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Dynamical Patterns in Bénard-Marangoni Convection in a Square Container
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In Bénard-Marangoni convection in a square vessel, of small aspect ratio, a sequence of bifurcations is
observed as control parameters are slightly changed. Some of the emerging patterns are stationary and
others are oscillatory in nature. The stationary patterns break the symmetry and the oscillatory ones can
be classified in three kinds. We show that this dynamics can be explained assuming that the system is

close to a Takens-Bogdanov bifurcation.

PACS numbers: 47.27.Cn, 47.27.Nz

Pattern formation is an area of active research in a
wide variety of extended physical systems. One of the
most studied systems that presents this phenomenon is
the Bénard-Marangoni convection, i.e., a fluid in a con-
vective vessel heated from below with an upper free sur-
face. This system organizes itself into convective cells,
provided that the difference of temperature between the
bottom plate and the free surface is beyond a critical
AT.. As in many extended systems, the role played by
the boundary conditions is not completely understood. In
order to investigate this aspect of pattern formation, we
performed a Bénard-Marangoni convective experiment in
a small aspect ratio vessel (small ratio between a typical
horizontal length and the fluid depth). In this case, the
boundary conditions are expected to determine the pri-
mary pattern that is selected. Single mode [1,2] as well
as more complicated combinations of modes can be ob-
tained [3]. In this Letter we report that some of these
patterns can undergo secondary and tertiary bifurcations
displaying oscillatory behavior. Moreover, one of these
oscillations constitutes a dynamical version of one of the
elementary topological processes observed in two-dimen-
sional cellular patterns: side-swapping (also known as T
process), present in many different physical systems [4,5].

This dynamics is obtained in a container with square
insulating lateral walls filled with a silicon oil of high
Prandtl number (Pr=3200). The experimental setup and
the shadowgraph observation method are similar to the
ones reported in [3]. We only recall here that the images
recorded are obtained by a Schlieren technique. In these
images the bright lines correspond to the cold parts of the
pattern, i.e., descending motion of the fluid. The main
experimental setup difference between the work in [3]
and the present one is the use of square boundaries.

For the experimental parameters that we used (aspect
ratio I' =4.46, temperature of the bottom plate between
T=35°C and 60°C, and ambient temperature near the
free surface 7,=21°C, which corresponds to Rayleigh
numbers between Ra=10308 and Ra=33504) the sys-
tem organized itself in four internal cells. In some cases
the four cells were quadrilateral, and in others two of the
cells were quadrilateral and the other two were pentago-
nal. As the temperature of the bottom plate was in-
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creased (the ambient temperature T, was kept fixed), the
following qualitative changes were observed. At thresh-
old, the first convective pattern obtained was the one con-
sisting of four square cells [see Fig. 1(b)]. A further in-
crease leads to either the asymmetric pattern displayed in
Fig. 1(a) or the one displayed in Fig. 1(c). These pat-
terns are conjugated by a reflection with respect to an
axis parallel to the walls. Under an additional increase of
the temperature, these patterns do not remain stationary
but begin to oscillate. We distinguish three kinds of os-
cillations; the first ones observed are periodic modulations
of the length of the link between the two square cells of
either Fig. 1(a) or 1(c). As the temperature is further in-
creased a third kind of oscillation is found which consists
of a periodic alternation between the pattern of Figs. 1(a)
and 1(c) passing through the symmetric pattern of Fig.
1(b). The order of magnitude of the typical oscillation’s
period is one minute (several times smaller than the verti-
cal thermal diffusion time). In order to check the stabili-
ty of these phenomena, at each stage we run the experi-
ment for at least one day, which corresponds in the case
of the oscillations to several thousand periods. The exper-
iment was repeated for a small inclination of the cell (i.e.,
the container slightly rotated around an axis parallel to
two of the walls; X, in Fig. 2), and the phenomenology
previously described persisted. These experiments have in
common a reflection symmetry with respect to the X»
axis.

In order to make a quantitative description of the ex-
perimental observations we have to choose appropriate
variables. Let us define

x =dcos(a) , D)

with a € (0,7), where d stands for the length of the diag-
onal segment and a stands for the angle between the seg-
ment and the X axis in Fig. 2. The restricted domain of
a reflects the fact that the patterns that we observed keep
the symmetry (X;X,)— (—X,,—X>,) [6]. Moreover,
these patterns can be described with only two values of a
(@=nr/4 and a =3r/4); therefore the variable x describes
the size of the link between the square cells and its in-
clination (left or right). As we have oscillations in the
problem, we realize that a dynamical system that models
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FIG. 1. Shadowgraph images of the convective patterns in a
cell of aspect ratio I'=4.46 (size of the cell, 68 X 68 mm?), filled
with silicon oil of viscosity 350 ¢S (1 ¢S=10"2 cm?¥s). The
bright lines correspond to the minimum of the temperature
field, where the motion of the fluid is downwards. (b) corre-
sponds to the symmetric pattern appearing at threshold, and (a)
and (c) to the asymmetric ones. Those are born from the sym-
metric solution in a pitchfork bifurcation.

the phenomena previously described should have at least
dimension 2. The time series data for these oscillations
are displayed in Fig. 3. Performing an embedding (x,x")
we obtain for the experimental data the reconstructed
phase spaces displayed in Figs. 4(a)-4(d). This embed-
ding successfully lifts self-intersections of the flow.
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FIG. 2. Schematic representation of the asymmetric pat-
terns, where d stands for the length of the diagonal segment and
a is the angle between that segment and the X, axis. In our ex-
periment @ =n/4 or 3x/4. The variable x defined in Eq. (1) is
thus positive in (a) and negative in (b). A symmetric pattern
would be characterized by x =0.

The above observation suggests using the variables
(x,x") as our dynamical variables, and a minimal dynam-
ical model can be constructed

x'=y, )
y'=f(x,y). 3)

As this model is to be equivalent under the reflection
symmetry x — — x of our experimental setup (broken in
the first stationary bifurcation that leads to the asym-
metric patterns), the action of that symmetry on the vari-
able y must be y— —y [according to Eq. (2)], and
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FIG. 3. Pieces of the time series data giving the evolution of
the variable x as a function of time. The error in the x values
(measured using an image processing code) is of about 0.2 mm.
(a) shows a periodic modulation of x for a pattern similar to the
one in Fig. 1(a) (aspect ratio I' =4.46, temperature 7 =57°C).
(b) shows a periodic alternation between the two asymmetric
patterns 1(a) and 1(c) (I'=4.46,T =59.8°C).
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FIG. 4. Reconstructed phase space (x,x'). In (a) a fixed point in (0,0) corresponding to a stationary symmetric pattern (I =4.46,
T=35°C). (b) shows the fixed points corresponding to the stationary asymmetric patterns (I'=4.46,7 =45.6°C). In (c) and (d)
we display the phase space embeddings of the data presented in Fig. 3. The derivative was computed for the nth point as

(Xp+1—xn-1)/261.

f(=x,—y)=—f(x,y) laccording to Eq. (3)]. There-
fore, to third order

fx,y)=ax+by+cex3+dxy+exy+fy3. 4)

As in the experiment, stationary symmetry breaking bi-
furcations and Hopf bifurcations occur close in parameter
space; the Jacobian of the vector field of Eq. (2) must
have two eigenvalues close to zero. In terms of our model
that implies a and b close to zero. These equations were
first studied by Takens and Bogdanov [7,8], who showed
that all of that family of equations can be reduced to two
cases, according to the qualitative features of their solu-
tions, namely, to

x'=y, (5)
y'=mx+py Fxi+xly, (6)

with p,u; small parameters. The solutions of these

FIG. 5. Unfolding of the Z, equivariant Takens-Bogdanov
bifurcation. Notice that if 4, increases monotonically with the
temperature, the qualitative behavior observed in the experi-
ment is reproduced by the solutions of Egs. (5) and (6).
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equations are displayed in Fig. 5 for the case with the
minus sign. In region 1 of Fig. 5 there is an attractor at
(x,x") =1(0,0), which corresponds to the stationary sym-
metric solution. In region 2, two solutions born in a
pitchfork bifurcation are stable. These correspond to the
stationary asymmetric solutions. In region 3, those solu-
tions are unstable after undergoing a Hopf bifurcation in
which two limit cycles are created. These solutions corre-
spond to the asymmetric oscillations. Finally, for param-
eter values in region 4 a symmetric limit cycle (corre-
sponding to the symmetric oscillations in the experiment)
is born in a global bifurcation [7,8]. Notice that the one
to one correspondence between the solutions of Egs. (5)
and (6) and the solutions of the experiment is achieved if
the parameter u; increases monotonically with the tem-
perature of the bottom plate.

In this Letter we report a sequence of qualitative
changes in the convective patterns of a square Bénard-
Marangoni cell with small aspect ratio. This phenom-
enon can be organized assuming (1) that the experiment
runs at parameter values close to a Takens-Bogdanov bi-
furcation and (2) the boundary conditions impose a
reflection symmetry on the system which is translated
into the model in the order of the nonlinearities in the
normal form [9]. This opens an interesting way to inves-
tigate the connection between the dynamics of different
secondary instabilities in the Bénard-Marangoni convec-
tion and the theory of dynamical systems.
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FIG. I. Shadowgraph images of the convective patterns in a
cell of aspect ratio I'=4.46 (size of the cell, 68 x68 mm?), filled
with silicon oil of viscosity 350 ¢S (1 ¢S=1072 cm?/s). The
bright lines correspond to the minimum of the temperature
field, where the motion of the fluid is downwards. (b) corre-
sponds to the symmetric pattern appearing at threshold, and (a)
and (c) to the asymmetric ones. Those are born from the sym-
metric solution in a pitchfork bifurcation.



