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Evolution of induced patterns in surface-tension-driven Bénard convection
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Experimental results on the evolution of induced patterns in Bénard-Marangoni convection are re-
ported. These patterns are initially forced by means of a thermal technique which allows the formation
of a regular hexagonal pattern with a chosen wavelength. Several series of measurements have been per-
formed in square vessels with different aspect ratios I'. For fixed T, after inducing a pattern with a
wavelength different from the optimal one, an evolution is observed that leads to an evolving mean wave-
length. The main mechanism for this evolution is the generation of defects which increase the disorder
in the pattern. This disorder is mainly due to nucleation of new cells when the forced ones are too large,
or by fusion of cells when the original ones are too small. Another interesting phenomenon occurs when
the forced wavelength A is close to the optimal one. In large-aspect-ratio vessels the disorder rises ini-
tially at the center of the pattern, leading to a relaxation of the mean wavelength. However, in small-
aspect-ratio vessels, the behavior can be nonmonotonous. Under well-chosen conditions (the initial pat-
tern has a mean wavelength slightly smaller than the optimal one), A increases initially as a consequence
of sidewall effects; then it decreases due to the rising and propagation of a dislocation line in the pattern.
This evolution has a form similar to the creep function in a viscoelastic material. This effect seems to
provide an effective wavelength selection mechanism. Using a Ginzburg-Landau model adapted to the
hexagonal lattice, the relative importance of local wavelength variations, disalignment of polygon lines,
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defects, and sidewalls have been determined.

PACS number(s): 47.20.—k, 44.25.+f

I. INTRODUCTION

In recent years an increasing interest in structured pat-
terns in systems out of equilibrium can be noticed. The
Rayleigh-Bénard (RB) instability provides a prototype of
systems of such patterns. Usually in this instability, the
pattern is formed by rolls. The goal of many studies was
to determine the wave-number selection mechanism and
the contribution of different factors (lateral walls, relation
between the depth and the horizontal extent of the layer,
heating rate, etc.) on the final selected wave number [1].
Related to this problem is the evolution of defects in
these patterns of rolls which, finally, can lead to a disor-
dered motion beyond a critical heating. Another in-
teresting problem, yet unsolved, is the relation between
this spatial disorder and some chaotic motions.

In a surface-tension-driven instability (Bénard instabili-
ty) convective motions develop in an almost regular hex-
agonal pattern with some defects always present. In re-
cent works the influence of the parameters of the fluid
and of the container on the generation and evolution of
defects in spontaneous patterns has been studied [2].

Although patterns in Bénard convection were de-
scribed for the first time in 1900 [3], systematic experi-
mental works on hexagonal convective patterns arising in
this case are not so numerous as in the RB case. This is
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due, in part, to the scarce and incomplete theoretical de-
velopment [4] and partially, to the difficulties in control-
ling some boundary conditions, in particular the interac-
tion between the liquid and the air in contact with it.
From the theoretical point of view a systematic work,
similar to that done by Busse [5] for RB instability, still
lacks in Bénard convection.

One of the more useful techniques for analyzing the
rich assortment of possible secondary instabilities acting
on a pattern of rolls in RB convection is the shadow-
graph technique developed by Chen and Whitehead [6].
It consists in placing a grid with a given wavelength and
provoking an extra heating which forces the rolls to ap-
pear with this wave number. This provides a well-defined
initial condition. In a series of articles Busse and White-
head described the different secondary instabilities [7] in
RB convection. Those new instabilities appear when the
initial pattern has a wave number out of the roll stability
region.

This technique cannot be adapted directly to produce
hexagonal patterns in Bénard convection because the air
layer between the grid and the liquid perturbs the local
heating from the lamp. Instead of this, an alternative
“thermal technique” has been proposed, allowing us to
impose an initial pattern in a liquid with an upper free
surface open to the atmosphere [8].
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The aim of the present paper is to present some experi-
mental results obtained using this technique. It is applied
to force initial patterns in square vessels with different as-
pect ratios (the aspect ratio I" is a nondimensional num-
ber which accounts for the box size; it is defined as the ra-
tio between a typical horizontal length L and the liquid
depth d: I'=L/d). This forced pattern is very regular
and can be characterized with a unique wavelength A;.
When this wavelength is different from the optimal one,
for the specific experimental condition, the pattern
evolves to a final wavelength A, inside the stability re-
gion. This evolution is generated by the dynamics of de-
fects which yield a disorder in the pattern. In Sec. II a
function which is used to describe quantitatively the dis-
order in the pattern is discussed and a two-dimensional
model for convective pattern evolution is used. Section
III is devoted to a brief description of experimental de-
vices and of the thermal technique to force initial pat-
terns. The main results of the evolution of wavelength,
the disorder function and an evaluation of different con-
tributions to the disorder, are, respectively, presented in
Secs. IV and V. The discussion of these results and some
conclusions are given in Sec. VI.

II. DISORDER IN HEXAGONAL PATTERNS

A hexagonal pattern in Bénard convection (B) always
shows some kind of defects which are different compared
to those appearing in a pattern of rolls [2,9]. In that case
the most frequent is the pentaheptagon pair which is as-
sociated to a dislocation line of the hexagonal pattern
[10]. This two-dimensional (2D) hexagonal symmetry
suggests dealing with some of the theoretical tools used
to classify the disorder in 2D solids [2]. However, it must
be stressed from the beginning that we work only by anal-
ogy, because the differences between Bénard cells and 2D
solids are essential. The main one is that Bénard struc-
ture is of dynamical origin while structures in 2D are
purely static.

In previous articles we analyzed the role of various pa-
rameters on the disorder of spontaneous patterns in B
convection [2]. Here a global parameter useful in classi-
fying this disorder is briefly recalled: the disorder func-
tion Fj, defined as

I
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where n; is the coordination number of the jth cell, /;; is
the distance from the center of the jth cell to the center
of its ith neighbor, (/) is the average of all the /;; but
only the hexagons are considered, N is the total number
of cells. The cells in contact with the walls are not typi-
cal of the pattern because they are incomplete. So they
are excluded in calculating Fj,.

The disorder function Fj, is an average of the devia-
tions of the distances between centers of the cells with
respect to a simple regular pattern. It constitutes a glo-
bal measure of the disorder and accounts for local defects
as well as for orientational deviations or global bendings
of hexagons in the pattern.
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Other parameters have been introduced to classify the
disorder in a hexagonal pattern. These are the percen-
tage of defects and translational and orientational corre-
lation functions [2]. However, these are useful only when
the pattern has a considerable number of cells, in order to
obtain good statistics. On the other hand, the disorder
function F, gives significant results even in small aspect
ratio vessels. In this situation the pattern can have no de-
fects, but some orientational disorder is still present
[2(b)]. For this reason, we have chosen this function to
compare the disorder in vessels with a wide variety of as-
pect ratios and different shapes. Fj, is a good measure-
ment of the disorder but it provides no information on its
nature and its origin. To evaluate the various contribu-
tions to the dynamics, including defects, differences of the
size of convective cells, the effect of lateral walls of the
container, we use the so-called “amplitude equation”
[11]. This describes quite well the fluid motion near the
onset of convection. In this weakly nonlinear region the
hydrodynamic variables can be written in the form
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where e=(R —R_)/R,=(M —M_)/M, is the supercriti-
cal heating rate and R and M are the Rayleigh and the
Marangoni numbers, respectively. The subscript ¢
denotes the critical values, r is a vector in the horizontal
plane, and the asterisk superscript is the complex conju-
gate. The vector v is formed with the three components
of the velocity field and the temperature deviations from
the conducting profile. Here k. denotes the wave number
at convective threshold, e; stand for three unit vectors in
the direction of the basic sets of rolls forming a hexagonal
pattern, and v, is a solution of the linear eigenvalue prob-
lem. When the three amplitudes 4; take the same con-
stant value and 3 e;=0, ie., e;-e;=cos(27/3), Eq. (2)
describes a perfect hexagonal pattern with a wave num-
ber k.. The envelope functions A4; that describe slow
modulations of the pattern obey a set of equations

8 __i? |
ax,- 2Kc ayiz

i

,
0 3

e+&3

i

3
—by A AN, — [ S bl 47| 4;
i=1

(i=imod3), (3)
where the relaxation time 7, and the correlation length &,
can be obtained from a linear analysis. Coefficients b,
and b;; stand for the coupling among different modes.
They depend on the relative orientations (e;-e;) between
pair of hexagonal lines. The derivatives d/90x; and d/3dy;
are the spatial derivatives parallel and perpendicular to
vector e;, respectively. These equations allow us to ac-
count for spatial inhomogeneities in the pattern.

Equations (3) can be written in the form
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where P is a potential defined as
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provided that on the lateral boundaries 4, =09 4, /dy; =0.
The time derivative of this functional P gives
2
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which is always negative. The existence of solutions in
the nonlinear regime imposes that the quartic terms must
be greater than the quadratic negative one in Eq. (5). The
cubic one does not have a well-defined sign. However,
nonlinear studies on B convection [4(c)] and in situations
where a hexagonal pattern develops itself (non-
Boussinesq conditions, temperature modulation on the
cell, etc.) [12] indicate that b, << 3, ;b;; [otherwise the
development in Eq. (2) would not be valid]. As a conse-
quence, one can assume that the cubic term in Eq. (5)
gives only a small contribution to P. With these restric-
tions this functional is positive, while its temporal deriva-
tive is always negative: it is a Lyapunov functional. This
ensures the asymptotic stability of the system.

Following the analysis of Cross [13], the functional P
can be split into three contributions, one from sidewall
effects Pg, one from bulk effects Py, and the third from
defects P,;.

A. Sidewall contributions

Close to the sidewalls, convective motions are con-
strained to take some preferred orientations. In the case
of rolls, for example, these tend to go normal to the
sidewalls. Recent works [13,14] showed that this effect
can be explained in terms of the properties of Lyapunov
potential. The amplitude of a convective roll approach-
ing with an arbitrary angle to a plane sidewall takes the
form
0.5
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where 0 is the angle between the roll normal and the wall
normal (this solution is not valid for § =0 because in this
case fourth-order derivatives must be taken into account
[13]). This contributes to the Lyapunov functional as

Py=1(2e)¢,Pcostdl . (8)

In the case of rolls perpendicular to lateral walls this con-
tribution is of order Psae7/4, smaller than the contribu-
tion of oblique cells when € <<1 [13].

Hexagonal patterns form on the lateral walls polygonal
cells with two sides perpendicular to the walls and with
two sides at 27 /3 rad with the walls [see Fig. 1(a)]. In
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FIG. 1. Two possible orientations for the cells in contact
with a vessel sidewall and the corresponding modes: (a) stable,
(b) unstable.

the immediate vicinity of the wall only one mode perpen-
dicular to the sidewalls prevails. At some distance, typi-
cally of the order of A /2, three modes at 27 /3 develop.
Another possible orientation is represented in Fig. 1(b),
where the three directions of the hexagonal lattice form
7m/2 and £7/3 with a sidewall, respectively. However,
this configuration corresponds to a higher value of Py,
and therefore it is less stable than the previous one. This
result could explain why the hexagonal cells in contact
with a vessel wall are perpendicular to it in a steady re-
gime. As we will see below, in transient regimes the non-
perpendicular cells disappear very quickly.

B. Bulk contributions

By analogy with a roll pattern it is proposed for the
bulk contribution in the hexagonal case the following ex-
pression:
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which can be rewritten in a more suitable form
3
Py=e&l [dxdy 3 [(divn,)?+(8k,)?], (10)

i=1

where the contribution of b, is neglected. Here the vec-
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in coordinates (x;,y;), and where 8k; is the local varia-
tion of the wave number of the ith set of cell lines, that is,
3@, 1 [oe®, |?

Ok, = ox; + 2k, | 9y,

(12)

(Although small, the cubic term in P imposes a link
among the phases ¢, + ¢, +¢;=0mod27.) As stressed by
Heutmaker, Frenkel, and Gollub [15] this seems to be the
most important contribution to the Lyapunov functional.

C. Defect contributions

The most typical defect in hexagonal patterns is a
pentagon-heptagon pair of cells. They correspond to
simultaneous dislocations on two of the three systems of
rolls forming the hexagonal pattern [16] (a typical situa-
tion in a Bénard pattern is shown in Fig. 2). These de-
fects correspond to a solution of the type
A; . 1=A4;,,=0, A,70. Therefore, a local transition
from hexagons to a roll takes place in a penta-hepta pair
[16].

To calculate the contribution of the defects, we follow
the analogy with the case of a pattern of rolls. As argued
by Cross [13] and Heutmaker, Frenkel, and Gollub [15] a
dislocation gives an approximate contribution Pj, <€’
(core area). Taking only into account penta-hepta pairs
as the main defects in a hexagonal pattern, this contribu-
tion can be written in the form

P,=€*Nywr?, (13)

where 7, is the radius of the dislocation core, which can
be estimated to be £ye 2 <r, <2&e /2

Although in these evaluations some rough
simplifications have been made, they provide expressions
that allow us to evaluate the evolution of patterns in a
more quantitative manner.

III. EXPERIMENTAL METHOD

The experiments are performed in a square box with a
bottom made of copper and lateral walls made of perspex

FIG. 2. A pentagon-heptagon pair in a convective hexagonal
pattern (traced from a photograph).
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with a side length L =25 cm. In the present experiments
several aspect ratios are used: I';=28.5, I',=31.1,
I’';=46.1, I';=62.5, and I's5=65.3, which correspond to
d =0.878, 0.804, 0.542, 0.401, and 0.383 cm and they
contain about 65, 87, 203, 401, and 440 complete cells, re-
spectively. The heating device, the temperature regula-
tion, and the method of determining the liquid depth

s

(@) (b)

(e) ()

(9) (h)

FIG. 3. Evolution of an imposed pattern in a small-aspect-
ratio container. I';=28.5, €=2.2. (a) t =5s;(b) t =1 h 25 min;
(c) t=2h 7 min; (d) t =2 h 26 min; (¢) z =3 h 50 min; () t =4 h
26 min; (g) =5 h 30 min; (h) £ =6 h 50 min.
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have been described elsewhere [10]. The liquid used is sil-
icon oil Rhodorsil 47V100, with a mean viscosity of 1 S
and a Prandtl number Pr=_880.

The motions in the fluid are visualized using either
some aluminum powder or a shadowgraph technique [6]
(the latter is based on the variation of the refractive index
of the oil and on the deformation of the free surface with
temperature). A lamp placed upon the convective vessel
shines vertically down the pattern. The bottom of the
container is polished to a mirror finish. The light
reflected by this bottom plate is finally deviated by a
beam splitter to a translucent screen. To follow its evolu-
tion, photographs of the pattern are taken at regular time
intervals. These are digitized with a numerical procedure
[2]. With suitable software the disorder function in each
situation can be obtained.

Now, an experimental method to induce an initially
perfect pattern is described in some detail. It has been
used previously to induce a single hexagon in a box with
a very small aspect ratio and to follow the stability of an
imposed pattern of rolls [8]. This technique is based on
the following fact. When a metallic tip touches the free
surface, this point becomes a cold point because heat
flows easily up across the metal. As a consequence, the
corners of three hexagons (i.e., a cold point of the pat-
tern) are formed in the contact point. Therefore a regular
arrangement of metallic rods, set through a plate with the
chosen regularity, is built. Then the plate with the rods is
set upon the free surface and lowered until the rod tips
just touch the surface. With rods in contact, the fluid is
heated until convective cells appear. When convection is
well developed the plate with the rods is removed and a
very regular pattern can be viewed [Fig. 3(a)].

IV. EVOLUTION OF IMPOSED PATTERNS

The measurements have been performed in vessels with
different aspect ratios set in an interval from 28.5 to 65.3.
For smaller vessels (I" <20) systematic measurements are
not available because the number of cells is too small, the
influence of the lateral walls very important, and the pat-
tern becomes quite irregular quickly. On the other hand,
it has been demonstrated in a previous work [17] that,
when I'>70, the liquid layer can be considered as
infinite. The distance to the threshold € has been fixed to
values ranging from 0.6 to 2.2.

For a fixed pattern, results are gathered for (i) small as-
pect ratios (I';=28.5 and T',=31.3), (ii) intermediate
(I';=46.1), and (iii) large (I'3;=62.5 and I';=65.3) as-
pect ratio vessels. In each of these vessels regular hexag-
onal patterns with k smaller or larger than the optimal
one (for the experimental conditions) are forced initially
and their time evolution is followed. The optimal wave-
length corresponds to an average wavelength of the final
pattern (in fact, one notices that this average slightly fluc-
tuates after several hours). These optimal values are in
agreement with those obtained in spontaneous patterns
for similar situations [17,18].

The kinetics of the evolution depends on various pa-
rameters A; (the initial wavelength), T, €, and the size of
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(¢) (d)

FIG. 4. Evolution of an imposed pattern in a large-aspect-
ratio container. I's=65.3, €=0.6. (a) t =10 s; (b) t =24 min;
(c) t=2h 48 min; (d) t =3 h 12 min.

0 2 2 6 8 1)
(@

6 8 t(h)
(b)

FIG. 5. Evolution of a perfect imposed pattern as a function
of time €=2.2. (a) Mean wavelength, (b) disorder function.
I[=28.5; A,=0.94A;, O0; A,;=0.72A,, @ A,=1.17A,, O.
[, =31.1: A,=1.003,, %.
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cells in contact with the sidewalls. When the pattern
evolves spontaneously, the appearance of the structural
disorder, the breakup of a cell or the “fusion” of two
cells, or the disappearance of a cell are observed any-
where in the vessel, whereas the mean size of the other
cells varies until they reach the optimal value.

The results are gathered in two subsections. In the first
we quote the evolution of the average wavelength A and
the disorder function Fj,. The second deals with a more
specific question: the influence of the lateral walls in this
evolution.

A. Evolution of A and F,

Two examples of the dynamics of forced patterns can
be seen in sequences of photographs in Figs. 3 and 4.
From Figs. 3(a) and 4(a) it is obvious that the thermal
technique provides perfect initial patterns. (The se-
quences will be examined in more detail in the following
subsection). The main experimental results are summa-
rized in Fig. 5 for small aspect ratio vessels and in Fig. 7
for intermediate and large aspect ratios. We comment on
these results separately.

1. Small aspect ratios (T ;}=28.5, T,=31.1)

The evolution of the mean wavelength A appears in
Fig. 5(a). The heating rate is fixed at €=2.2. Different
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FIG. 6. Histograms of r =(A/A;)* for ['=28.5 and €=2.2.
A;=0.72A;: (a)  =0; (b) t =32 min; (c) =2 h 6 min; (d) t =3 h
53 min. A;=1.17A;: (¢) t =10s; (f) t =5 min; (g) =1 h 32 min;
(h) =7 h 14 min.
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initial A have been imposed, but it is clear that the final
wavelength is the same, whatever the initial wavelength.
In this case the final wavelength is about 2.9. This value
shows fluctuations because the pattern is not completely
stationary. The amplitude of these fluctuations decreases
when I increases, showing the influence of the walls on
the structure. In most cases, the time necessary to reach
this final value is about 5 h, much greater than that for
larger containers.

It is interesting to notice that the evolution of the pat-
tern depends on the sign of SA=(A; —A,)/A, (here A, in-
dicates the initial wavelength and A, is the final mean
wavelength). When 8A is positive, A reaches a minimum
and increases later on. This can be interpreted in the fol-
lowing manner. The large hexagons tend to break and to
nucleate smaller ones. In the first steps of this evolution
many large hexagons break rather quickly (1 or 2 h).
Then the competition among small hexagons tending to
grow leads to a global increase of A.

On the contrary, when 8A <0, A evolves monotonously
and a maximum is not reached before the final value.
That means that when the forced hexagons are too small,
some of them push on some of their neighbors and a
fusion of two hexagons is observed (no regularity has
been detected in this fusion progress). As a result A in-
creases, reaching its mean final value A, after 5 h.

As a general feature, the evolution of hexagons when
OA <0 is faster in the first steps (about 1 h). Afterwards,
the pattern rearranges itself more slowly. It is interesting
to compare this behavior with the evolution of the disor-
der function Fj in Fig. 5(b) and the histogram of
r=(A/A, )2 in Fig. 6. At t =0, taking into account the
experimental uncertainties there is only one wavelength
A;, so F,=0. But this situation is unstable (it will be dis-
cussed below). In particular when 8A is large, and a few
seconds after spontaneous evolution starts, the size of
several cells has already slightly decreased [Fig. 6(e)], and
the histogram has widened. Whatever the sign of SA, the
disorder function shows a sharp peak several minutes
after the pattern is evolving freely. This means that a
wide range of local wavelengths is present in the pattern.
For instance, in Fig. 6(f) a great dispersion of A can be
seen and two regions can be considered. The first one,
from r =0.5 to 0.95 corresponds to small cells which ap-
pear from the breakup of large hexagons. These cells are
mostly smaller than the final cells. The second region,
from r =1.1 to 1.3, is due to the remaining initial cells
which have suffered a small contraction. This situation is
unstable so the pattern still evolves (first by fusion or nu-
cleation of cells and afterwards by slower evolution of de-
fects). The first process is a bulk process and seems not
to be dependent on the aspect ratio. In the second, the
side walls play an important role.

The disorder function shows a second maximum when
I' is small (the physical interpretation of this fact from
the photographs is not evident). Finally, F,, attains a
value which corresponds to the intrinsic disorder of the
pattern for given €, I', and vessel geometry. This final
value decreases when I increases. Strong fluctuations
around this value can be observed when I' decreases.
Small fluctuations of A, are also observed. Histograms
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6(d) and 6(h) show that the allowed wavelengths occur in
a bandwidth which is about 0.1A .

2. Intermediate and large aspect ratios
(F3=46. I, r\4=62. 5, F5=65. 3)

In this case the heating rate is taken constant at
€=0.6. The main results are summarized in Fig. 7.
Forced patterns evolve to A ,=2.9, almost the same as in
small aspect ratio vessels. For I'; and 6A >0 a minimum
is still evident, but not for larger I'. As observed in the
preceding subsection, the evolution for comparable SA
and the same T is faster when 8A >0 than in the contrary
case. The final value is reached 3 h after the free evolu-
tion of the initial pattern.

The disorder function in the intermediate case
(I'=46.1) behaves in a similar manner to the small T
case. It shows a sharp maximum at initial stages, fol-
lowed by a valley, and afterwards a slow increase. This
behavior is due to the sudden elimination (8A <0) or nu-
cleation (8A>0) of many cells in the initial pattern.
Later on, the pattern rearranges itself and the disorder
function reaches a saturation value. When I is large, the
behavior is more uniform, and the saturation value for
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FIG. 7. Evolution of a perfect imposed pattern as a function
of time. (a) Mean wavelength, (b) disorder function. I';=46.1:
A =0.77A;, O; A;=1.141;, O; [;=62.5: A;=0.694;, ¥;
[s=65.3: A,=1.07A;, ®@.

Fj and the corresponding fluctuations, smaller than in
the preceding case, are obtained, in accordance with pre-
vious results [17].

Finally it can be noticed that in all cases A, is reached
before or at the same time as the final value of F, never
after. This means that the optimal size of the system is
obtained while structural rearrangements are still occur-
ring.

3. Time evolution of the pattern

During the first steps of the pattern variation, the evo-
lution of the disorder can be characterized by the distor-
tion velocity defined by V, =dF,, /dt*, where t* is writ-
ten in nondimensional form with a time scale
(pd3/a’AT)%%; p is the density, d is the depth layer, o’ is
the temperature coefficient of surface tension, and AT is
the temperature difference between the lower and the
upper surfaces.

It is clear in Fig. 8 that ¥}, increases when |8A| in-
creases. It must be noticed that ¥V}, is small, but different
from zero when 8A =0, because the imposed wavelength
is not the only phenomenon destabilizing the structure.
Indeed, the intrinsic disorder and the sidewalls (this is
mentioned in the next paragraph) force the pattern to dis-
tort even if A, =A,.

B. Some effects on the lateral walls

We analyze in more detail some interesting features ob-
served when the forced pattern has a slightly smaller A;
than the optimal one (8A <0). When I"'=28.5 the evolu-
tion is shown in the series of photos in Fig. 3. The initial
pattern has A; =2.73. It is formed by 17 columns of com-
plete hexagons and two columns of half hexagons, and 10
rows of complete hexagons and two rows of fractional
hexagons. It is a general observation that for B experi-
ments in a permanent regime the cells attached to the la-
teral walls are perpendicular to them (this feature has
also been noticed in roll patterns) [14]. In photo 3(b) it
can be seen that the cells near the walls tend to get nor-
mal to them to satisfy this general rule. To fulfill this re-
quirement the small cells (in fact, portions of cells) initial-
ly in contact with the walls are ‘“absorbed” by their
neighbors which finally attach themselves perpendicular-
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ly to the sidewalls. The disappearance of these portions
of cells elongates the pattern in the same direction, creat-
ing some kinds of “stress.” But the situation is different
for the two directions fixed by the walls. On “vertical”
sidewalls there are half hexagons and complete hexagons
in oblique contact, whereas on ‘“horizontal” sidewalls
only fractions of cells (less than half a hexagon) are at-
tached perpendicularly to them. In Fig. 3(b) it can be
seen that on “vertical” sidewalls the hexagons tend to
reorientate themselves to get normal to those walls, creat-
ing an orientational disorder. But most important are the
effects on the horizontal sidewalls because the initial rows
of fractional cells are ‘“absorbed” by their neighbors,
which become perpendicular to those walls, creating
some vertical stresses. These stresses and the existence of
a wavelength selection mechanism modify the shape and
the size of all cells in the whole pattern.

In this particular case, the breaking of cells is so well
organized that it corresponds to the propagation of a
dislocation. It is observed in the subsequent evolution of
the pattern in Figs. 3(c)—3(h). The most remarkable fact
is the evolution of a single dislocation that appears in the
sixth row from the top right. First, the rows 5 and 6 are
distorted in the vertical direction as a consequence of the
stresses. Then, in spite of the orientational disorder in-

o.10 }
0.08 | s,

o.o6 | P

0.02 | /

(b)

FIG. 9. Evolution of a perfect imposed pattern in a small-
aspect-ratio container (I';=28.5): (a) mean wavelength, (b) dis-
order function.

3323

duced by the vertical sidewalls (which is visible mainly at
the top left), more important wavelength selection mech-
anisms exist. On one hand, there is a rearrangement on
the horizontal sidewalls (inducing an increase in the mean
wavelength) and, on the other hand, there are the stresses
provoked by this effect. These facts lead to the creation
of a dislocation line that climbs from the right to the left
decreasing the mean wavelength. Its evolution is shown
in Fig. 9(a). It is noteworthy that the curve is very simi-
lar to the behavior of strain versus time in a viscoelastic
medium when a constant stress is applied.

The evolution of the disorder function Fp, is shown in
Fig. 9(b). It can be concluded that, to begin with, the
number of defects (pentagons and heptagons) increases to
satisfy the boundary conditions. During the climbing of
the dislocation, d;, diminishes. Afterwards, it increases
again, until it reaches a saturation value similar to that
observed in a previous experiment [19]. The disorder
function Fj, also increases, more or less linearly with
time, showing a change in the slope at about 4.3 h, ap-
proximately when the dislocation starts to climb.

The second case corresponds to I'=65.3 and €=0.6.
The initial wavelength is larger than the final one. The
photos of Fig. 4 show the evolution in time in this case.
It can be seen that the cells near the walls evolve as in the
preceding case, also creating a stress. As a consequence
of this stress, and as the imposed wavelength is too large,
many cells in the center of the vessel become deformed
[see Figs. 4(b) and 4(c)]. However, near the walls,
domains with the initial regularity still remain. After-
wards, those elongated cells break up into smaller cells,
leading to a rapid decrease in the mean wavelength, as
will be seen below. No regularity in this splitting process
has been observed.

V. TRANSIENT PATTERN EVOLUTION
AND THE LYAPUNOV FUNCTIONAL

We describe the behavior of the Lyapunov functional
in the case corresponding to the evolution sequence of
Fig. 5 (points). For a precise calculation of various con-
tributions of P we need further theoretical work to speci-
fy the values of r,, £, and B. In this paper we want only
to evaluate the relative importance of the four contribu-
tions Py, P, P, and Pg. (which are the parts of Py cor-
responding, respectively, to the wave-number difference
and to the wave-number divergence). For that reason we
assume that r, and & are close to that in Rayleigh-Bénard
convection. We take r,=1.5r,& with £=£, *° and
£,=0.4d. For the reference wave number we use the ex-
perimentally measured wave number selected in the final
structure. Figure 10 shows the results of our experimen-
tal measurement of the four parts of P (the lengths are
measured in units of the depth layer). For the first steps
of the experiment, Py and P, are zero. The model shows
that the disorder appears because of the size effect of the
imposed cells and of the orientation of the cells in contact
with the walls. For this experiment P, is greater than
Bp: the wall effect is the most important when experi-
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ment starts. Then the cells quickly become perpendicular
to the walls: P, decreases and becomes almost zero. In
the same time the sizes of the cells decrease and, as a
consequence, the lines joining the centers of the cells are
progressively curved and the number of defects increases.
That perturbations of the pattern induce a new disorien-
tation of the cells in contact with the walls: P_ increases
and goes through a maximum which corresponds to the
maximum of mean wavelength [Fig. 5(a)] and to large
variations of F, [Fig. 5(b)]. After 3 h, P, Py, and Py
decrease whereas P, is nearly constant.
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FIG. 10. Lyapunov functional contributions vs time. (a) De-

fects P;, [J; sidewall P,, . (b) Wave number Py, @; wave-
vector divergence Pp., O. (c) Total Lyapunov functional P, /\.

VI. DISCUSSION AND CONCLUSION

It has been proved that the thermal technique provides
an efficient tool to force a hexagonal pattern in B convec-
tion. This is applied to study the evolution of forced pat-
terns. This evolution depends on the relative difference
8A between the imposed A; and the optimal A ., on the as-
pect ratio, on the heating rate €, and on the vessel shape.

In the present work, the influence of 8A and of I' on
hexagonal patterns in square vessels at fixed I" have been
analyzed. When A is sufficiently large, two mechanisms
can appear. These are nucleations of small hexagons
(when 8A > 0) or fusion of small hexagons to form larger
ones (when 8A <0) . This leads to a variation in A that, in
most cases, is far from monotonous. These mechanisms
appear in the bulk (mainly in the center) of the pattern.
In small vessels the sudden nucleation of many cells leads
to a minimum in the mean A, which increases later on.
However, for fusion effects, A increase monotonously.

The disorder function shows a sudden increase when
the pattern evolves freely from a forced pattern, later
reaching a saturation value, which manifests that a finite
bandwidth of local wavelengths is present in the pattern
[21]. As expected, the effects of lateral walls decrease
when I’ increases. An interesting result has been ob-
tained in small vessels when 8A >0. In this case bound-
ary effects force the pattern to rearrange itself in an unex-
pected manner: the system tends to reach the optimal
wavelength by generation of a dislocation line. Although
more detailed experiments are desirable, one can con-
clude that the dislocation mechanism also provides a
wavelength selection mechanism in hexagonal patterns.

It has been proved theoretically by Siggia and Zip-
pelius [20], Pomeau, Manneville, and Zaleski [21], and
experimentally by Croquette and Pocheau [22], that the
climb of a dislocation line provides a good wavelength
selection mechanism in a pattern of rolls in RB convec-
tion. We now have some evidence that, for a small aspect
ratio, this can also be the case for a hexagonal pattern.

An important difference exists between the experimen-
tal results of Croquette and Pocheau [22] and of White-
head [23] and the present ones: in the first two cases, the
dislocation was initially imposed whereas in this hexago-
nal case the formation and evolution of such a dislocation
are spontaneous. The lateral tensions, a consequence of
the boundary conditions, lead to a broadening of some
row in one direction, which leads finally to the division of
some cells forming a dislocation line, which has not been
observed before in surface-driven Bénard convection to
our knowledge. In fact, that this behavior is different
from it could be inferred considering hexagons simply as
the superposition of three rolls, where it can be expected
that some kind of zigzag instability would appear. Here,
the system seems to prefer this dislocation mechanism to
turn up to the stability region. These features, however,
suggest some questions about the universality of this
mechanism, on its dependence on the aspect ratio, and
also on the influence of the nonlinear coupling between
oblique modes, specific to this hexagonal case, and finally
on possible secondary instabilities. Numerical simula-
tions such as that made by Bestehorn and Haken [24],
following the lines of the work of Siggia and Zippelius
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[20], could clarify this point.

The amplitude equation for a hexagonal pattern allows
us to estimate the relative importance of various contri-
butions to disorder: structural defects, curvature of the
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cell rows, wave-number variations, and wall effects. It
would be desirable to test this model for other experimen-
tal cases such as range of €, vessels with special shapes,
nonvariational effects, etc.
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FIG. 3. Evolution of an imposed pattern in a small-aspect-
ratio container. I';=28.5,€=2.2. (a) t=55s;(b) ¢ =1 h 25 min;
(¢)t=2h 7 min; (d) t=2h 26 min; (¢) t =3 h 50 min; (N 1 =4 h
26 min; (g) ¢ =5 h 30 min; (h) t =6 h 50 min.
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(c)

FIG. 4. Evolution of an imposed pattern in a large-aspect-
ratio container. ['s=65.3, €=0.6. (a) t =10 s; (b) t =24 min;
(c) r=2h 48 min; (d) t =3 h 12 min.



