strongly alter the clogging dynamics.

Apart from the aspect ratio, another feature of
the particle shape that strongly affects clogging is
the presence of flat faces (Ahmadi and
Hosseininia 2018; Goldberg et al. 2018). By
means of discrete element modeling, Goldberg
et al. evidenced that polygonal particles clogged
more easily than discs. Indeed, the polygons that
were more prone to clog a two dimensional silo
were shown to be the squares, and then hexagons,
pentagons, triangles, and heptagons – which
displayed a much smaller probability of clogging
(close to that of discs). The reason for this behav-
ior was found to be in the number of side to side
contacts among the particles due to shearing
forces: squares where the most likely to be aligned
and develop this kind of highly stable contact,
whereas these configurations were most rare in
heptagons. Also, in a recent work in which both
gravel and spherical beads were used, more clog-
ging and taller arches were found with gravel
(Ahmadi and Hosseininia 2018). Interestingly
enough, all the results obtained with these differ-
ent materials have been accounted for using the
peak friction angle, which was found to be the

Statistical Mechanics of
Clogging, Fig. 14 Proba-
bility that a silo gets
clogged before all the grains
are discharged for smooth
disks (a) and toothed disks
(b). (Reprinted from To
et al. (2001))
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main parameter controlling the stability and
dimension of the clogging arches.

Finally, let us mention that other variables such
as the particle size dispersion (Chevoir et al. 2007;
Pournin et al. 2007; Zhao et al. 2019) or the
particle size (Gella et al. 2018) have been also
shown to affect the clogging probability. Regard-
ing polydispersity, Pournin et al. (2007)
performed experiments in a 3D silo with both
monodisperse and bidisperse samples, evidencing
that jamming mainly depends on the volume aver-
aged diameter of the sample. However, care must
be taken when the size difference among the par-
ticles is large enough to induce segregation; in this
case clogging propensity was enhanced. Opposite
to these results, in a recent work based on DEM
simulations, Zhao et al. (2019) revealed that
increasing the polydispersity of the particle sizes
in the silo enhances the probability of clogging.
To reach this conclusion, they worked with differ-
ent samples where the particles distributions were
lognormal with the same mean particle size but
different standard deviation. Then, although the
polydispersity role was shown to be less important
than the mean particle size, it was discovered to be
relevant for some configurations. Interestingly,
the same conclusions were attained a decade
before when studying clogging of grains through
a sieve (Chevoir et al. 2007).

Role of Dynamics on Clogging
Up to now, all the variables that have been related
to clogging concern geometrical features, charac-
terizing either the orifice (where the outlet size is
the most influential) or the particles (shape, poly-
dispersity, and so on). Also, the effect of other
parameters such as the volume fraction above the
orifice has been identified as potentially relevant.
Nevertheless, the role of kinematics in the devel-
opment of clogging has not been addressed yet,
even though the influence of some geometrical
aspects of the silo on clogging has been explained
through a connection with this parameter. This is
the case of a recent work where the influence of
the silo width on the clogging probability was

linked to an alteration of the particles movement
above the outlet (Gella et al. 2017).

Concerning the role of particle dynamics on
clogging, Dorbolo et al. performed pioneer silo
discharge experiments in high and low gravity
conditions, studying gravity values above and
below the Earth’s gravity (Dorbolo et al. 2013).
Although this work was mainly focused on the
flow regime (i.e., when clogging does not hap-
pen), it was tentatively reported that gravity did
not strongly affect clogging behavior. This result
was confirmed afterwards by Arévalo et al.
(2014), who performed systematic numerical sim-
ulations of clogging in a silo with a fixed outlet
size (3.5 times the particle size) varying the grav-
ity values over four orders of magnitude. Despite
this huge variation, the avalanche size only
changed slightly, increasing 1.6 times when
going from 0.001 g to 10 g. In a subsequent
work, this result was qualified and it was shown
that the effect became more important when
increasing the outlet size, as it happened with the
obstacle effect. For the largest outlet investigated,
the avalanche size increased 10 times for the same
variation of 4 orders of magnitude in the gravity
value. This discovery was explained by
portraying the clog formation as a double step
process: first, an arch spanning the outlet size
must be formed; and second, the arch must resist
until the complete dissipation of the kinetic
energy in the system. Indeed, this approach allo-
wed estimating the probability that an arch is
destabilized, which was shown to primarily
depend on the square root of the system kinetic
energy.

Following this idea and aiming to design an
experiment that better isolates the contribution of
the kinematic effects on the clogging process,
Gella et al. built a setup consisting of an extracting
belt below the silo orifice. This device allows to
control the grain mean velocity without changing
the outlet size, effectively decoupling these two
variables. Using this strategy, it was revealed that
clogging dramatically increases when the grains
are discharged at very low velocities (in a quasi-
static manner). Moreover, the geometrical and
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kinetic contributions to the clogging process in a
2D silo were nicely decoupled and described by
an expression (Eq. 5) which was inspired in the
stretched exponential proposed by K. To (2005)
and D. Durian (Thomas and Durian 2015).

Pc ¼ aþ bvð Þ� R=dpð Þ2 ð5Þ

Remarkably, this new expression included
only two fitting parameters to describe all the
results obtained when varying both the outlet
size and the velocity of the grains. The first param-
eter (a) accounts for the geometrical effects of
clogging and was the only one affecting the
value of the probability of clogging in the quasi-
static regime, that is, when the velocity of the
grains tends to zero. The second (b) accounted
for the kinematic effects and enters Eq. 5 as a
factor the velocity of the grains v. As the experi-
ment was performed in 2D, the exponent was the
rescaled outlet size raised to the power of 2. The
authors demonstrated that this expression (with
the same fitting values) was also valid to repro-
duce the data obtained in a standard silo
(discharged purely by gravity without a conveyor
belt) if the velocity of the grains is replaced by the
well-known relationship v ¼ ffiffiffiffiffiffi

gR
p

proposed in
Beverloo et al. (1961).

Arches
As clogs are caused by the formation of arches, it
is natural to study the properties of these meso-
scopic structures and try to establish a relationship
between them and the macroscopic behavior. For
example, it is interesting to establish a connection
between the microscopic properties of the parti-
cles conforming the arch, and its shape or stability.
We will now approach the topic of the arch shape
and its relationship to clogging.

A natural way to describe the arch shape is
through the angles subtended between the centers
of consecutive beads (Fig. 15): the center of every
three beads in contact subtends an angle f, and
therefore the set {fi} is a straightforward way to
define the shape of an arch blocking the exit

orifice. In the model of To (see Fig. 4, right)
these angles must be smaller than 180� (To et al.
2001). This is a good approximation because most
of the beads indeed fulfill this condition, and if
friction is very small this should hold. Neverthe-
less, in experiments it is found that angles can be
higher than 180�, meaning that the beads associ-
ated to that angle are hanging from the neighbors
due to friction. In one particular realization using a
flat bottomed hopper it was found that the propor-
tion of such beads was as high as 17%
(Garcimartín et al. 2010). They were called
defects, and it can be surmised that they will be
rather unstable against perturbations. Although in
principle this result would contradict To’s ideas, it
turns out that the model is quite representative of
the real behavior. The reason is that successive
angles are anticorrelated (Garcimartín et al. 2010),
meaning that a big angle is likely to be found
before a small one, and vice versa. Therefore if
angles are taken in pairs the average is very likely
below 180�, as assumed by the model of
To. Finally, let us note that particle shape and
friction are paramount in determining how large
the angles can be. As reported in To’s article of
2001 enhanced friction, as achieved with dented
disks, largely increased clogging probability. In
particles with flat faces, this effect is exacerbated
(Ahmadi and Hosseininia 2018; Goldberg et al.
2018).

If a hopper is considered instead of a flat-
bottomed silo, then the hopper angle introduces
a boundary constraint that determines the maxi-
mum values of the angles y between the segment
joining the centers of two consecutive particles
and the horizontal (see Fig. 16e). López and
coworkers (2019) proposed that for hypotheti-
cally frictionless particles in a hopper having an
angle bwith respect to the horizontal, the angle y1
formed by the first two particles (starting from the
left) would necessarily be smaller or equal to
(90� – b). Otherwise, the first particle would be
unstable. Then, following To’s idea (To et al.
2001), the second angle y2 should be equal or
smaller than y1, and so forth, until the last one
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yn–1, which must fulfill the condition of being
larger than –(90� – b). Therefore, all the angles
9 should fall within a range determined by the
hopper angle as denoted by the following
equation:

90
� � b

� � � y1 � y2 � . . . � yn�1 � 90
� � b

� �
ð6Þ

Experimental results are in good agreement
with this interpretation (see Fig. 16), although
some values of y are also observed beyond these
limits, a behavior that was attributed to friction.

As a consequence of the restriction of possible
angles provoked by the hopper walls, it happens
that the number of allowed arches is drastically
reduced as the hopper angle increases. Conse-
quently, the clogging probability diminishes.
Besides, for large hopper angles, the narrow
range of angles allowed (see Fig. 16d) imposes
that arches are almost flat; as a consequence, the
number of beads in the arch becomes discretized
and the clogging probability changes stepwise
with the size of the exit orifice. This contrasts
with the case of a flat bottomed silo, where the
distributions are rather wide (see Fig. 16a). In this
case, it was shown that the arches display a wide
variety of shapes, although they tend to be semi-
circular when the outlet size was enlarged
(Garcimartín et al. 2010).

An interesting question in relation with the
arch shape concerns their connection with the
forces that they withstand. This relationship can

only be statistical: it is impossible to establish a
univocal correspondence between shape and
force, as one arch shape can tally with many
different force distributions. In two dimensions,
Valdes and Santamarina (2008) pointed out that
the mean force orientation in the packing would
determine the optimal arch shape: for vertical and
horizontal average forces, the optimal shape is
parabolic or a catenary; and for a uniform force
orientation distribution, the optimal shape is semi-
circular. In fact, the semicircular shape observed
for large arches in Garcimartín et al. (2010) was
attributed to a uniform orientation of the forces
within the silo. Although arches are not necessar-
ily an optimal response to the orientation distribu-
tion of forces, this result can be taken as a hint,
showing how shape can provide valuable infor-
mation about the forces.

Unfortunately, the measurement of the forces
at the grain level is not easy (Daniels et al. 2017)
and, as far as we know, it has been never system-
atically performed for clogging arches. Therefore,
all the knowledge we have about this topic comes
from numerical simulations, as in the work of
Pugnaloni and collaborators (2006) where the
forces in the arches developed within a column
of grains were analyzed. Forces in clogging arches
have been investigated in Hidalgo et al. (2013)
and Longjas et al. (2009). Indeed, in Longjas et al.
(2009) the forces were used to infer the proportion
of possible arches that would be stable and, there-
fore, able to cause clogging. However, this analy-
sis was limited to arches of three particles. In a

Statistical Mechanics of
Clogging, Fig. 15 Photo-
graph of a clogging arch in a
flat bottomed 2D silo. The
angle formed by the centers
of three beads is defined as
f. (Reprinted from Lozano
et al. (2012b))
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subsequent work (Hidalgo et al. 2013), molecular
dynamics simulations were used to unveil that the
normal forces within the particles conforming the
arch are, in average, much larger than the ones
among particles in the bulk. In addition, an impor-
tant relation among the angle subtended among
every three particles f and the average force was

observed: the larger the angle, the higher the tan-
gential, and the lower the normal force. Therefore,
the higher the angle, the higher the friction mobi-
lized to sustain the particle. This result is consis-
tent with experimental data reported in the
following chapter concerning the resistance of
arches against perturbations.

10–1

10–2

10–3

2.18

Did=

β=0°

β=45°

β=60°

β=80°

Did=

Did=

Did=

2.69

3.03

3.12

3.61 4.70

4.21

1.74

3.21

2.12

1.62
2.10

2.63

2.82

3.13
3.57

3.79

4.35

1.76
1.96

2.10

2.45

2.74
3.12

3.43

3.63

3.47

3.53 2.73

4.303.70

10–4

a

b

c

d

e

p
d
f

10–1

10–2

10–3

10–4

p
d
f

10–1

10–2

10–3

10–4

p
d
f

10–1

10–2

10–3

10–4

–80 80–60 60–40 40–20 200

θ (deg)

p
d
f

Statistical Mechanics of Clogging, Fig. 16 (a–d) Prob-
ability distribution function of the angle y between the
centers of two consecutive particles in an arch and the
horizontal, as indicated in (e). b is the angle that the hopper
makes with the horizontal. In a–d the curves represent

values of y obtained for different outlet sizes
(as indicated in the legend), and the vertical dashed lines,
the limit values that would be imposed by the hopper walls
for a frictionless sample. (Reprinted from López-
Rodríguez et al. (2019))
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Unclogging

Once an arch that blocks the orifice is formed, in
principle it will last forever. The formation of an
arch involves a mechanically stable configuration,
and therefore a perturbation is needed to break
it. This may come in different forms. Thermal
cycles, for instance, may make the grains dilate
and contract, hereby disturbing the contact forces.
Although this method has not been used specifi-
cally to unclog a silo, it was shown that this
procedure can compact a granular medium,
which is closely related to breaking arches inside
it (Divoux et al. 2008). Local perturbations on the
grains at the orifice, for instance with a fluid jet
(Zuriguel et al. 2005), or a movable orifice (either
oscillating (To and Tai 2017) or rotating (To et al.
2019)) have also been used. However, an external
vibration is probably the most extended method to
restore flow when an orifice clogs; this is espe-
cially true in industry and applications, where
silos and hoppers with the addition of a vibrating
mechanism are often used. Indeed, vibrations can
be also coupled to air injection to fluidize granular
materials stored in industrial silos, especially of
cohesive grains (Wes et al. 1990). Finally, the
vibration of lateral walls as a means of enhancing
the flow has been also proved to be a good alter-
native (Pacheco-Martinez et al. 2008).

Among all these ways to disturb the clogging
arches and resume the flow, we will focus here on
vertical vibrations applied to the silo bottom or to
the whole silo. The reason is that this situation
allows for a relatively easy way to quantify the
strength of the external perturbation introduced.
As a matter of fact, a silo submitted to a sinusoidal
vibration of frequency f and amplitude A is rela-
tively easy to implement in the laboratory. Impor-
tantly, it has been shown (Wassgren et al. 2002)
that the flow rate of a vibrated silo does not change
drastically with respect to a static one, provided
that the amplitude is small and the frequency is
higher than the characteristic time of the dynamics
(Chen et al. 2006; Evesque and Meftah 1993;
Mankoc et al. 2009; Suzuki et al. 1968). This
allows a straightforward comparison of vibrated
and static silos. Indeed, in a vibrated silo with a
small orifice it was shown an intermittent flow in

which the distribution of flow intervals follows an
exponential distribution (Mankoc et al. 2009). As
explained in chapter Clogging as a Stochastic
Process for the avalanche size distribution, this
means that the probability of clogging is constant
along time, and that clogging events are
uncorrelated. Therefore a single characteristic
time can describe this process, which can be
related to the mean flowing time, the clogging
probability of a single bead as it passes through
the orifice, and the avalanche size. On the con-
trary, the distribution of clogging intervals
revealed wider tails. Notably, the same scenario
was found for horizontal vibrations of the orifice
(To and Tai 2017).

The nature and specific properties of these tails
were studied more closely by Janda et al. (2009b).
Although the research was aimed to obtain a
delivery device that could release a small quantity
of grains in a controlled fashion (and thus some of
the experiment details, such as the orifice shape
and the vibration mechanism, were highly spe-
cific), similar features to the results reported in
Mankoc et al. (2009) were observed concerning
the dynamics of clogging and unclogging. Again,
the flowing intervals were shown to be distributed
exponentially, while the duration of clogs was
suggested to follow a power law: pdf TJð Þ / T�a

J

(Fig. 17). This implies the absence of a character-
istic time scale for the clog duration, and then, it
follows that the probability that a clogging arch is
shattered is not constant along time. Remarkably,
it was found that for some specific values of the
variables, the exponent a of the power law was
lower than 2, implying that the average clog dura-
tion (calculated with an integral including the prob-
ability density function) does not converge. All
these facts hint that the process of breaking arches
with vibrations involves complex dynamics.

In order to explore how the clogging arches are
broken, two broad kind of procedures can be used
concerning the kind of vibration applied: either a
vibration of growing amplitude (a ramp), or a
constant amplitude vibration. In the first case,
the intensity of the perturbation grows along
time, which is a natural way to probe the force,
or acceleration, that arches can withstand. On the
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second case, the time that arches last under an
imposed perturbation is studied. The next two
sections are devoted to explain the investigations
related to these different approaches.

The Weakest Link
In order to test the endurance of arches, the idea is
to place a silo on top of a shaker and, when an arch
is formed, to start a vibration ramp at a constant
frequency and a linearly growing amplitude
(Lozano et al. 2012b, 2015). Then, the instant
when the arch is broken can be measured, and
hence the acceleration needed to break it. In addi-
tion, if the silo is two-dimensional, the shape of
the arch above the orifice can bemonitored. As the
variable considered here is the force needed to
break the arch, the adimensional parameter
G ¼ Ao2

g is used to quantify the vibration, which

is the maximum acceleration in gravity units (o is
the angular frequency).

The first remarkable result obtained with this
protocol is that the shape of the arch is closely
related to the acceleration needed to break it
(Lozano et al. 2012b). In particular, if we focus
on the angles subtended between the centers of
adjacent beads (f), then arches having beads with
an associated angle larger than 180� (or, defects)
are the weakest. Indeed, it was found that the
larger the maximum angle in an arch (fmax), the
lower the acceleration needed to break it (Fig. 18).
Although this is only true in a statistical sense, a

linear fit between G and fmax was proposed for
fmax > 180�: G ¼ –C1(f – 80�) + C2, where C1

and C2 are positive constants that depend on the
friction coefficient. This relationship holds for
materials with different friction coefficients. By
extrapolating the curve, a limit value offmax close
to 200� was found for steel beads (the exact value
depends on the material). Interestingly, the distri-
bution of f revealed an abrupt decrease at an
angle around 200�. Therefore, this figure was
interpreted as a cut-off value above which parti-
cles cannot be sustained by frictional forces any-
more. A simple model was proposed to account
for the relationship betweenG andfmax explained
above.

As a general result, it was concluded that the
bead with fmax was the weakest link in the arch,
especially if that angle was bigger than 180�.
Apart from the dependence of the arch robustness
on fmax explained above, it was also evidenced
that the likelihood of the arch breaking precisely
at that defect was bigger than in other positions.
Then, in a subsequent work (Lozano et al. 2015)
these findings were generalized to other accelera-
tion ramps, and several outlet sizes. In particular,
it was found that even comparing sets of arches
with the same maximum angle, the ones
corresponding to larger outlet sizes displayed
lower values of G, indicating that fmax is not the
only variable determining the stability of the
clogging arch.
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Statistical Mechanics of
Clogging, Fig. 17 Log-
log plot of the pdf of the
time lapses during which
the flow is arrested using an
inclined hopper with an
aperture of around R¼ 1.78
times the particle size. The
dashed line has a slope of
two so the slope of the
distribution for lowest
acceleration G (see legend)
is smaller than this value.
(Reprinted from Janda et al.
(2009b))
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Arch Breaking Is a History Dependent Process
An alternative approach to study the arch breaking
process is to apply a constant vibration and mea-
sure the breaking time (or, the time it takes for the
vibration to shatter the arch and restore the flow).
This is analogous to the procedure explained at the
beginning of this chapter as implemented in
(Janda et al. 2009b; Mankoc et al. 2009). How-
ever, in the cases that will be described below, the
external excitation was not acting all the time but
was started after the formation of a clogging arch
that was formed without vibration. With this pro-
cedure, it is guaranteed that the arches formed are
not broken by the impacts of particles coming
from above, or in other words, by the intrinsic
noise within the silo before all the kinetic energy
is dissipated.

Results of such an experiment were reported in
(Zuriguel et al. 2014) where risk analysis was
used to describe the time that arches can resist a
constant vibration. Let us call tb the time it takes to
break an arch. Then, the survival function S at
time t is defined as the probability that an arch
lasts more than t. Mathematically,

S tð Þ � P tb > tð Þ ¼
ð1
t

P t0ð Þdt0 ð7Þ

where P(t) is the probability distribution function,
or pdf, of tb. Note that if P(t) ~ t

-a
, then S(t) ~ t

–a + 1.
Observations are robust in finding heavy tails (see

Fig. 19), meaning that for times larger than a given
value (tthreshold) S decays as a power law. As stated
before, this indicates that the probability of break-
ing an arch is not constant along time. Moreover, it
was confirmed that in some cases the exponent a is
such that the integral does not converge. In partic-
ular, the role of three parameters on the distribution
of breaking times was explored in Zuriguel et al.
(2014). It was shown that increasing the outlet size
or the intensity of vibration leads to a bigger a,
whereas an increase of the number of grains above
the clogging arch implied a reduction of the expo-
nent. It was also demonstrated that distributions for
which the average diverges (a � 2) took place for
low vibration intensities, small orifices, and large
heights of the column of grains above the clogging
arch (Fig. 19).

In addition, the distributions of Fig. 19 reveal
that in some cases the curves flatten for very large
times (typically above 100 s). Overall, the trends
displayed by the survival functions hint to the
following interpretation. When a constant vibra-
tion is imposed, some arches break down in a
relatively short time (say, a few tenths of seconds).
After this time (tthreshold), surviving arches are
harder and harder to break, so the breaking time
for these arches lacks any characteristic scale. In
this temporal range S(t) is compatible with a
power law decay. Finally, it seems that there are
a few arches that are even more enduring, so the
vibration seems unable to break them, and cause a
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Statistical Mechanics of
Clogging, Fig. 18 The
average maximum
acceleration G at the instant
of arch breaking, as a
function of fmax, the
maximum angle in the arch.
Triangles and circles
correspond to steel and
brass beads respectively.
Error bars are 95%
confidence intervals.
(Reprinted from Lozano
et al. (2012b))
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final flattening of the distribution. This latter result
was confirmed in Lozano et al. (2015) where for
some of experimental conditions the distribution
almost completely flattened after a time of about
50 to 100 s, suggesting that there are some arches
that the vibration cannot break for the parameter
range explored.

In order to unveil the origin of the broad tails of
the breaking times distributions and the final flat-
tening, Guerrero et al. analyzed the movements of
individual beads in an arch along time prior to
their collapse (Guerrero et al. 2018). They
observed that under a gentle, constant vibration,
the beads hardly move except for fast
rearrangements (fast meaning that they take
place in a short time compared to the life of the
arch). This can be observed by plotting the tem-
poral evolution of the values of {fi} for all the
beads in the arch. Alternatively, one can use a

single number: s (the standard deviation of all
the values fi found in a given arch) which cap-
tures the rearrangements of the arch as illustrated
in Fig. 20.

A key feature that can be deduced from these
time series is that the angle rate of change is not
proportional to the angle itself. From experiments
with a vibration ramp one could have naively
expected that at least the bead associated to the
biggest angle (the most dangerous one) would
evolve in such a way that its angle would monot-
onously grow until it reached the point of col-
lapse. This is not the case if the arch is submitted
to a gentle, constant vibration. The evolution of
individual angles is much more complex
than that.

In order to analyze the slow relaxation dynam-
ics, one can calculate the two time autocorrelation
function of s, for a lag time t and a waiting time tw:
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Statistical Mechanics of
Clogging, Fig. 19 Clog-
ging time distributions in a
two-dimensional silo. (Top)
Time lapse complementary
CDFs obtained using
L ¼ 4.50 and G ¼ 0.26 for
two different heads of
grains above the silo bottom
(h < 6 cm and h > 6 cm).
(Middle) Time lapse com-
plementary CDFs obtained
for h > 6 cm, L ¼ 4.76 and
several G as indicated in the
legend. (Bottom) Time
lapse complementary CDFs
obtained for h > 6 cm,
G¼ 0.26, and several outlet
sizes as indicated in the
legend. (Reprinted from
Zuriguel et al. (2014))
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C tw, tð Þ ¼ s tw þ tð Þs twð Þh i � s tw þ tð Þh i s twð Þh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR s twð Þð ÞVAR s tw þ tð Þð Þp

ð8Þ

where h. . .i denotes the ensemble average. It was
found that the correlation decreases with t; but
notably, it also depends on tw, denoting that the
process is not stationary along time. For long
waiting times, C tends to a limit value. It had
been pointed out (Nicodemi and Coniglio 1999)
that aging effects often show a logarithmic depen-
dence on this time, and this was precisely the
behavior observed for the dependence of C on tw
for a fixed t.

Aging is a nonergodic process in which the
ensemble average and the time average are not
equivalent. Some models have been proposed to
explain the behavior of these arches. Nicolas and
coworkers (2018) considered that the arch being
vibrated is able to explore an energy landscape in
which traps represent more stable configurations.
Using a simple shape for the energy wells and the
escape rate proposed by H. Kramers (1940), a
survival function that reproduces the basic features
of the experimental observations was obtained.
Also, in an effort to understand nonergodicity,
C. Merrigan and coworkers (2018) rationalized
the intermittent motion of the beads as a continuous

Statistical Mechanics of Clogging, Fig. 20 Evolution
of two different long-lasting broken arches, (a) plus (c),
and (b) plus (d). Upper panels show f(t) for each grain.
The lower panels show s (the standard deviation of all the
values fi found in a given arch). The color and the number

on the right side of each f(t) curve indicate the bead of the
arch (see the insets in lower figures). The inset shows the
position of each bead of the arch at two instants: just after
starting the vibration (solid line) and just before the col-
lapse (dashed line). Reprinted from Guerrero et al. (2018)
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time random walk of a vector whose components
are the angles {fi} of the arch. They simulated
vibrated arches and noted how this model is con-
sistent with ergodicity breaking. They went on to
compare some of the numerical results with exper-
iments, finding an overall good agreement, not-
withstanding several discrepancies (Guerrero
et al. 2019). The notion of the arch performing a
random walk in the space of locally stable arch
shapes, where each shape is characterized by a
dwelling time that depends on the depth of the
trap, is therefore quite reasonable.

Summary and Discussion

Along this work we have summarized the existing
knowledge about clogging of macroscopic inert
particles when passing through a constriction. The
typical instance of this scenario is the discharge of
a silo through a small orifice, a system in which it
is well accepted that the development of clogging
can be described as a Poisson process. The reason
behind this is that the emergence of a clog is
equally likely at any time during the discharge.
In practice, this feature is typically inferred from
the statistics of the avalanche sizes which, in all
cases but in narrow slits, reveal an exponential
tail. This implies that the mean avalanche size
(as well as the mean avalanche duration or the
probability of clogging) is always well defined.

As a matter of fact, for its simplicity and easi-
ness to obtain, the avalanche size is often used to
characterize the effect of different variables on
clogging development. Among these variables,
the most influential is clearly the outlet size
(or more precisely, the ratio between the outlet
and particles size). Indeed, it is known that the
mean avalanche size abruptly grows when this
parameter is increased. The question about the
existence of a critical outlet size above which
clogging is not possible is still open, although
mounting evidences suggest that the clogging
transition is similar to the glass and jamming
ones. In these cases, relaxation times grow dra-
matically but do not necessarily imply the exis-
tence of a critical point.

Concerning other parameters that affect clog-
ging, we have underlined the role of two: the
volume fraction and the velocity of the grains at
(or near) the orifice. The former is a contributing
factor, as it determines the probability that a given
number of grains coincide above the outlet and
form an arch. The latter, however, has been argued
to affect the number of these arches that are able to
become stabilized and survive after all the kinetic
energy within the system is dissipated. Then, the
higher the velocity of the grains, the smaller the
number of arches that are stable, and therefore the
lower the probability of clogging. Interestingly,
the reason for which a suitably placed obstacle
above the orifice is able to dramatically reduce the
clogging probability can be associated to an alter-
ation of these two parameters: the obstacle
reduces the pressure, confinement and packing
fraction near the orifice (so it prevents arch for-
mation), and besides, it alters the velocity field
increasing the kinetic energy of the grains at the
outlet (so it prevents arch stabilization).

Once a clog is formed, an external input of
energy is necessary to resume the flow. The most
widely employed method to perform this task is to
apply a vibration (either locally at the exit, or to
the whole silo). For low intensity vibrations, it has
been reported that the distributions of breaking
times (i.e., the time that takes since the vibration
is applied until the collapse of the arch) display fat
tails. These tails can be fitted to power laws,
whose exponents depend on different parameters
such as the intensity of vibration, the outlet size,
and the height of the layer of grains within the silo.
It has been remarked that in some cases, the expo-
nent of the power law is smaller than two, a
feature implying that the first moment of the dis-
tribution cannot be calculated as the integration
does not converge.

It is noteworthy that the different nature of the
flowing and the clogging times – the former being
an exponential distribution, and the latter
displaying a power law tail – has also been
observed in the passage through bottlenecks of
other discrete systems. In particular, it was exper-
imentally shown (Zuriguel et al. 2014) that the
flow of sheep through narrow doors displayed an
intermittency that could be described within this
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framework. Moreover, in this scenario, the distri-
bution of clogging times when placing an obstacle
in front of the door revealed an exponent higher
than obtained in a standard entrance (without
obstacle); this implies a beneficial effect of the
obstacle as it reduces the number of long lasting
clogs. In the same work, simplistic simulations of
pedestrian evacuations through a bottleneck also
showed how reducing the desired speed of the
agents (which in a congested scenario amounts
to diminishing the driving force) lead to an aug-
ment of the power law exponent, improving the
flow. The same effect was reached when increas-
ing the outlet size or the intrinsic noise included in
the movement of these bodies. Finally, in a simu-
lated colloidal suspension, it was also observed an
augment of the exponent when increasing the bath
temperature.

Considering all these outcomes, a phase dia-
gram of sorts was proposed to account for the
clogging behavior in different systems of solid
particles flowing through bottle-necks (Zuriguel
et al. 2014). The order parameter introduced was

F ¼ t fh i
tch iþ t fh i where htfi is the average duration of

the flow intervals and htci is the average clog
duration. As htci only converges when the expo-
nent a of the power law is larger than two, a � 2
implies F ¼ 0; a feature that was proposed to
qualify the “clogged state.” On the contrary,
when F > 0 it can be said the system is in an
“unclogged state.” In the latter scenario, the flow
can be either continuous ifF¼ 1, or intermittent if
0 < F < 1. From this, the effect of the different
variables in the values of F was tested, checking
that the system could reach the clogged state (i.e.,
F ¼ 0) by decreasing the exit size and reducing
the particle’s excitation (intrinsic or external).
Also, augmenting the pressure at the narrowing
seemed to drive the system to a clogged state.
According to these findings, and inspired along
the concepts of compatible and incompatible load
introduced by Cates et al. at the end of the last
century (Cates et al. 1998), all the variables affect-
ing clogging were encompassed in three general
magnitudes: the characteristic size of the neck (l),
the incompatible load (IL) and the compatible load
(CL) as depicted in Fig. 21 (left). For the case of a

vibrated silo, a more detailed phase diagram for
the plane G – D (which in the framework of the
generic variables corresponds to the plane IL – l)
was reported in Zuriguel et al. (2017) (see Fig. 21,
right).

In recent years, several lines of investigation
have reported a number of results which are con-
gruent with the proposed global framework. For
example, real pedestrian drills evidenced that the
stronger the force applied by the crowd in their
way out of a room, the slower the evacuation
(which can be considered as a slightly modified
version of the traditional Faster is Slower phe-
nomenon in pedestrian dynamics) (Pastor et al.
2015). The reason behind this behavior was on
the increment of the clogging times with a higher
force (compatible load). Also, it seems that the
increment of the compatible load was behind the
transition from unclogged to clogged states reported
for the flow of small robots (Vibration-Driven Vehi-
cles) when passing through a narrowing (Patterson
et al. 2017). In that case, instead of altering the force
of each individual, the increment of the compatible
load was achieved by increasing the number of
agents inside the room.

Apart from the interest of the phase diagram
from the point of view of clogging, its resem-
blance to the scheme introduced for the jamming
transition by Liu and Nagel (1998) has stimulated
recent investigations on the relation among these
two states. In principle, clogging and jamming are
two well-differentiated phenomena: clogging is a
local occurrence triggered by the formation of a
mesoscopic structure (an arch) that is able to arrest
the grains (or bodies) behind it; on the contrary,
jamming is a global state of the matter where
different kind of spatially averaged quantities
can be measured and used to characterize the
system response.

Recently, Reichhardt and collaborators have
started to investigate the connection between
these two phenomena (Nguyen et al. 2017; Péter
et al. 2018). To this end, they have developed
numerical simulations of the flow of particles
through arrays of obstacles, implemented as
pinned particles (see Fig. 22, left). Then,
depending on the number of pinned and mobile
particles, the system was found to reach different
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stationary states: fluid, clogged, or jammed, as
illustrated in Fig. 22 (right). Remarkably, the clog-
ging transition was reported to have characteris-
tics of an absorbing phase transition in which,
after a transient time, the system evolves into a

heterogeneous state as the one represented in
Fig. 22 (left). This transient time was shown to
diverge at the transition as illustrated by the yel-
low region in Fig. 22 (right). In contrast, jamming
was proved to be a rapid process in which the

Statistical Mechanics of Clogging, Fig. 21 Left,
generic phase diagram proposed for the flow of many-
particle systems through bottlenecks. Right, phase diagram
for the plane G – D obtained for the locally vibrated
eccentrically discharged hopper used in (Janda et al.
2009b). Stars indicate points where F ¼ 0 (clogged

phase) and circles show positions where F > 0
(unclogged phase). The dashed line is a guide to the eye
suggesting a possible boundary between the two phases.
(Reprinted from (Zuriguel et al. 2014) (left) and (Zuriguel
et al. 2017) (right))

Statistical Mechanics of Clogging, Fig. 22 Left: Final
clogged state of mobile disks (blue open circles) driven in
the positive x direction through obstacles (red filled circles)
in a sample with obstacle density fobs ¼ 0.175 and disk
density fm ¼ 0.436. Right: Map of the transient times t
obtained depending on fobs vs fm. Yellow corresponds to
large t and blue to small t as indicated in the legend. The

dark dashed line is a guide to the eye marking the crossover
from a flowing state to a clogged state, while the white
dashed line indicates the transition from a flowing state to a
jammed state. In the white region, there are not data as it is
above the maximum density that could be reached in the
implemented model. (Reprinted from Péter et al. (2018))
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sample does not reveal any sign of heterogeneity.
In this case, the magnitude that diverges as the
jamming density is approached turns out to be the
rigidity.

All these results –which are similar to the ones
reported in a previous work of Tejada et al.
(2016) – have been partially confirmed by Stoop
and Tierno in experiments where they drove col-
loidal monolayers across different arrays of obsta-
cles (Stoop and Tierno 2018). Remarkably, in the
experimental conditions implemented in this
research, the Faster is Slower effect –characteris-
tic of the flow through bottlenecks of pedestrians –
was also identified. Again, this is another evi-
dence that supports the existing connections on
the behavior of different many-body systems
when flowing through constrictions.

Future Directions

Although the amount of knowledge gained in the
last two decades on the silo clogging problem is
rather considerable, it is also true that the number
of questions that are still unanswered is also
numerous. Here, we are going to indicate some
of the problems we consider more stimulating,
either from a fundamental or by an applied point
of view.

First, it will be interesting to deepen in the
relationship among clogging and jamming. As
mentioned above, this topic has been approached
within the framework of a simulation where a
dense sample of mobile particles flows through a
series of obstacles. Although the findings of these
simulations have been somehow validated by
experiments with colloidal suspensions, it would
be nice to see if the same behavior can be exper-
imentally tested using dry macroscopic grains.
Also, there are some other systems which may
help to shed light on this jamming-clogging con-
nection. One of these is the flow of inert grains
through very narrow pipes. In this geometrical
configuration, it has been recently shown that
clogging is also possible due to the development
of hanging arches supported by frictional forces
against the wall (Janda et al. 2015; Verbücheln
et al. 2015). As in this pipe flow there is not a

bottleneck that introduces a local inhomogeneity,
it is possible that the conditions leading to clog-
ging are comparable to the ones leading to jam-
ming. In addition, the study of clogging in narrow
vertical pipes is of great applied interest as the
formation of hang-ups is one of the major prob-
lems in ore transportation in underground mining
(Hadjigeorgiou and Stacey 2013).

Another issue that should be carefully investi-
gated in the forthcoming years is the parallels
among clogging in 2D and 3D scenarios. Although
most of the features observed in relation with clog-
ging are similar in two and three dimensions, some
differences exist. Themost salient one concerns the
divergence of the mean avalanche size with the
outlet size, which seems to take place in 3D silos
but has been practically discarded in 2D ones. In
addition, the statistical analysis of the properties of
arches and the effect of different variables (such as
the hopper angle) has been mostly approached
using 2D silos, so an extension to 3D scenarios is
needed. This could be tackled by studying the role
played by the silo thickness in quasi-two-
dimensional geometries, gradually changing from
a 2D silo formed by amonolayer of grains to a fully
3D case.

Considering the role of all the different vari-
ables summarized in this work, it seems that
investigating the effect of combining more than
one of these parameters can be fruitful to better
understand the physical mechanism behind clog-
ging. For example, knowing the dramatic aug-
ment of the probability of clogging occurring
when the grains flow through the outlet in a
quasi-static manner, it would be interesting to
see if in this regime the effect of geometrical
aspects (such as the hopper angle or the placement
of an obstacle) is similar to the one observed in
conditions of free discharge. In this way we will
be able to ascertain if the role of these variables is
due to its effect on the geometrical or dynamical
aspects. Also, further investigation in the config-
uration where the grains are extracted by an exter-
nal device (a belt or an endless screw) is important
because this is a common procedure in industry.

Doubtless, more investigations are needed in
other systems that could also display clogging,
such as active matter or pedestrian dynamics. Of
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course, this research is not straightforward given
the complex nature of the agents involved in these
fields and the intrinsic difficulty associated to
performing experiments at the micro scale or
with pedestrians. Nevertheless, other systems
such as macroscopic active materials (or small
robots) can be reasonable models in which to
incorporate some intrinsic activity to the particles
and compare with the behavior of inert granular
media. Similar reasoning holds for very promising
studies of submerged grains (Koivisto and Durian
2017) and suspended particles (Guariguata et al.
2012; Lafond et al. 2013; Marin et al. 2018),
which can be seen as examples with a behavior
that is halfway between granular materials and
colloidal suspensions.
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