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Convection in a square container of small aspect ratio is studied taking into account thermocapillarity as well
as gravity effects. In addition to the geometrical symmetry (D4), the existence of hidden translational sym-
metries, due to boundary conditions, allows us to explain the qualitative features of the patterns found in
recently reported experiments@T. Ondarzuhuet al., Phys. Rev. Lett.70, 3892~1993!#. The nonlinear interac-
tion between mixed modes and pure modes is shown to give rise to a sequence of bifurcations that leads to the
onset of oscillations, as observed experimentally.@S1063-651X~96!09006-X#

PACS number~s!: 47.27.Cn, 47.27.Nz

I. INTRODUCTION

Pattern formation is an area of active research in a wide
variety of extended physical systems@1#. An important class
of these systems appears after a convective instability@2#. In
a fluid layer heated from below these systems organize them-
selves into convective cells, provided that the temperature
difference between the bottom and the top of the container is
beyond a critical valueDTc . In pure liquids convection is
due to buoyancy forces when the fluid is enclosed in a rigid
container@Rayleigh-Bénard~RB! convection#. When the up-
per surface is open to the air surface tension provides a sec-
ond instability mechanism@Bénard-Marangoni~BM! con-
vection#.

Convection leads to different patterns depending on the
aspect ratioa, the ratio between a characteristic horizontal
length and the liquid depth. For large values ofa the con-
vective pattern is quite regular, although some defects can be
present due to the side walls. For a small value ofa the
lateral boundary conditions play an important role, which is
not yet completely understood. In the case of RB convection
in small aspect ratio containers some dynamical mechanisms
~such as period doubling@3# and intermittency! have been
observed experimentally. For BM convection some recent
studies showed that the selection of modes is mainly due to
lateral boundary conditions@4#. In a recent paper the pattern
evolution in BM convection in a small aspect ratio cell
(a54.46) has been reported@4#. In this experiment, a con-
tainer with square insulating walls was filled with silicon oil
of high Prandtl number. As the bottom temperature was in-
creased from 35 °C to 65 °C the following sequence of bi-
furcations was observed. First, four convective cells ap-
peared. When the temperature of the bottom plate was
increased, the patterns broke symmetry and two square cells
and two pentagonal ones were seen. Finally, with a further
temperature increase the length of the segment joining the
two square cells became time dependent.

The main purpose of this work is to obtain a set of equa-
tions that reflect the qualitative behavior seen in the experi-
ment but starting from the Navier-Stokes equations as
complementary to the phenomenological approach of the
problem reported in@4#. In contrast with previous works on

BM convection we focus our attention in those modes that
dynamically evolve to generate experimentally observed pat-
terns. A more realistic approach to the problem was made by
considering the relationship between two parameters (M and
R) that are physically related. Another important task of this
work consists in studying the restrictions imposed by the
geometry of vessels on the solution of the problem. In Sec. II
the basic equations and the boundary conditions of this prob-
lem are discussed. Symmetry arguments allow us to select
the modes compatible with these equations and geometrical
constraints. Section III is devoted to the linear stability
analysis focused on the modes that are permitted by symme-
try and observed in experiments. The study is extended to the
nonlinear regime in Sec. IV, and a comparison between the
dynamical equations for the amplitude of these modes and
the phenomenological model proposed@4# is made. Finally
we comment on the disagreements between our idealized
theoretical analysis and the experiment, and we discuss the
main conclusions in Sec. V.

II. EVOLUTION EQUATIONS AND BOUNDARY
CONDITIONS

The BM instability appears in a convective vessel heated
from below with an upper free surface. Two different mecha-
nisms contribute to the onset of instabilities: buoyancy and
surface tension variations with temperature. The first mecha-
nism is the usual one proposed by Lord Rayleigh to explain
Bénard’s observations. The second was proposed by Pearson
@1#. Two facts makes BM convection more difficult to deal
with theoretically than RB convection~no surface tension
effects!. First is the fact that the free interface has a dynamics
driven by the stress and the second is that the heat exchange
coefficient between the liquid and the air upon it is not well
known @5#. Some articles prove that for sufficiently thick
layers (;1 mm! surface deflections can fall under the ap-
proximation~Oberbeck-Boussinesq approximation! taken in
convective studies in liquids@6,7#. The second difficulty is
usually surpassed by taking a phenomenological coefficient
that accounts for those exchanges.

The basic state of the liquid is a purely conducting one
where its temperature decreases linearly from the bottom to
the upper surface. The nondimensional perturbations around
the conducting state obey the following equations:
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where v(x,y,z,t)5(u,y,v) is the velocity field and
u(x,y,z,t) the temperature perturbations. The parametersR,
M , and Pr are nondimensional numbers, defined as
R5agd3DT/kn ~Rayleigh number!, M5ruds/dTudDT/
nk ~Marangoni number!, and Pr5 n/k ~Prandtl number!.
The two nondimensional numbersR andM are related by
means of

g5M /R5
ruds/dtu

agd2
, ~2.4!

which accounts for the relative importance of thermocapil-
lary effects compared with gravity effects.

The system of Eqs.~2.1!–~2.3! is completed with the
boundary conditions on the top~assumed undeformable and
partially conducting! and the bottom~rigid and conducting!
of the cell. These conditions can be written as
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where the liquid-air interface is assumed to be flat and non-
moving. HereL ~Biot number! is a phenomenological pa-
rameter ~for L50 one has an insulating interface, while
L5` indicates a good heat conducting interface!. In the fol-
lowing we will use in our calculations the values of
g50.01 andL50.1, which correspond to the experimental
conditions of Ref.@8#.

As we are considering a square and finite container, some
lateral boundary conditions must be added. In the experiment
considered in Sec. I, the lateral boundary conditions are rigid
and insulating, but from the theoretical point of view it is
convenient to introduce a simplifying assumption discussed
by Rosenblat and co-workers@9#. These lateral boundary
conditions are known asslippery conditions~impermeable,
stress free, and adiabatic!. These conditions are equivalent to
assuming that~1! the lateral walls are impermeable,~2! the
tangential vorticity is zero on them, and~3! they are adia-
batic.

Hidden symmetries

The patterns observed experimentally are more symmetric
than those predicted for a square vessel@10#. TheD4 sym-
metry alone does not explain why patterns that break the
symmetry aboutx→a2x do preserve the symmetry about
y→a2x. The square symmetry is generated by two opera-
tions, namely, a reflection with respect to a diagonal
(x↔y), hereafter calledZd , and a translation that changes
x→a2x, hereafter calledZh. A transition between the first
and the second patterns that appear in the experiment@4#

implies a breakup of theZh symmetry, but not of the sym-
metry abouty→a2x. This symmetry remains because there
is an additionalhidden symmetry@11# due to the Neumann
boundary conditions (n̂•“u50) at x50, x5a, y50, or
y5a imposed by side walls. In fact, the existence of Neu-
mann boundary conditions allows the solutions in the origi-
nal domain @(0,0)<(x,y)<(a,a)# to be extended to a
greater one in which they satisfy periodic boundary condi-
tions. This extended domain is a square with a side length
twice the diagonal of the original, which is rotated an angle
of p/4 and translated in such a way that the centers of the
original and extended squares coincide. The original problem
can be thought of as the restriction of the problem with pe-
riodic boundary conditions in the extended square, to the
small square. Now the solutions of the original problem have
a translational symmetry, and reflection invariance about
both diagonals becomes evident~see Fig. 1!.

III. LINEAR STABILITY ANALYSIS

We proceed to examine the consequences of these sym-
metries on the form of the solutions of the linearized prob-
lem. Solutions of the linearized equations are taken in the
form:

fmn j~x,y,z!}cos~mpx/a!cos~npy/a!. ~3.1!

Symmetries, however, impose the eigenfunctions to be in-
variant under the changex↔y and, therefore, solutions
should also be

fmn j~x,y,z!}$cos~mpx/a!cos~npy/a!

1cos~npx/a!cos~mpy/a!%. ~3.2!

~Notice that the latter includes the former as a particular
case.! Modes withm5n are also invariant under reflections
with respect to the diagonaly5a2x. If this is not the case
Zd and hidden symmetries impose thatm andn must have
the same parity for the permitted modes. We callpure modes
those of the form~3.1! with m5n andmixed modesthose of
the form ~3.2! with mÞn andm,n having the same parity.

The explicit forms ofv andu fields are

FIG. 1. Sketch of the transformation from a square container
with Neumann boundary conditions to an enlarged and rotated
square with periodic ones.
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vmmj~x,y,z!5 f mmj~z!cos~mpx/a!cos~mpy/a!, ~3.3!

ummj~x,y,z!5gmmj~z!cos~mpx/a!cos~mpy/a! ~3.4!

for the pure modes and

vmnnmj~x,y,z!5 f mnnm j~z!$cos~mpx/a! cos~npy/a!

1cos~npx/a!cos~mpy/a!%, ~3.5!

umnnmj~x,y,z!5gmnnmj~z!$cos~mpx/a!cos~npy/a!

1cos~npx/a!cos~mpy/a!% ~3.6!

for the mixed modes, wheref $ i %(z) and g$ i %(z) are thez
eigenfunctions of the linearized problem@9#. To simplify the
notation we will retain for the first group only two indices
$1%5(m, j ) and three for the second group$2%5(m,n, j ).

In the case studied here we chose as critical modes those
whose linear superposition generates patterns similar to ex-
perimentally observed ones, namely,

u201~x,y,z!5g201~z!@cos~2px/a!1cos~2py/a!# ~3.7!

and

u11~x,y,z!5g11~z!cos~px/a!cos~py/a!. ~3.8!

A linear combination of a mixed mode with
m52,n50,j51 and a pure one withm5n5 j51 resembles
experimentally observed patterns@4#.

The linear stability curves were found numerically using
R and a as control parameters and finding the nontrivial
f $ i %(z) andg$ i %(z) that also satisfy~2.5! excluding those that
do not obey bothD4 and hidden symmetries~see Fig. 2!.

IV. NONLINEAR EQUATIONS

In order to obtain a finite-dimensional set of ordinary dif-
ferential equations from the original partial differential equa-
tions we expand the fieldsu and v, using as a basis the

critical and first subcritical eigenfunctions of the linearized
problem.

The solution of the convective fields is assumed to be of
the form @9#

~v,u!5 (
$1,2%

A$1,2%~ t !~v$1,2% ,u$1,2%!, ~4.1!

whereA$1,2%(t) are the time-dependent amplitudes of the cor-
responding modes andv $1,2% andu$1,2% are the fields in Eqs.
~3.3!–~3.6!.

From the solvability condition~Fredholm alternative!
given by
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~4.2!

we obtain the evolution equations for the chosen modes. In
the last equation the brackets denote volume integral, the
overbar denotes averaged quantities, the prime denotes de-
partures from mean values, and an asterisk refers to solutions
and parameters of the adjoint problem~see@13# for details!.
The development~4.1! will include the critical modes and
the first subcritical ones near the codimension-two point
A (R5Rc ,a5ac) with Rc5656.2 andac52.526 ~see Fig.
2!. The full ensemble of first damped modes and the corre-
sponding eigenvalues are listed in Table I.

After performing a center manifold reduction@15# we ar-
rive at two-dimensional set of ODE’s for the amplitudes of
11 and 201 given by

Ȧ115m1A111a1A11A2011b1A11
3 1c1A11A201

2 ,

Ȧ2015m2A2011a2A11
2 1b2A11

2 A2011c2A201
3 ,

~4.3!

where the nonlinear terms in~4.3! are obtained from~4.2!
assuming thatR5Rc and the numerical values ofai ,bi ,ci
are listed in Table I~b!. The coefficientsm1 andm2 in ~4.3!
are related to physical control parameters by

m15
~12Rc11

/R!^u11* v11&

^u11* u11&
,

~4.4!

m25
~12Rc201

/R!^u201* v201&

^u201* u201&
.

The unfolding of Eqs. ~4.3! is made in a region slightly
shifted to the right of pointA ~Fig. 2!. This is because ex-

FIG. 2. Marginal equilibrium curves found forg50.01,
L50.1, for the modes 11, 201, 21, 131, and 401. The pointA where
two stationary mode interact is a codimension two point.
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perimentally the mode 201 first becomes unstable and from
Fig. 2 one can easily see that fora.ac, Rc201

,Rc11
. The

sequence of bifurcations is thus obtained by moving along a
line with ae5a1e ~e.0!. To the right ofA, m1 andm2 will
be constrained by the conditionm25m11d with d.0. Now
we study the dynamics generated by Eqs.~4.3! whenR in-
creases for a fixeda5ae near the codimension-two point.
Form1 andm2 negative the only stable solution is the origin,
i.e., the quiescent state. This is replaced by a state with
A201 whenR is slightly greater thanRc201

, and the second

modeA11 is subcritical. This state corresponds to a crosslike
pattern (A201Þ0,a1150) and it is stable between
0,m2,m2p57.8231023. This is replaced by a mixed pat-
tern (A201.A11Þ0) via a pitchfork bifurcation in the range
m2p,m2,m2h51.2831022. Two fixed points, one with
A11.0 and the secondA11,0, become stable. Patterns in
this situation break theZh but conserve theZd by construc-
tion. These points undergo a Hopf bifurcation atm25m2h
where the fixed points transfer their stability to limit cycles
~see Fig. 3!. In this case the diagonal of the pattern oscillates
between a minimal and a maximal value. These values in-
crease withR, but saturate, because the limit cycle cannot
cross the (A201) axis.

V. CONCLUSIONS

We found a simple dynamical system starting from the
hydrodynamic equations governing the motion of the fluid
that qualitatively predicts experimentally observed phenom-
ena. The Neumann boundary conditions for the temperature
perturbations and thez component of the velocity field ex-
plain the additional hidden symmetries present in this prob-
lem. A remarkable fact is that the sequence of modes that
interact is only fixed by the geometry of the container and by

the thermal properties of the side walls~lateral boundary
conditions! and not by the characteristics of the fluid or by
the relative importance of Rayleigh and Marangoni convec-
tive mechanisms. This was also a conclusion found by other
authors for pure thermocapillary convection@9#.

The results on the amplitude dynamics are in qualitative
agreement with experimental observations. The calculations
reproduce the sequence of dynamical states and the platforms
observed in the experiment, when the supercritical heating is
increased.

However, an important quantitative difference subsists
between our calculations and the experiment. The competi-
tion of two modes has been analyzed for the smallest aspect
ratio a where acrosslikepattern competes with adiagonal-
like pattern. In our calculations this occurs fora52.526
while experiments have been performed fora54.46. This
discrepancy could be due to the important differences be-
tween the idealized boundary conditions used in our calcula-
tions and the real ones.
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TABLE I. ~a! Eigenvalues at the pointA in Fig. 2 for different
modes,~b! coefficients of the nonlinear terms of the modes selected
to make the center manifold reduction.

~a!
R11* 656.2
R201*
R121* 700.2
R131* 1066.4
R231* 1361.6
R101* 851.2
R21* 898.2
R401* 1703.9

~b!

a1 0.834
b1 21.793
c1 211.926
a2 20.144
b2 23.350
c2 218.073

FIG. 3. Bifurcation diagrams for the amplitudesA201 andA11.
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