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Abstract. - The transition thresholds between hexagons and rolls in convective patterns are 
obtained in the framework of the amplitude equations. We show that the discrepancies between 
the theoretical thresholds, calculated for unbounded systems, and the experimental ones, made 
in finite containers, can be partially corrected by a phenomenological argument. The finite-size 
effects are responsible for the decreasing in the efficiency of the heat transport across the cell. 
Using this fact we are able to approach the calculated thresholds to those observed in real 
experiments. 

The transition between different symmetries in convective patterns is the subject of 
some current studies[ll. The transition between hexagons and rolls appears: a)  in fluids 
with temperature-dependent transport coefficients (non-Boussinesq conditions) [2-81, 
b)  when the mean temperature in the cell varies (increases or decreases) linearly in time 191, 
c) in fluids with a temperature-dependent surface tension (BBnard-Marangoni convec- 
tion) [lo, 111 and d )  by temperature modulations in the convective cell [12-141. 

These studies show that the transition is, in general, smooth and hysteretic, but some 
discrepancies between theoretical predictions and experimental measurements are always 
present [6-8]. Theoretical studies are made for horizontal unbounded layers of liquid [31, 
while experiments are in convective cells with a finite aspect ratio r (I' is the ratio between 
a horizontal characteristic length and the layer depth d)). Some experimental works are 
based on laser-Doppler anemometry (local) [5] or on calorimetric data (global) [6,7]. Using a 
laser deflection technique [15], which gives local information on the temperature field, it has 
been shown recently that it is possible to recover global features of the pattern from these 
local measurements [8,16]. 

The purpose of the present letter is to show that finite-size effects can be taken into 
account by simple phenomenological corrections of the theoretical transition thresholds in 
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terms of amplitude equations and experimental data. In the case of an hexagonal pattern 
these equations read as [17] 

where e = (AT - ATe)/AT, is the normalized Rayleigh number and ATe denotes the critical 
temperature difference across the convective layer. This last parameter, as well as the 
relaxation time zo, the correlation length and the critical wave number k, can be calculated 
with a linear analysis. Instead, the coefficient U, b and c come from a nonlinear analysis. 
However, we will show in the following that they are accessible simply by heat flow 
measurements. 

The two stationary and homogeneous solutions of (1) are 

These correspond to the two parabolas in fig. 1 obtained from (1) for these two cases. A 
linear stability analysis of perturbations around these stationary and homogeneous solutions 
show that the hexagons are stable in the interval E, < E S Eh while the rolls are stable when 
E > € , ,  where E,, Eh and E, are the following transition thresholds (see also fig. 1): 

a2 c 1 = - 4(2b + c)  
u2 ( b  + 2c) 

( b  - c ) ~  { E h =  

u2 c I Er=- 

hexagons + no convection, 

hexagons + rolls , 

rolls + hexagons. 

(3) 

L 

Fig. 1. - Stationary and homogeneous solutions for the amplitude equations (1) for an unbounded 
system (full line) of rolls (RT) and hexagons (HT). Dashed lines correspond, instead, to a bounded 
system of rolls (RE) and hexagons (HE) (see text). The transition thresholds E, (rolls =+hexagons) and 
Eh (hexagons =>rolls) are given. (t = theoretical; e = experimental and p = phenomenological). 
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As a consequence, two hysteresis cycles can be distinguished. One between the conducting 
(rest) state and hexagonal motions, in the interval E , G E G ~ ,  the second one between 
hexagons and rolls in the interval E, S E S Eh. The existence of two transitions (one from rest 
state to hexagons and the other from hexagons to rolls) and two hysteretic loops have been 
observed in convection under non-Boussinesq conditions [5,7,8]. Some of these features are 
also observed in the case of a mean temperature linearly increasing in time [9] and in the 
case of temperature modulation [14]. However, in all these cases some discrepancies 
between theoretical and experimental results exist. Usually it is argued that these 
discrepancies are due to the finite-size effects [6]. 

With a suitable normalization the nondimensional heat flow A" can be written in the 
form [IS] 

where N is the Nusselt number, the ratio between the total heat flow and the conductive 
heat flow, and S the horizontal area of the convective pattern. For hexagons the 
nondimensional heat flow A" gives 

where C=2b +c,  while one has for rolls 

By a suitable fitting of experimental data with expressions (5), (6) one would recover the 
three coefficients in the amplitude equations (1): c from the slope of M, as a function of E for 
rolls and b and a from the fitting of the heat flow for hexagons with eq. (5). Although this 
procedure is theoretically possible, some difficulties appear in practice, especially in the 
determination of a. The parameter a is linked to the subcritical threshold loop which is 
difficult to observe [7,81. 

From eqs. (3)-(6) it is obvious that the transition thresholds and the slopes in the heat 
flow curves are linked, because they depend on the three parameters a, b and c. As argued 
by some authors [7], among these parameters the less sensitive to the lateral effects is a, 
because it mainly depends on non-Boussinesq effects. Thus, when the experimental fitting is 
not sufficiently accurate one can take the theoretical value for a. 

The important point, now, is that the discrepancies between the theoretical transition 
thresholds and those obtained in experiments axe linked with the discrepancies between the 
measured heat flows and those calculated theoretically. 

The lateral effects act as a multiplicative factor that decreases the efficiency of the heat 
transport, both for hexagons and for rolls. So, the slopes of the lines A"h,r(E) must be smaller 
than that for an unbounded system, as observed in experiments [6-81. However, the ratio 
between the slopes of the linear fit must be less affected by lateral walls [71. 

For the sake of comparison we take the values of the physical parameters that correspond 
to a recent experiment [8]. In this experiment the convective fluid was pure water a t  a mean 
temperature of 28.3 "C (Pr = 5.63) in a cylindrical cell (aspect ratio r = 20). The liquid depth 
is d = 1.8 mm and the critical temperature difference across the cell is AT, = 12.6 K. In these 
conditions the non-Boussinesq effects are high enough to induce a hexagonal symmetry in 
the. convective pattern and sufficiently small to allow for a perturbative analysis. The 
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TABLE I. - Theoretical am! experimental values of the linear part y of the nondimenswnal heat flow 
JI' as a function of E.  

Method Yh 

Theoretical [31 1.11 1.43 1.29 
Experimental [81 0.86 k 0.03 1.13 k 0.02 1.31 f 0.06 

TABLE 11. - Values of the parameters in the amplitude equations (1) obtained with dijjferent methods 
(see the text). 

Method a b c 

Theoretical 131 8.63 lo-' 1.01 0.70 
Experimental [81 - 1.30 zk 0.06 0.89 k 0.02 

TABLE 111. - Transition thresholds with dijjferent methods. The values called phenomenological have 
been obtained after introducing the experimental values of table 11 in formulae (3) and in the 
analytical expression of EhIE, (see text for details). 

Method Er Eh Eh/Er 

Theoretical [3] 5.46 * lo-' 0.188 3.44 

Phenomenological (3.9 f 1.9). 0.134 zk 0.06 3.45 f 0.09 
Experimental [81 (3.0 k 0.1) . 0.09 fO.005 3.0 zk 0.3 

tabulated values of the transport coefficients of water[19] under these conditions can be 
used to calculate the slopes and the transition thresholds from the Busse's formulae[3]. 

The theoretical [3] and experimental 181 values for the coefficients yr = l/c, y h  = 3/C of the 
linear part of the heat flow curves x h , r ( & )  are quoted in table I. One notices that the 
experimental slopes are smaller than the theoretical ones, but the ratio is almost the same in 
agreement with the phenomenological argument given above. After some algebra it is also 
possible to calculate the parameters a, b and c of eq. (1) from the formulae in ref. 131. 
Experimental slopes allow for the determination of b and c, but not of a. The corresponding 
values have been gathered in table 11. 

The theoretical thresholds for the hexagons *rolls transitions are easily calculated from 
the expressions in ref. [3]. Experimentally these thresholds were determined with the laser 
deflection technique [8,16]. The corresponding values are given in table 111. The disagree- 
ment between these values is obvious and not surprising, as a consequence of the finite-size 
effects. However, one can correct this situation simply by introducing the experimental 
values for the coefficients b and c, in eqs. (3) for the thresholds and in the ratio 
Eh/Er = ( b  + 2c)k (the theoretical value of a has been used). The result is also given in table 
I11 in the row called phenomenological and sketched in fig. 1. The main conclusion is that, 
although these phenomenological values and the experimental ones do not coincide exactly, 
this phenomenological procedure allows to correct the discrepancies due to the finite-size 
effects more than a 50%. 

The corrections proposed here have a global character. Discrepancy still exists between 
phenomenological and experimental threshold values, but this can be due to the unavoidable 
presence of defects in real experiments. These localized defects may act as critical nuclei of 
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the unstable phase [20], modifying sensitively the transition thresholds. Finally we hope 
that the present arguments will be useful for further comparisons in other systems where 
the hexagons-rolls transition is observed. 
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