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Convective patterns in laterally extended rotating cells with a vertically broken symmetry are ana-
lyzed. A simplified model allows one to determine the stability of different basic patterns. By means of a
generalized Swift-Hohenberg equation one can study the pattern evolution for different rotation rates
and different values of the symmetry-breaking term. In particular, a hexagonal pattern with oscillating
amplitudes is analyzed and the role of the defects is discussed.

PACS number(s): 47.25.Qv, 47.20.—k, 47.30.+s

I. INTRODUCTION

Theory and experiments on the Rayleigh-Bénard (RB)
instability show that above a critical threshold, plane
forms with different symmetries (rolls, squares, hexa-
gons, . . .) can emerge [1-3]. Under rotation around the
vertical axis, a convective layer can suffer different insta-
bilities due to the combination of thermal buoyancy,
Coriolis, and centrifugal force [4]. For the rotational ve-
locities considered in the present work, centrifugal forces
do not play an important role. In this case the instability
is ruled by two dimensionless parameters: the Rayleigh
(R) number, proportional to the temperature difference
AT across the fluid layer, and the Taylor number (Ta),
proportional to the rotation rate Q of the container [5].
A particularly surprising nonlinear instability was pre-
dicted by Kiippers and Lortz [6,7]. They showed that
convective rolls lose their stability when a critical rota-
tion rate Q_ (Ta.) is reached. The initial rolls are re-
placed by rolls at ~58° in a periodic fashion. Recent ex-
periments confirmed this transition [8,9].

The method of amplitude equations provides a useful
framework to study slowly spatial and temporal varia-
tions of convective systems [10]. The amplitude equa-
tions can be derived from the hydrodynamical equations
under suitable approximations. Busse and Heikes [8]
used a model based on a system of amplitude equations
used before for three competing biological species [11].
This takes advantage of the fact that the rolls rotate al-
most 60°, and therefore they can be described mainly by
three amplitudes. This model shows some similarities
with the rotating convective problem. Soward [12] ex-
tended these studies taking into account terms that break
the vertical symmetry as found in some convective prob-
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lems. [For example, when the boundary conditions are
different on the bottom (z =0) and on the top (z =1) of
the layer or when some parameters (viscosity, thermal ex-
pansion, thermal diffusivity) in balance equations depend
on temperature.] In these cases the solution of the linear
problem is no more symmetric with respect to the mid-
plane. More recently, Goldstein, Knobloch, and Silber
[13] studied the normal forms of this problem using the
theory of equivariant bifurcations.

This procedure assumes some approximations: it con-
siders that convective patterns in the system have a glo-
bal preferred direction. But this is difficult to obtain be-
cause patterns obtained in experiments achieve a complex
dynamics (defects, grain boundaries, . . .). To avoid some
of the limitations of the amplitude method, Swift and
Hohenberg proposed a model in which the description is
made in terms of a spatially fast-varying order parameter
[14]. This model is still much simpler for both analytical
and numerical work than the full fluid equations. It also
has some advantages over the amplitude method, because
the Swift-Hohenberg (SH) equation is rotationally invari-
ant and no preferred orientations of convective cells are
assumed a priori. However, the main disadvantage is that
the calculation of coefficients involves some approxima-
tions and, therefore, comparison between numerical in-
tegrations of this equation and experiments is not easy
[15].

In a recent paper a generalized Swift-Hohenberg equa-
tion (GSHE) that includes rotation was derived [16]. The
corresponding equation predicts that, at small rotation
rate (well below ), and due to the presence of defects, a
stable pattern of rolls turns rigidly in the direction of the
container rotation. When the rotation is increased fur-
ther, defects propagate along the sidewall. At the critical
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Ta, the Kiippers-Lortz (KL) instability is obtained and
the simulations show patterns similar to that observed in
experiments. The main aim of the present work is to con-
sider a GSHE including also a term that breaks the verti-
cal symmetry and that may favor a hexagonal structure.
This can happen when non-Boussinesq effects are taken
into account [17], or if a temperature-dependent surface
tension takes place [Bénard-Marangoni (BM) convection]
[2,3,18].

The present paper is organized as follow. In Sec. IT we
carry out the stability analysis of a model based on the
three amplitude equations for a rotating convective cell
with a hexagonal symmetry [12,19]. In Sec. III, a GSHE
is proposed to study the pattern formation. The relation-
ship between the coefficients in the amplitude equations
and those in the GSHE is also derived. Simulations of
the GSHE [20,21] show that different textures are possi-
ble for different values of the rotation rate and of the
quadratic term. The role of the defects in the formation
and temporal behavior of these textures is discussed.

II. NONLINEAR ANALYSIS:
AMPLITUDE EQUATIONS

A. Amplitude equations

A fluid layer with an infinite horizontal extension,
heated from below and rotated around a vertical axis, is
considered. The hydrodynamical equations that describe
this system are well known and their linear stability
thresholds were studied many years ago [5]. Nonlinear
studies showed the possibility of some primary instabili-
ties (transition from a conductive state to a convective
one) and secondary ones (Kiippers-Lortz instability). To
obtain a better understanding of these phenomena, a
simplified model has been proposed [8,12]. In this model
only three modes with a wavelength |k|=k, (the critical
one) oriented among them by an angle of 27 /3 (hexago-
nal lattice) are considered.

The amplitudes are then introduced by projecting the
perturbation vector ®=(u,v,w,0) of the velocity com-
ponents (u,v,w) and temperature (6) from the thermally
conducting state on three linear unstable modes forming
a hexagonal lattice [22]:

®D(r,2)=[ A,(t) cosk;-x+ A,(t) cosk,"x
+ A;(1) cosky-x1g(z)+®,[ 47] (1

with x=(x,y), k;+k,+k;=0, and where g(z) is a func-
tion that is obtained from the basic linear equation and
boundary conditions [23]. Substitution of (1) into the hy-
drodynamic equations for a fluid with an infinite Prandtl
number (Pr= «) leads, after elimination of the linearly
stable, enslaved modes ®; [24], to a system of coupled
nonlinear rate equations for A;. Taking the nonlineari-
ties up to third order one gets
A;=€A;+8'4,,14,4,
—A;[ AP+ Q+y)AY +2—y)A70)],

i=1,2,3 mod(3) .
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Here e=(R —R_)/R_, where R_ is the critical value of
R for convection to appear. Rescaling with 4;= 4;/V'e
we obtain the simplified amplitude equations

A;=A4;+84;,,4, 4,
— A, (AP Q) AN+ 02—y 47T,
i=1,2,3 mod(3), (2)

where §=8'/V'e. The coefficient & reflects the effects
that break the vertical symmetry and leads to the possi-
bility of hexagons. The cubic terms usual in convection
are modified by a coefficient y proportional to Ta that ac-
counts for rotation. When rotation is dropped out
(y=0) the amplitude equations (2) reduce to that pro-
posed in [3] when 4;= A,. For the sake of simplicity
spatial variations of A4; are not included. The region of
stability for rolls and hexagons can be determined
straightforwardly by a linear stability analysis [12].

B. Stability diagram

We briefly summarize the main results on the stability
of solutions. Figure 1 gives a sketch of the stability dia-
gram in the space of parameters, €, 8, and y while Fig. 2
represents a section 8-y for the same equation rescaled.
Even for the simplified model (2) different solutions may
be obtained by changing 6 and y. The main regions of
stability in Fig. 2 are described in the following.

In region I, rolls are stable. Region II shows hysteresis
between rolls and a limit cycle, corresponding to an oscil-
lation of A4; with fixed relative phases. In this region, a
third type of solution corresponding to saddle points
(A;# A; 7 A, .,70) is also possible. In the following
we shall refer to these as unstable asymmetric solutions.
In region IV, hexagons ( 4, = A; ;= A4; +,70) are stable,
while in region V both stationary rolls and hexagons are
stable and a hysteresis between these two solutions can be
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FIG. 1. Stability regions for the different solutions [rolls (R),
hexagons (Hx), limit cycle (LC) and hysteresis] in the parameter
space (8',7,¢€) of the 3-mode model [Eq. (1)].
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FIG. 2. Stability regions in a 8-y section for Eq. (2). The
Hopf and stationary bifurcations are discussed in the text.

obtained. Starting from hexagons in IV and decreasing 5,
a Hopf bifurcation at the line I'y4(8=06%) leads to a
stable limit cycle around the hexagonal solution. (How-
ever, the rolls continue to be stable when crossing from
region V to region II through I'};.)

Now the relationship of this limit cycle with other
solutions in the different regions in the stability diagram
(Fig. 2) is described. In region II, the limit cycle grows
and approaches the three unstable asymmetric solutions
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[Figs. 3(c) and 4(a)] when 8 decreases. For values of 6 on
the line T'y, the limit cycle meets the asymmetric points
and forms a heteroclinic orbit. For values of ¢ below this
'y, curve, the limit cycle becomes unstable with respect
to stable rolls. For values of y above I'y, [Fig. 4(a)] that
heteroclinic orbit disappears and the limit cycle is always
stable [Fig. 4(b)] in regions II and III. The asymmetric
points tend to the A; axis by increasing ¥, and for a
sufficiently high ¥ (on the line I'} ) they meet exactly the
roll solutions [Fig. 4(c)]. In region III, the limit cycle is
the only stable solution. For §=0, it degenerates into the
heteroclinic loop joining the three fixed points on the
axis, recovering the KL instability.

III. THE GENERALIZED
SWIFT-HOHENBERG EQUATION

In the preceding section, spatial dependence of the am-
plitudes was not considered. So the corresponding pat-
tern is perfect without dislocations or grain boundaries.
Some recent experiments [4,27] have shown that defects
and grain boundaries play a crucial role in the dynamics
of rotating convective patterns. The main processes ob-
served cannot be explained simply by the global dynamics
of three unstable fixed points or a limit cycle as in the
preceding section, but spatial terms responsible for the
defects must be included.

We then propose a generalized SH model that includes
spatial variations in a coherent manner. For the sake of
simplicity we restrict the analysis for Pr= o0, fluids al-
though this condition is almost fulfilled for Pr=5. (How-
ever, comparison with the experiments in [9,27] done for
Pr <1 will require two order-parameter equations [25].)

A. Formulation

Starting with the hydrodynamic equations in the Bous-
sinesq approximation for a rotating Rayleigh-Bénard in-
stability [5] in a liquid with a high Pr value, a minimal
GSHE may be derived that describes the dynamics and
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FIG. 3. Solution of the amplitude equations in the 4,-A4, plane for fixed ¥ =0.81 and decreasing values of 8§ corresponding to
different stability regions in Fig. 2: (a) §=0.456 (region II), (b) =0.365 (region II), (c) §=0.27 (line I'y,). The limit cycle around the
hexagon solution is growing [(a),(b)] until a heteroclinic orbit appears [(c)] due to the collision between the limit cycle and the saddle
points near the roll solutions. (@, roll solution; O, asymmetric solution; X, hexagonal solution.)
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FIG. 4. Temporal evolution of amplitude equations projected in the A4,-4, plane. For fixed §=0.4 three different solutions are
obtained: (a) a heteroclinic orbit between three different points near the solutions of rolls at line 'y, (¥ =0.53); (b) a limit cycle and
stationary rolls in the region II (y =0.75) (notice that three saddle points approach the roll solutions); (c) the roll solutions become
unstable in region III (y =1.1). (@, roll solution; O, asymmetric solution; X, hexagonal solution.)

evolution of patterns in large aspect ratio cells [16]. In
that paper it is demonstrated that for rotation to be de-
scribed, at least one new term in the usual SHE must be
included. This is a cubic term that also involves spatial
derivatives. Here we further generalize this equation in-
cluding vertical symmetry-breaking effects. To study the
situations similar to that discussed in the preceding sec-
tion for the amplitude equations, we investigate the fol-
lowing GSH equation:

W(x,t)=[e—(1+A)*W(x,1)+8¥(x,1)
—W(x,t)—7[V¥(x,t) X VAVXx,1)], (3)

where VW is proportional to the deviations of the tempera-
ture with respect to the conductive state, A and V are the
two-dimensional (2D) Laplacian and the 2D gradient, re-
spectively. This may be considered as the minimal model
that includes the main features found in Sec. II B. For
the sake of simplicity, we include neither terms of the
same nor of higher order in the spatial derivatives.

A more important difference between Eq. (3) and the
usual SHE is that the term due to the rotation is nonvari-
ational, i.e., Eq. (3) cannot be derived from a potential.
The rotation breaks the reflection symmetry (x — —x or
y— —y) and precludes the existence of a potential that
decreases monotonically towards a stationary state. If
5=0 one recovers the GSHE discussed by Fantz et al.
[16]. The quadratic term in this equation is responsible
for the breaking of the vertical symmetry of the linear
solution [17,24]. In the limit =% =0, Eq. (3) reduces to
the well-known SH equation [14,15,20] that leads to a
pattern of rolls while for §0,7 =0 (no rotation) station-
ary hexagonal patterns can also be obtained [20].

B. Numerical solutions in cylindrical containers

The simulation of Eq. (3) was made for the usual lateral
boundary conditions ¥=09,¥=0 (where n denotes the
direction perpendicular to the sidewalls) that corresponds
to vanishing velocity components on the thermal insulat-

ing sidewalls. In order to solve the GSHE we use a semi-
implicit pseudospectral method described elsewhere [26].
The nonlinearities are calculated in real space and the
spatial derivatives are evaluated by finite differences.

The coefficients of the amplitude equations (2) and the
GSHE (3) can be simply related by assuming
W= 3_, 4, exp(ikr)+c.c., where c.c. stands for the
complex-conjugated term. This identification leads to

_2% 2y
5 Ve’ 3 (4)

These relationships allow us to compare results in Eq.
(3) for values in the stability regions described in Sec.
II B, i.e., to interpret the patterns obtained by numerical
simulations of Eq. (3) in terms of the different solutions in
Fig. 2. But the main point now is that the GSHE in-
cludes the spatial variations and also finite containers can
give a clearer idea of the pattern that could be observed
in real experiments. The patterns are integrated on a cy-
lindrical cell as used in experiments.

1. Rigid rotation of the pattern

We assume parameter values in region I where rolls are
the stable solution of Eq. (2). Starting from a random ini-
tial condition, simulations of the GSHE (3) give patterns
with parallel rolls in the central part and some defects lo-
calized on two opposite zones on the walls. Below a rota-
tion rate corresponding to a value for y =y, (that de-
pends on the aspect ratio), the defects tend to travel by
the lateral wall, forcing the rolls to bend and rotate, as
obtained by Fantz et al. [16]. Above y, defects are radi-
ated from one region of defects to the other. This last
feature has been observed in recent experiments by
Zhong, Ecke, and Steinberg [4] at a rotation rate below
the KL instability.

Patterns of hexagons are obtained for parameters in re-
gions IIT and IV. A rigid rotation of the whole pattern is
observed (Fig. 5). This rotation velocity is related to the
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T=500

FIG. 5. Solution of the GSHE showing a rigid rotation of a
hexagonal pattern (§=0.657,y =1.1,6=0.1).

defects present in the pattern and the nonvariational term
in Eq. (3) [16]. Numerical results show that hexagons
have a rigid rotation velocity lower than a pattern of
rolls, probably due to the fact that the former fill a cylin-
drical geometry better than the latter.

2. Kippers-Lortz-like instability

Rolls and a limit cycle are stable in region II of Fig. 2.
The limit-cycle solution resembles the heteroclinic con-
nection among the three asymmetric solutions. The later
points are near but do not coincide with the roll solutions
of the KL transition. However, as these solutions do not
differ so much, they ought to lead to similar patterns in
the simulations. This is why we designed this case generi-
cally as KL-like instability.

In simulations, only the limit-cycle solution is obtained
because some defects are always present. This fact pre-
cludes a solution of rolls with a fixed orientation. Then
we observe in the simulations a continuous transition be-
tween rolls at 60° not predicted by the KL instability. In
fact the last one assumes that a system of rolls reaches a
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FIG. 6. Solution of Eq. (3) for §=0.2, y=0.9, and €=0.1.
The growth and propagation of defects at ~60° erode the pat-
tern of rolls in the center of the cell. Grain boundaries travel
across the bended rolls and break them, generating another
direction that replaces the previous one.
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FIG. 7. Solitary grain boundary traveling across the texture
produces a sudden increment in the rotation of the pattern.

finite amplitude, then becomes unstable, and a new set of
rolls grows with a wave vector rotated an angle a relative
to the first set. However, the mechanism observed in
simulations of the GSH model is qualitatively different.
The mechanism of the pattern reorientation is shown in
Fig. 6. Defects near the walls are oriented at some angle
with respect to the central region. These regions of de-
fects grow towards the center and erode the central rolls
along the direction of the defects leading to a reorienta-
tion, similar to that observed in experiments in high as-
pect ratio cells [4]. The growth process of defects is
enhanced by the breaking of bended rolls on several grain
boundaries that propagate at a fixed angle in the azimu-
thal direction. This transition is similar to that observed
in [27], in spite of the difference in Pr value between the
present simulations and that experiment. For some
values a single grain boundary is observed that does not
induce sudden orientation change but increases the rota-
tion velocity of the whole pattern (Fig. 7).

Nevertheless, when we integrate Eq. (3) for periodic
boundary conditions (which mimic an infinite system),
the temporal evolution leads to a pattern of fixed rolls for
the wide parameter region studied numerically. These
features suggest that the lateral walls and the defects play
an important role in the evolution of textures.

3. Three-mode limit cycle

We are interested in this case in simulations on small I
cells, because this allows one to consider the important
role of defects discussed above. In this case our aim is to
visualize what kind of patterns correspond to a limit cy-
cle in the stability diagram (Fig. 2). Figure 8 shows solu-
tions of Eq. (3) corresponding to a point (§=0.4,y =1.1)
of region III in Fig. 2. In this situation the amplitude
equations show that the limit cycle surrounds the hexago-
nal solution and it is far from the KL instability. Then
the three amplitudes must change cyclically in a continu-
ous way.
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FIG. 8. Limit cycle (§=0.4, y=1.1) in a circular container.
The system passes near the three asymmetric solutions in a
periodic sequence.

In the first pattern in Fig. 8, one of three hexagonal
modes is dominant. During the evolution some states are
observed where two modes give rise to a nearly rhomboid
lattice while the amplitude of the third mode is very
small. After some time a new orientation becomes dom-
inant (see last pattern in Fig. 8). The hexagonal form
remains, but with a global change of amplitudes in the
whole pattern.

IV. CONCLUSIONS

By means of a model of amplitude equations we inves-
tigate convection in a horizontal rotating fluid layer with
some effect that breaks the vertical symmetry (BM con-
vection, non-Boussinesq effects, etc.).

Numerical results on this model show that the hexa-
gons may lose their stability via a Hopf bifurcation. The
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evolution of the corresponding limit cycle in the parame-
ter space is described in some detail. The rolls lose their
stability through a stationary bifurcation. Below this line
it is possible to find a pattern evolution similar to that in
the Kiippers-Lortz instability. The difference is that in
the present case the limit cycle passes near three asym-
metric solutions but it does not coincide with the hetero-
clinic orbit connecting three exact roll solutions.

The amplitude model does not provide a complete
study of the possible textures in a real system because it is
restricted to three modes and includes neither spatial
terms nor the lateral boundaries. However, the stability
analysis of these equations gives important insight to
determine the most important mechanisms that one may
encounter by posterior integration of the GSH model.
The last one includes lateral walls and spatial effects giv-
ing more complete information on the patterns to be ob-
served. For example GSHE predicts a rigid rotation of a
hexagonal pattern in small aspect ratio. (This prediction
could be easily checked under suitable experimental con-
ditions.) Another interesting feature of solutions of the
GSH model is the role that the defects seem to play (al-
ways present in finite geometries) in the KL-like mecha-
nisms. For a rotating hexagonal pattern global continu-
ous change in the modes is observed (Fig. 8). This is in
agreement with the limit-cycle solution in the amplitude
model. The numerical solutions of the GSH model have
qualitative agreement with some features observed in re-
cent experiments [4,27]. The present model also suggests
that it could be interesting to derive an amplitude model
that would include spatial derivatives, in order to obtain
the dynamic of defects and grain boundaries in rotating
convective cells.
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T=500

FIG. 5. Solution of the GSHE showing a rigid rotation of a
hexagonal pattern (§=0.657,y=1.1,€=0.1).



FIG. 6. Solution of Eq. (3) for §=0.2, ¥y =0.9, and €=0.1.
The growth and propagation of defects at ~60° erode the pat-
tern of rolls in the center of the cell. Grain boundaries travel
across the bended rolls and break them, generating another
direction that replaces the previous one.



FIG. 7. Solitary grain boundary traveling across the texture
produces a sudden increment in the rotation of the pattern.



FIG. 8. Limit cycle (§=0.4, y=1.1) in a circular container.
The system passes near the three asymmetric solutions in a
periodic sequence.



