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The dypamical behavior of o svstem formed by two symmetrically coupled logislie maps with &
multiplicative coupling is analvzed. The transition 1o chaos {Ruclle=Takens type} and the mullilractal
praperties af the atlraclor have been determined in this system, This transilion cannol be deduced from
Lhe subharmonic cascade Lypical of a single Jogislic map. Under the sume kind ol symmetry, different
classes of coupling in 213 maps give the same qualitalive roule to chaos but wilh dilferent peametrical

Lransition mechanisms,

I. Introduction

In the Jast vears many syslems have been studied o
test new defnitions, methods and ideas on complexity.
Cellular Automata, coupled logistic and cirele maps

latlices are usual examples used 1o study properlics ol

complex behavior. Some Cellular Automata show
complexity even for simple rules [Wollram, 1986]. As
Lthey are discrete in space and time they can be easily
generated on a compuler. However, the resulls are not
cusily interpretable in lerms of dynamical swstems.
Slighlly more complex (nol discrete in local space) are
coupled map lattices [CrotchBeld & Kaneko, 1987
that can show different kind of “phases” and behav-
iors, The advantage of this syslems is that the basic
elements are well known and one can 1ry 1o understand
the “emergent” collective propertics through some
Saverage” procedure on Lhe components [Raneko,
[985].

As stressed in recent papers, the behavior of com-
plex spatially extended systems cannat be covered by a
simple diffusive coupling ameng oscillators, Therefore,
some aulhors have proposed analvzing o global cou-
pling with a “mean held” interaction [Kancko. 19849].
A different behavior will be obtained with a mullipli-
cative coupling,

As o first step, one can study two coupled logistic
maps. In some recenl works the dynamics of these
maps under different couplings have been analyveed,
For 213 maps with a rellection symmetry with respect
lo the diagonal. the Ruelle="Takens route {fixed point,
periad-two orbil, two hmit cveles. chaos) 1s olten
ablained for both additive and multiplicative cou-
plings, Usually the lransilion Lo chaos is via the
broadening of the two limit cyeles that become chaotic
[Yuan ef gb, [983; Hope & Huberman. 19844 Schull
of al, 1987).

We propose a kind of multiplicative coupling whose
dynamics shows a bilurcalion diagram that leads Lo Lhe
Ruclle-Takens route. bul wilth a mechanism different
[rom thit in the 2D maps relerenced above.

2. Multiplicatively Coupled Logistic Map

2.1, The bimap

In the present paper. we consider a logistic map whose
parameter i nol fixed but isell follows a logistic
dynamics. In order (o have a nontrivial dynamics, one
farces the parameter Lo remain in the interval [1, 4]
Then the parable always has a fixed point differenl
from zero Lhat ensurcs a self-sustained dynamics
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Therefore we take two logistic maps
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(1}
where () and @' (x,) are in the interval [1, 4]. The
simplest choice that satisfies these conditions is the
lingar ane

=03y 1w =h{3x +1) . {2

We add an adjustable parameler b in order lo have
different dynamical evolutions, Therefore, we arrive at
a map with a natural reflection symmetry, thal takes
the form

7IL.'HI 'rl{- e -]fI} -].'I|| --'Ifn;.l{-l".'i:'x.'l::l {3}

where

JplXps ¥ = 8030, # 1) %, (1 = %,) . (4]

We will refer Lo it as the bimap in the following.

2.2,  The stability of the bimap

For the sake of convenience we will distinguish two
groups of fxed points of the bimap

A) on the axes

pe= (0, 0), p,-_(%,ﬂ), ,n:=(ﬂ hf‘_:l) (5)

B} on the diagonal

,|‘J3_4=é‘[| = (4- %)] | 5 (4- g)”z} {6

We analvze separalely the stabilily of lhese two groups
ol points.

Group A 1) For O <bh<1, g, is a sink and p, 5 are
hyperbolic points on the negative side of the axes,
i) When b= 1, py=p, = pa. iil) For b = 1, py 15 a source
point and g, are hyperbalic points, Now Lhe stable
manifold of g, is the positive side of the x-axis and the
stable manifold of p, is the positive side of Lhe j-axis.

Group B, The stability of the points p; 4 on the
diagonal leads to some interesting situalions, i) For
{0 = b= 3/4, the points py , are not possible solutions,

iy For H=3/4, py=p; is a stable point, iii) For
34 < b < 302, o is an hyperbolic point, 1ls unstable
dirgclion coincides with the stable manifold of i, (This
point is a sink in this interval), Therelore, the diagonal
between py and gy Torms a heteroclinie orhit. iv) When
b= 342, Py destabilizes via a Pitchlork bilurcation,
becoming a hyperbolic point that generales a stable
period-two orbit formed by points p. .

(2!){b+ 1)y F \/."n[h+ [4h® - 3)
Ps.e = bidh 4+ 3) '

2hih+ 1) \/r'JU'H y{4h” ’1})
— —_— (7]

hidh + 3)

These have been caleulated using the reflection svm-
metry of the attractor. They always lic on a line parallel
to the transversal diagonal. v) The period-lwo orbit
losses stability via a Hopl bilurcalion: each poinl of
this orbit gives rise (0 a limit cyele for b=0.937,
Haowever, the itceations conlinue lo allérnate between
the twao limit eyveles and then are characlerized mainly
by two frequencics (quasiperiodic). These lmit evcles
growe when & increases further and, for some small
intervals of b, Mmeguency locking windows are obtained,

For £ slightly larger than |, the limit eveles approach
the stable manifold of the hyperbolic point p, giving
rise Ll a lolding process. However, the svstem is still
quasiperiodic. When & reaches Lhe value &= 1029, the
limil cyeles can cross Lhe stible manifold of py that
caineides with the heteroclinic orbit between gy and py
and some Irregular motions appear around this point.
For 1.02% < = 1.0843 Lhe limil cycles still prow and
fold, becoming very complex. When the limit value
fr= 1.084322 is reached, the attractor is tangent to its
basin boundary and the ilerates can cross the axes,
They are altracled by the stable manifold (the axes) of
lhe saddle points py 5. but when they arrive at the
neighborhood of the unstable manifolds of these
points, they can escape 1o infinity and the attracior
disappears.

We represent in Fip, | the evolution of the iterates
[or different values of & These figures have been
oblained by plotting 1.5 x 107 iterations, slarting from
an arbitrary initial point. Figure 1a shows the ileration
between the two points g, and p. (0= 0.900). In
Fig. I the spiraling of the iterates around ps , for
f=0.956 s clearly apparent, These spirals preclude the
formation of the limit cyeles that are shown in Fig. le.
{f=1) The folding of these cycles around jy appears
for h=1.03 in Fig. 1d. A typical chaotic situalion
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(h=1.070) is given in Fig. le. The iterations in Lhis
range of & give rise Lo an interlacing of the twao limit
eyeles on the diagonal and a complex folding process
around the unstable upper fixed point gy, The com-
plexily of the iterates is always localized around two
regions: near p, and near the hyperbolic points py 5.
Finally for the limit value &= 10834 the complex
attractor s given in Fig. 1f

2.3

The power spectrum S{w)} of this allractor as a
lunction of the frequency w for two Lypical values of &
is represented in Fig, 2. In the region where the two
limit cycles are slable, one observes different sharp
peaks: one of high frequency (w, = 0.5) comes from the
alternation between the two limit cyeles in lthe itera-
lion process; a second one W, (which is &-dependent)

Metric and statistical measares

is associated with the characteristic frequency of

each cycle. The rest of the peaks correspond Lo the
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function ol 1he frequency w for iwe represenlative values of &
(a) Stable limit eyeles (b= L0200 (B Chaolic attracton, b= LO70L

harmonics of w, and some combinations |, - a4y |
{r=1,2, 3} (Fig. 2a). For = 1.029 the high frequency
peak and the harmonics are slowed down to noisy
bands and a widening in the low [requency peak
appears, as can be seen in Fig, 2b, For some particular
valugs of b in this range, quasiperiodic windows
emerge. In this situations, the spectrum is formed
anew by sharp peaks,

To confirm the characteristics of the observed bifur-
cations, the larger Lyapunov exponent 4 is studied.
{This has been caleulated by the Jacobian standard
method on 107 points of a trajectory [Berpé et al.,
[284]). The resull is given in Fig. 3. A goes to zero
when a bifurcation poind is approached. It also gives a
zero value for the interval of & thal corresponds to the
appearance and development of the limit cvcles. For
some values of b, 4 =0 and only some points on the
limit cycles are visited by the ilerations (quasiperiod-
icity). For the value fi=1.025, & becomes positive in
small intervals that alternate with guasiperiodic win-
dows {7 < (0, But when &= 1.029, 1 reaches a value
that corresponds to the beginning of a chaotic band.
From Fig 3, one can also deduce the existence of
quasiperiodic windows where £ < 0 in this range of b

In order to determine the complexily of the attrac-
tor, we study il invariant measure, The last have been
determined numerically by taking 107 iterates. Even
for the limit cyeles, the invariant measure 5 not
uniform: the probability is larger near py than on the
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chaotic region.

rest of the attractor. The attractor in the chaolic repion
(1020 < = 1.08342) increases ils heteropeneity when
fincreases, but only in two very limited zones, The
maximum of the invariant measure of the chaotic
attractor |Eckmann & Ruelle, 1983] is localized in the
neighborhood of py, while near the hyperbolic points
2 the dteraled points are scatlered and therefore the
invariant measure 15 minimal in this regions (sec
Fig. 4a). This can be studied quantitatively by deter

mining the dimension spectrum [ (i) as a function of

the local dimensions o of the invarianl measure
[Halsey er af., 1986]. The resull given in Fig. 4h for
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fr=1.0834 has been calculated wilh the constant radius
method taking 3000 points [Pawelzik & Schuster,
1957). It confirms the mullifractality of the altraclor,
The [lractal dimension is ;= 1.27 and (he local
dimensions « reach values from 0.565 1o 1,656,

3. Discussion and Conclusions

The coupling of two logistic maps has a decp effect on
the solutions and the transition to chaos than that
observed for the 1D logistic map [Yuan ef ol 1983).
This is a common conclusion m additive 213 maps
with a diagonal symmetry [Yuan e af, 1983; Hope &
Huberman, 1984). We also confirm this conclusion
when o mulliplicative coupling is considered,

The bimap follows a roule to chaos of the general
[arm

fixed point — period-2 arbil — two limil eycles — chaos
requencies: w) = 1/2 — w,wy — broad band

thal corresponds qualitatively 1o the Ruelle-Takens
route for 2> maps. In the case of two logistic maps
with different additive couplings and with a diagonal
symmetry, there exisls a region in the space of
parameters where the lransition 1o chaos follows (he
same scheme [Yuan ef al, 1983].

However, the geometric mechanisms of transition is
qualitatively different depending on the kind of cou-
pling. In many cases [Yuan et al, 1983, Chossat &
Golubitsky, [988] the chaotization is produced by
local bifurcations in the limit cycle phase with the
Se{UEnCE;

two limil eveles — two chaotic bands — bands collision
)= 12, Wy 5 O—broad band around w, — broad band
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Fig. 4. (ap The F{a] spectrum of the map far &= 10834, (b The invarian messore of the bimap camputed frony 1O iterales (F - 1L0834)



Instead, for the 213 map analvzed here, the two limit
eyeles remain until they suffer a global bifurcation due
to the colbsion with the heterochinic orbit on the
diagenal, leadimg 1o chaos:

two limits cveles — collision of the cvcles with
the diaponal
Wy, s — broad band

This 15 qualitatively diifferent from the scenario ex-
plained above. (Compare Fig. 2a in Yuoan ef al. [1983]
and Fig. le in the present paper) The iterations in
Fig, Le, are distributed on two interlaced hmit eveles,
bul chaos eak the vight=left diagonal alternancy (lose
al vy 12 Tregquency ).

Mlorcover, we notice that this last scenario also can
be eluimed n the case of two coupled logistiic maps
with a diffusive coupling when the parameters are
linked with special relationshaps [Kancko, 1983; Jack-
som, 1990 N oseems that the svinmetry of the map
coumtions poverns the sequence of bifurcations, and
the kind of coupling does not seem 1o play a determi-
wanl role i this sequence, Forther studies could allow
the determimation of the universality of this paricular
scheme within the peneral Ruelle=Takens route 1o
chitos,

The attractor looks quite regular even in the chaotic
resion, However the analvsss of the Lyapunov expo-
nents conlirms that chaos is taking place, The invari-
anl measure and the dimension spectrum [ f{e]]
confirms that the disteibution of the iterates on the
attractor is quite inhomopeneous, The maximum and
the minima of the invariant measure of the chaotic
altracior are concentrated 1n some very restricied
zones near the unstable fixed points (Fig. 4a).

The present studv sugpests that more complex
behavior will appear for higher dimensional coupling.
In particular it would be interesting to analyze the
different kinds of global couplings among a lattice of
maps in order to search for universal properties.
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