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Abstract —The dynamics of coupled logistic maps with a multiplicative coupling is analyzed. We
determine the transition to chaos and the multifractal properties of some of the attractors studied in
the particular case of only two coupled maps. This transition cannot be deduced from the
subharmonic cascade typicat of a single map. The results are generalized to an ensemble of globally
coupled maps with a similar multiplicative coupling. The global quantities have different attractors
depending on the coupling strength and the number of elements in the ensemble.

1. INTRODUCTION

Extended systems far from equilibrium can change from almost regular patterns to strong
turbulence when some pumping parameter is changed. Near a critical threshold the
dynamics are dominated by few relevant modes. By increasing a control parameter the
system becomes irregular. These irregular motions are due to the interplay of many
unstable modes that act on a extended system in different places as observed in many
physical situations [1].

Some efforts to understand the irregular behavior of extended systems have been made
in recent years. Some ideas have been tested by using some models that ‘mimic’ complex
behavior [2]. Cellular automata (CA) [3]. for example, have simple dynamics given by a
deterministic rule that leads to an unpredictable behavior in many cases. Another class of
very interesting dynamical systems currently under study are coupled map lattices (CML),
that obey to a simple deterministic equations (discrete in time) with a diffusive coupling
[4, 5].

Ko = (L= () + 5 eflei™) + fxi)] M

where & is similar to a diffusion coefficient. They show some qualitative similarities
(spatio-temporal intermittency) with experiments.

However, many physical and biological situations seem to be due to a complex
connectivity among complex elements. Therefore, a feedback (not merely diffusive)
mechanism between the single component and the ensernble seems to be another suitable
way to understand complexity. Moreover, in some experiments (on turbulence, for
example) only global properties, i.e. averages of contributions of many components, are
accessible to measurements. This is the case, for example, of the electrocardiogram or the
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electroencephalogram, whose complex dynamics are a result of the average over many
complex elements.

Following these ideas. Kaneko has proposed an extension of the previously studied
CML. to a kind of global coupled maps (GCM) in the form [6]

AY
o= (1= of(el) + =3 fxly. @)
N =

These (GCM) may be seen as an extreme limit of long-range coupling that resembles a
mean-field theory for maps. Of course. such extended models are far too simple to
reproduce the properties of given systems. Nevertheless. some simulations indicate that
formations of ‘phases’. and jumps between different attractors are possible in these simple
systems [6].

We propose to analyze the consequences of a different global coupling among the maps.
Here a feedback through the "growth rate'. i.e. the control parameter of the system is
considered. This results in a multiplicative global coupling among the maps. The main aim
of the present paper is to study in some detail the dynamics of maps linked with such a
global multiplicative coupling. In Section 2 we analyze the case of two coupled logistic
maps. characterizing their stability and attractors. Section 3 is devoted to study the chaotic
zones in the parameter space of these models. In Section 4 we study a multiplicative
coupling among these maps. and the different behavior of the average. depending on the
the coupling coefficient and the number of coupled maps. The last section contains a
discussion and conclusion.

2. DYNAMICS OF TWO MAPS WITH A MULTIPLICATIVE COUPLING

2.1. Models

We begin by considering multiplicative coupling between two maps. The logistic map is
taken because it has a well-known route to the turbulence. Hence. the system considered is
a 2-dimensional extension of the logistic map

v Yusr = .“’,Vn(l - .“u) (3)

where we assume that the parameters u and ¢ take values in the interval [1, 4] (where the
interesting behavior of this map takes place) and give rise to a coupling between the two
variables. Therefore. u and u’ depend on y, and x,. respectively. The simplest choice that
satisfies these conditions is the linear one. Among the possible choices we analyze three
couplings that lead to the following 2D maps

Xpet = .“xn(l - -\Au)

Koot = fole ¥) Vaet = folya. X)) 4
where
model (a)  f, (v,. y,) = b3y, + Dx, (1l —x,) (5)
model (b) £, (x,. v, =b3x, + )y, (1 = v,) (6)
model (c) X, = b3y, + x,(1 — x,)
Va1 = b(3x,. + Dy, (1 — v,). 7)

We add an adjustable parameter b in order to have different dynamical evolutions. Th.e
first two maps have a reflexion symmetry while the third includes a time asymmetric
feedback. (We notice that a similar behavior can be obtained in two logistic maps with an
additive (diffusive) coupling in some particular cases {7. 8].)
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2.2. Fixed points
For the sake of convenience the fixed points are gathered in two groups
(1) On the axes

b-—1 b -1
Po=1{0.0), p, = (T 0). Py = (0, T) (8

172 L2
p3.4=§{1$(4—%) ,1¢(4——z—) } ©®

Points p, and p, are only fixed for models (a) and (c). The origin and those in group (2)
are fixed in the three models. The stability of the two groups of points are analyzed
separately, because they differ for the different models.

(2) On the diagonal

Group 1. (i) For 0< b <1, p, is a sink and P12 are hyperbolic points on the negative
side of the axes. (ii) When b=1, py=p, = p2- (iii) For b> 1, p, is a source point and
P12 are hyperbolic points, but now the positive side of the x-axis is the stable manifold of
p. and the positive side of the y-axis the stable manifold of |28

Group 2. The stability of the points p;, on the diagonal is more interesting. (i) For
0<b<3/4, p;, are not possible solutions. (ii) For b=3/4, p;=p,is a unique stable
point. (iii) For 3/4 < b < \/3/2, Pp; is an hyperbolic point. Its unstable direction coincides
with the stable manifold of p,, which is a sink in this interval. Therefore. the diagonal
between p; and p, is a heteroclinic orbit. These three features are common for all the
models (a)-(c), but the stability beyond these values are different. Therefore we present
the results in two separated paragraphs.

2.3, Bifurcations for models (a) and (b)

When b > \/.:3/2, P, destabilizes via a pitchfork bifurcation. becoming a hyperbolic point
that splits into two points p;,

, _(2b(b+1):\/m 26(b + 1) + \V/b(b + 1)(4b° = 3)
56 & .

b(4b + 3) b(ab + 3) ) (10)

The difference between maps (a) and (b) is that there is a period 2 oscillation between
points ps, in the first case, while in the second there is a pitchfork bifurcation again,
leading to ps or p, depending on the initial conditions. The location of points ps, have
been calculated using the reflection symmetry of the attractor. They always lie on a line
parallel to the transversal diagonal.

The iterates begin to spiral around p:s for b =0.956. These spirals preclude the
formation of the limit cycles around the fixed points pss. The Hopf bifurcation occurs for
b =0.957. In the first model there is an alternation between the two limit cycles around ps
and p, while only one of these cycles is visited by the map (6) depending on the initial
point in the iterations. We gather the results for the limit cycles in these.models for a
higher values of b (b = 1). The situation differs in models (a) and (b). This is clear in Figs
I and 2. These figures represent the iteration values after some time steps, the temporal
spectrum and the values in the area [0, 1] X [0, 1] for model (a) and (b) respectively.
(These figures have been obtained by taking 1.5 x 10* iterations, starting from an arbitrary
initial point.) This is clear after looking at the spectra in Figs 1 and 2. In this situation the
spectrum in Fig. 1 has different sharp peaks: one of high frequency (w, = 0.5) comes from
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Fig. 1. (a) Iterates of model (a) [equation (5)] giving a couple of symmetric limit cycles for b = 1: (b) temporal
) signal x,,: (¢) temporal spectrum of the signal.
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Fig. 2. (a) Rerates of model (b [equation (6)] giving a single limit cycle & = 1: (b) temporat signal x,: (c)
temporal spectrum of the signal.

the alternation between the two limit cycles in the iteration process. A second one w,
(which is b-dependent) is associated with the characteristic frequency .of ?ach cycle. The
rest of the peaks correspond to the harmonics of w, and some combinations |w, — rm.zzl
(n=1. 2. 3). The spectrum of model (b). however only shows the frequency w, and its
harmonics.

2.4, Bifurcations for model (c)

In model (c) the point p, is a stable sink until & = 1. For this value the poifu suffers a
Hopf bifurcation and a limit cycle around p, appears. Figure 3 shows the iterates for
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Fig. 3. (a) Iterates of model (c) [equation (7)] giving a limit cycle for b =1.096: (b) temporal signal x,; (c)
temporal spectrum of the signal.

b =1.096. For 1< b <1.18 the limit cycle show some quantitative changes, because the
spectrum always show some sharp peaks corresponding to quasiperiodic motions. In the
spectra two peaks. both depending on b appear. (One is quite clear w; = 0.36. the second
w, =0.08 is very small in this scale.) For example, for b = 1.12 the unique limit cycles
collapse into three islands. but without any sensitive change in the spectrum as one can see
in Fig. 4. (One can appreciate two frequencies w,=0.06 and w;=0.34 and the
combination w; — w,.) For b > 1.148 the cycle is folded (see Fig. 5) with more harmonics
(some of their peaks are very small) in the spectrum.

3. TRANSITION TO CHAOS

3.1. Models (a) and (b)

For b slightly larger than | the limit cycles approach the stable manifold of the
hyperbolic point p, giving rise to a folding process. However, the system is still
quasiperiodic in the case (a) and merely periodic in case (b). (This is given in Fig. 6 and 7
for b=1.03.) When b reaches the value b = 1.03 the limit cycles can cross the stable
manifold of p, that coincides with the heteroclinic orbit between p, and p, and some
irregular motions appear around this point.

For 1.032 < b < 1.0843 the limit cycles still grow and fold becoming very complex. A
typical chaotic situation (b = 1.070) is given in Figs 8 and 9. The iterations in this range of
b give rise to a interlacing of the two limit cycles on the diagonal and a complex folding
process around the unstable upper fixed point p,. In this region the w-frequency peak and
its_harmonics are slowed down to noisy bands in model (a) (Fig. 8). For both models a
widening process of the w,-peak and its harmonics appear. as can be seen in Figs 8 and 9.
The complexity of the iterates is always localized around two regions: near ps and near the
hyperbolic points p,,. However, the route to chaos is quasiperiodic for model (a) and
monoperiodic in case (b). Spectra in Figs 8 and 9 (b=1.07) reveal this important
difference.
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Fig. 4. (a) Collapse of the limit cycle in model (c) to three istands for b =1.12: (b) iterations; (c) Fourier
spectrum (arbitrary units).
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Fig. 5. (a) Folded attractor of model (c) for b = 1.148: (b) iterations: (c) spectrum.

Finally when the limit value b = 1.084322 is reached the attractor is tangent to its basin
boundary and the iterates can cross the axes. They are attracted by the stable manifold (the
axes) of the saddle points p,,, but when they arrive at the neighborhood of the unstabl_e
manifolds of these points they can escape to infinity and therefore the attractor is
destroyed.

To confirm the characteristics of the observed bifurcations, the larger Lyapunov
exponent A is studied. (This has been calculated by the Jacobian standard method on 10°
points of a trajectory [9].) Of course, some slight differences in the A for the two mgde!s
(a) and (b) exists. The result is given in Fig. 10. A goes to zero when a bifurcation point is
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Fig. 7. (a) Folded limit cycle of model (b) for b = 1.03: (b) iterations: {c) spectrum.

approached. It also gives a zero value for the interval of b that corresponds to the
appearance and development of the limit cycles. For some values of b. A< 0 and only
some points on the limit cycles are visited by the iterations (quasiperiodicity and
periodicity. respectively). For the value b = 1.025, A becomes positive in small intervals
that alternate with periodic windows (4 <0). But when b = 1.032, A reaches a value that
corresponds to the beginning of a chaotic band. From Fig. 10 one can also deduce the
existence of periodic windows where A <0 in this range of 5.

It is obvious that the properties of the two coupled maps is not a direct consequence of
the properties of a single logistic. Its transition is reminiscent of the Ruelle-Takens type [9]
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Fig. 9. (a) Chaotic attractor of model (b) for b = 1.07; (b) iterations: (c) notice that the spectrum differs from that
in Fig. 8.

for the model (a). In model (b) the transition is precluded by only one frequency and,
therefore is of Curry-Yorke type [9].

3.2. Model (c)

The transition to chaos in the model (c) is relatively more standard than in the preceding
cases. The larger Lyapunov exponent in this case is given in Fig. 11. From this calculation
it is clear than. apart from some chaotic bands (b = 1.14. b = 1.155) the folded limit cycle
explodes into a chaotic attractor for b = 1.17. In Fig. 12 we show this attractor in the case
of b =1.18. One can see that it also resembles a part of the attractor of models (a) and
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(b). The spectrum shows clearly a sharp noisy band around the main frequency, but a band
also appears at the frequency w, = 1/2 and near w = 0.

As this model shows a transition of the Ruelle-Takens type we do not give more details
on the chaotic attractor.

3.3.  Universality class

Models (a)-(c) correspond to couple two logistic maps with different couplings. We also
tested with other maps of the same universality class. So, by following the ideas of
Feigenbaum [10} we take different convex maps with one maximum only in the interval
(0. 1). The maps analyzed are
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Fig. 12. (a) Chaotic attractors in model (c) for b = 1.18: (b) iterations: (c) spectrum.

model (d) fo a3 =6 =y inan,) an
model (e) fo (e ¥) = b(F 3y, + Dx,(1 ~ x,)° (12)

We repeated the analysis made with models (a)—(c). The main conclusion is that although
some quantitative difference are obtained. the route to chaos is similar to that in models
(a)~(c) based on the coupled logistic map. The transition is from fixed points to a period-2
orbit (alternation between two points). a Hopf bifurcation of the corresponding alternating
points and, finally, a collision of the two orbits leading to chaos.

4. GLOBALLY COUPLED MAPS

In this section we consider the dynamics of an ensemble of maps globally coupled with a
feedback. Following the analogy quoted in the Introduction we consider a global coupling
between the single element and the henceforth modified background.

Kaneko [6, 7] has studied extensively the additive coupling among 1D maps given in
equation (2). He discussed the different phases between a complete disordered phase and a
coherent one [6, 7]. In a more recent paper he found that GCM systems, where the single
element is in a chaotic regime violates the law of large numbers but not the central limit
theorem [11]. Of course, this result is only partially surprising because correlations are not
completely destroyed in a GCM system even in the disordered phase. In the simple case of
diffusively coupled map lattices (CML) [equation (1)] the position of a given element does
enter in the description. A ‘correlation length® £ can be defined in these CML, and the
mutual information on the lattice must decrease as £/N, where N is the number of coupled
elements.

In the case of globally coupled maps (GCM) [equation (2)] a correlation length does not
exist because the coupling does not depend on the position. Therefore the mutual

Dynamics of maps 21

information in this case may not decay even for big values of N. However. the main
conclusion of this paper seems to be that the feedback mechanism in GMC is sufficient to
give a Gaussian distribution for the average. but the mean-square deviation of this average
saturates with the number of elements in the ensemble N for N < 10*. This is confirmed
by looking at the spectrum of the time series that does not change for N, = 10* [11].

Here we analyze the case of a multiplicative global coupling, i.e. the ‘mean field is
included in the multiplicative parameter b. The average of equation-(2) must lead to a
some kind of "white noise’ when the ensemble elements give random uncorrelated (zero
coupling parameter) numbers, while in the same limit the ‘noise’ is ‘multiplicative’ in our
system. As a consequence, possible advantages of the coupling considered here are: (a)
that something more structured than a Gaussian distribution can be obtained for the
average and (b) that the saturation value N, is expected to be smaller than in the additive
case, because a multiplicative coupling is more sensitive to changes in parameter space.

The analysis will be restricted to a generalization of the 2D map (5) to an N-dimensional
case by the coupling

Xt = fon(xi ¥} Yuer = fon(ya. X0 (13)
with
. vi+ eY¥ )
Fon(hs yi) = b[3(‘*‘1'—:'e—“) + 1 xn(l — x3) (14)

being £ a coupling parameter and X ¥ and Y)Y an average over the ensemble of elements
18,
XY =—=> xi. 15)
N2 (

The analysis is made by taking a fixed value of the parameter b (b = 1.07) in the chaotic
region of the 2D map (see Fig. 8) recording the variations of one element of the coupled
map and the average position for different values of the parameter ¢ and the number of
elements N. Because of the complex coupling among the maps only a numerical study can
be made. However, the random and coherent phases should be recovered in the limiting

. cases € =0 and ¢ = =, respectively.

Figure 13 shows the attractor of the iterates for a single element and for the average, for
fixed ¢ (¢ =0) and two different N. The attractor of a single element and that of the
average for N = 100 are given in part (a) and the corresponding spectra are given in (b)
and (c), respectively. For N = 1000 the results are in Fig. 13 (d)~(f). Although the spatial
distribution of the average in the plane is Gaussian-like, the spectrum shows some structure
(the peaks are very small) due to the fact that we are not averaging uncorrelated values,
but they are on a chaotic attractor. [See Fig. 13(b) and (e).]

More interesting is the case for a small € (¢ = 0.01) for different N. We observe that the
feedback gives rise to the appearance of a peak with w, = 1/2, which is not present in the
spectrum of model (5) for the same value of b (see Fig. 8). But for N = 100 the average is
on a single cloud [Fig. 14(a)], while for N = 1000 it splits into two regions symmetric with
respect to the diagonal [Fig. 14(d)]. The average in this situation leads to an enhancement
of the peak w; = 1/2 in the spectrum of a single map. Therefore, contrary to the case of
Kaneko. we observe here that the average is not on a single Gaussian-like distribution, but
there is a period-2 that arises from the feedback mechanism as one can see in the spectrum
of the average given in Fig. 14(f).

A very strange phenomenon is seen for £ =0.1. The average shows a more detailed
structure compared with smaller €. The attractor of the single element and the ‘attractor’ of
the average are very complex in space [Fig. 15(a)]. However the spectrum is clearly
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Fig. 13. Iterates of globally coupled map [equation (I4)] for £ =0 and N = 100: (a) iterates of a single element

(chaotic attractor) and of the average (cloud of point in the center): (b) temporal Fourier spectrum of a single

component (arbitrary units: notice that the height of the peaks do not coincide to that in Fig. 8 because less
iterates are taken): (c) temporal Fourier spectrum for the average: (d)~(f) the same as (a)—(c) for N = 1000.

quasiperiodic. Therefore, a kind of synchronization through the feedback mechanism is
established. And the feedback mechanism depends on N, as one can see by comparing
Figs 15(a) and (d).

These features change for different values of £ and a monotonic behavior is not
observed. For £ =1 the results are very sensitive to the value of N. For N =100 the
attractors are quasiperiodic, both in space and time [Fig. 16(a)]. But for N = 1000 a broad
dispersion of points (now the two attractor are mixed) in space and chaotic spectra with a
broad peak near w, = 1/2 is obtained [Fig. 16(d)-(f)]. For higher values of ¢ (¢ = 10) one
has chaotic attractor for N = 100 (Fig. 17(a)-(c) and quasiperiodic ones for N = 1000 [Fig.

Fig. {4. Iterates of globally coupled map [equation (14)] for £ =0.01 and N = 100; (a) i(eran_es of of a single
element and of the average: (b) temporal Fourier spectrum of a single component (arbitrary units:) (¢) temporal
Fourier spectrum for the average: (d)-(f) the same as (a)~(c) for N = 1000.

18(d)~(f)]. For the very strong coupling parameter ¢ = 1000 the attractors are chaotic and
some small changes are observed when N is increased (Fig. 18).

Let us summarize briefly the results in this section. The main conclusion is that a chaotic
system with many elements coupled by a feedback can show very rich dynamics. Different
behaviors are obtained depending on the values of the coupling parameter and the number
of elements considered. In the numerical analysis of the system proposed in the present
work one sees that (1) for a very small value of ¢ the feedback adds some kind of
alternation; (2) the dynamics of the system and the average become synchronized for
€ =0.1 and (c) quasiperiodic or chaotic attractors are obtained depending on both ¢ and
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Fourier spectrum for the average: (d)~(f) the same as (a)-(c) for & = 1000.

N, but the behavior is not monotonic. (We intend to analyze in more detail this point in a
future work.)

§. CONCLUSION AND DISCUSSION

We analyzed the role of a multiplicative coupling among maps. First we have shown that
the dynamics of two maps with such a coupling cannot be reduced to that of the single
element. The main result in this section is that one can obtain a transition to chaos in a 2D
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discrete system precluded by only one frequency (model b) (Curry-Yorke type). In other
cases the transition is equivalent to the Ruelle-Takens route [9].

But the results of global or multiplicative couplings must strongly differ when many maps
interact. We have analyzed numerically this case for a particular model (a). This analysis
shows that an ensemble of maps interacting globally by a muitiplicative coupling can have
many phases. Instead of giving the number of different clusters in the system [6, 7]. We
studied global properties, i.e. the dynamics of one of the maps and the average. On one
side the single map and the average behavior changes with the coupling strength ¢ and the
number of maps N in a very complex manner. Depending on the values of these two
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parameters one can obtain a synchronization on a quasiperiodic or chaotic attractor,
between the maps and the average, with very strange spatial behavior.

We think that these features can give some insight into the behavior of extended systems
with many interacting modes, where only global properties can be measured.
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Fig. 18. Tterates of globally coupled map [equation (14)] for &= 1000 and N =
element and of the average; (b) temporal Fourier spectrum of a single componen
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