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Abstract. - The dynamics of the fragmentation of a liquid drop falling in a miscible fluid is studied in a 
Hele-Shaw geometry. We show that this configuration allows quantitative measurements of the 
characteristic sedimentation velocity and internal velocity of the drop. The break-up process observed 
in 3D is also found in this quasi-2D configuration. The relation between the internal circulation pattern 
and this process is also discussed. 

Fluid instabilities occur in many natural phenomena (flows in porous media, dynamics of earth 
mantle, atmospheric currents) as well as industrial processes (stirring tanks, mixing processes). In 
the last few years considerable attention has been devoted to basic hydrodynamical instabilities 
(convective, centrifugal, gravitational) that could offer insight on the basic instability mechanisms 
under quite well-regulated conditions. 

Instabilities can be found even at small Reynolds number and for open flows. One of the simplest 
instabilities of this kind is the fragmentation of a drop falling in a miscible fluid. This instability was 
fist described by von Helmholtz and inspired Lord Kelvin his works on vorticity. A detailed 
phenomenological description can be found in ref. [l]. These authors reported the fragmentation 
process in a wide variety of miscible liquids and also discussed the case of immiscible liquids. The 
process could be summaxized as follows. A drop is deposited on the free surface of a lighter liquid. 
After a short period, it begins to fall, leaving a tail at the rear. After some time the drop breaks up 
forming a torus that expands radially. This torus in turn is unstable and undergoes a fragmentation 
in several drops, and these daughter drops follow the same process again. The process is the same if 
the densities of the fluids are reversed, the drop then moving upward. 

Recent research [2,3] has thrown light on the phenomenon. The break-up process is explained 
in terms of competition between diffusion and viscous transfer of momentum along the radius. If 
the second one is faster than the first, the drop breaks up. But diffusion efficiency grows as the area 
increases and the transfer rate of velocity is inversely proportional to the radius, so the 
fragmentations eventually stop and dfision becomes dominant. Moreover Baumann et al. 
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showed in a recent paper [4] that the break-up process can also occur in immiscible fluids when 
viscous effects are considerably bigger than those resulting from surface tension, contrary to the 
statements in ref. [l]. The question has been raised about the existence of dynamical interfacial 
forces [5 ,6] ,  which would appear even between miscible fluids. These forces would arise as a result 
of gradients of physical quantities at the interface. 

However, a detailed theoretical description of the fragmentation is still lacking. The formation 
of the drop on the free surface of another liquid is an example of Rayleigh-Taylor instability, and the 
deformation and fragmentation of the drop can be regarded as a special case of Kelvin-Helmholtz 
instability. Mathematical difficulties arise when trying to carry out the stability analysis for a 
nonspherical geometry including viscous effects. Kojima et al. [7] have calculated numerically the 
shape of the drop during the early stages of its deformation. Pozrikidis [8] took a further step, 
adding nonlinear terms to that analysis. Nevertheless these works do not explain the whole 
fragmentation process. 

To investigate the physical origin of this instability, we have carried out some experiments in a 
Hele-Shaw cell wide enough to accommodate the drop but at  the same time narrow enough to 
prevent the formation of a torus. (The width of the cell is of the same order than the radius r of the 
drops.) Thus, while imposing mild restrictions on the dynamics (velocity, distance and time scales), 
it is more easily shown what is going on inside the drop. The set-up provides in this way a kind of 
vertical section of the process. Of course this imposes a restriction on r, but we arranged several 
cells with different widths to overcome the problem. The cell is made from plexiglass and the liquids 
employed are glycerin-water mixtures in different proportions. 

We recorded the process by means of a CCD camera to allow better control of timing. Thus we 
could replay the whole process in slow motion, with a resolution better than one-tenth of second for 
the faster drops. Volumes were controlled by a microsyringe with an accuracy better than 0.2 pl: 
the uncertainties in the value of the radius-the relevant parameter-are therefore pretty small. 
In some cases, small quantities of food colourant were used to improve contrast without significant 
influence on the process. In other cases, we seeded drops with latex particles to allow flow 
visualization. Latex density can be customized, then fluid properties are not severely altered. With 
an image processing system they are easily detected and tracked, and therefore quantitative data 
can be recorded. 

We notice that the initial shape of the drop is not well defined and sometimes is completely 
irregular, due to the geometrical constraints. However, when the drop enters into the lighter fluid 
a quasi-spherical form is quickly achieved (see fig. 1). The drops begins to fall and after a short 
transient a sedimentation velocity is reached. In fig. 2 we plot the measured velocity of typical 
drops in our experiments. The points correspond to the velocity averaged over 10 drops of the same 
density and size and the solid line gives the linear fitting until the drop starts its horizontal 
deformation. The origin of distances is an arbitrary point near the surface of the liquid. For 
comparison we also plotted the sedimentation velocity corresponding to a solid sphere that obeys 
the Stokes law (drag force F = Grrpurv). Considering that in the experiment the drop is not solid, 
mass is not conserved and its density and radius are changing, it is remarkable that the values on 
these two lines differ only about 15%. The important conclusion is that an approximately constant 
sedimentation velocity exists, which lies close to that calculated by the Stokes law even without 
including the correction term (U3 + 2)/(1 + i), 1. being the ratio between the drop ( p 2 )  and the liquid 
(p1) viscosities (i = p2/pul )  [9]. 

While the drop is falling a pattern of internal velocity is formed and can be determined from the 
latex particles trajectories. In the frst stages of the evolution, the streamlines closely resemble the 
Hadamard-Rybczynski flow [lo] for undeformed spherical drops. A stagnation point should appear 
inside the drop located at r /v2.  We have measured it to be placed at  (0.7 ?z 0.l)r. Therefore we 
conclude that this scheme of flow is valid as a frst approximation. Once the drop begins to deform a 
suction zone at  the rear of the drop due to a protrudence of the surrounding liquid inside the drop is 
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Fig. 1. - A drop in the first stages of evolution. The dark stripe on the top is the free surface of the 
liquid. The diameter of the drop is about 1". 

visible. This coincides with theoretical predictions on flows in deformable drops (compare our fig. 3 
with fig. 2 and 3 in ref. [SI). However, the main difference between the theoretical schemes [7,8] 
and experiments in miscible fluids is that the drop mass (including the tail) is not conserved. 

After this deformation, the beginning of an interesting process can be seen near the tail 
attachment. Part of the liquid surrounding the drop travels along the streamlines nearly up to the 
tail, and another part enters inside the drop as is clearly visible in fig. 4a). (This incoming liquid 
appears as clear zones in the photographs.) The liquids do not mix themselves in a straightforward 
way, but rather the lighter liquid enters the drop following spiral paths (see fig. 4b)). Thus the 
mixing takes place inside the drops. Meanwhile the drop begins to split into two parts and the 
centre of mass is displaced outwards. A complex motion near the bottom of the drops tends to 
change the curvature of the interface between the drop and the surrounding fluid: it changes from 

Fig. 2. - Sedimentation velocity of the drop. The dashed line represents Stokes sedimentation for a 
solid sphere. The solid line is the linear fit for the drop velocity before its diameter begins to increase 
noticeably. 
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Fig. 3. - The rear part of the drop shows suction zones near the tail. From this point on mixing with 
external fluid begins. Compare this photograph with fig. 3 from ref. [8]. 

convex (fig. 4a)) to concave (fig. 4b)) .  This leads to a break-up process of the drop into two daugther 
drops of approximately the same volume (see fig. 4b)) that still remain in contact through a thin 
filament. (These features are similar to the break-up process of a torus in 3D, although more than 
two fragments can be obtained in this case [3].) 

It is worth noting that this evolution is quite typical, i.e. it is similar for different values of the 
parameters that characterize the drop. It is also valid for drops of lighter fluid that go up instead of 
falling in the surrounding liquid. Typical velocities inside the drop are related to the sedimentation 
velocity U ,  by the relationship q = vm [ - 1/3(1/(2 + 3A))I. This velocity vi can be considered as a 
reference value for the internal velocity field. (A new stable sedimentation velocity is quickly 
reached after fragmentation; the transient time is much smaller than the elapsed time till break-up 
(zbu) in our experiments.) The fragmentation takes place when internal velocity and mixing process 
are developed inside the drop; this therefore suggested that internal velocity and break-up were 

Fig. 4. - a)  Lighter stripes of fluid can be seen entering the drop. Mixing takes place inside the drop. 
b )  Spiral paths of the fluid entering inside the drop. The drop is deformed into two parts of 
approximately the same volume. 
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somehow related. The pattern of the incoming fluid also suggests that the mechanism of the 
break-up is linked with the formation of the filaments that connect the daughter drops. Therefore, 
the time for the break-up process should be related with the time taken by the external fluid to 
configure these streamlines. 

To substantiate the above argument we compared break-up times with the characteristic time 
of the internal velocity pattern. Arecchi et al. [3] had already suggested that t b u  should scale as 
rlv,. In fact t = r/v, could be considered as the characteristic time of viscous velocity transfer 
across the radius of the drop. 

But it should be noticed that, although the viscosity ratio does not affect the sedimentation 
velocity essentially, it introduces a quantitative difference between external and internal velocities 
(the latter depends on the viscosity ratio). Then z must be replaced by an internal typical time zi = 
= r/vi. It is easy to see that the latter can be interpreted as the typical time necessary for a fluid 
particle to follow a complete streamline inside the drop. zi is also the typical time to establish the 
streamline of the incoming fluid. If this were linked with the mechanism of the break-up process, a 
simple relationship between zbu and q should exist. We tested this conjecture for very different 
times of break-up, ranging from less than one second to more than sixty seconds. The main result is 
shown in fig. 5, where an almost linear relationship between the measured zbu and t i  = r/vi is 
obtained. The ratio between these variables is fairly close to one. 

The main source of error and the reason for some of the gaps in the graph is the following. When 
both viscosities are of the same order, even strong mixing will leave break-up characteristic times 
unaffected. However a great uncertainty arises when viscosity differences between the drop and 
the surrounding liquid are very big, because the mixing process can change initial values 
significantly. This happens because viscosity of glycerin-water mixtures increases exponentially 
with glycerin proportion and so a small income of mass can change the difference of viscosities 
drastically. For instance, if the volume ratio glycerin/water is changed only 5%, viscosity could 
change in some cases 50% [ll]. Therefore in these cases one should search for those combinations 
with small break-up times to prevent mixing as much as possible. This conditioned the mixtures 
that could be studied quantitatively. For some liquid proportions uncertainties were so big that 
although measurements yielded consistent results they were discarded. 

The daughter drops formed after fragmentation separate quickly apart (see fig. 6). For 

Fig. 5.  Fig. 6. 

Fig. 5. - Experimental break-up times (xbu) ws. internal viscous time (zi = ?-/vi). An almost linear 
relationship is found between them. Best fit: 7bu = 1.14. xi .  

Fig. 6. - Two secondary drops separate quickly a short time after break-up. 
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instance, for a typical drop of T = 1 mm falling at  about ZI = 1 mm/s the two fragments separate 
about 4 or 5 mm in a few seconds. The horizontal velocity in this process is of the same order as the 
sedimentation velocity. During this stage these drops show a kind of rigid-body-like rotation. The 
hydrodynamical mechanism for this effect is not clear. Although a Magnus force mechanism could 
be proposed, simple calculations show that this force is not enough to account for this separation 
process. This lateral displacement stops when a circulation pattern similar to that in the initial drop 
is formed in the daughter drops. We have empirically fitted the paths followed by the daughter 
drops at  this stage and we have found that they are nearly parabolae. When the internal velocity 
pattern is established inside the drops, they go on falling vertically. In fact these daughter drops 
are constituted mainly by the unmixed fluid of the primary drop. A noticeable amount of strongly 
mixed matter is released to the surrounding fluid. After some time the flow inside these drops 
changes from a rigid-body-like rotation to a flow similar to the Hadamard-Rybzinsky pattern and 
the incoming fluid also destabilizes these secondary drops. The process is repeated until the 
fragments formed are so small that they fail to develop an internal circulation and they do not break 
any more. In our experiments we never observed more than four successive break-ups. 

We thus conclude that the formation and evolution of the velocity field inside the drop is a key 
point for the understanding of the break-up process. The instability is seemingly related with the 
mixing process of the lighter fluid coming inside the drop. The fact that the elapsed time until the 
break-up is almost the same as the typical time of internal circulation supports this interpretation; 
and a quantitative evidence has been presented. We also highlight that the results presented here 
agree qualitatively with similar studies in 3D [2,3], but give a more precise idea of the time scales 
that rule the processes, and reinforce the conjecture that the inertia forces are important in the 
fragmentation mechanism [4]. 
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