
Fronts between hexagons and squares in a generalized Swift-Hohenberg equation

C. Kubstrup,1 H. Herrero,2 and C. Pe´rez-Garcı´a2
1Center for Chaos and Turbulence Studies, Physics Department, Technical University of Denmark, DK-2800 Lyngby, Denmark

2Departamento de Fı´sica y Matema´tica Aplicada, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Navarra, Spain
~Received 3 February 1995; revised manuscript received 15 September 1995!

Pinning effects in domain walls separating different orientations in patterns in nonequilibrium systems are
studied. Usually, theoretical studies consider perfect structures, but in experiments, point defects, grain bound-
aries, etc., always appear. The aim of this paper is to perform an analysis of the stability of fronts between
hexagons and squares in a generalized Swift-Hohenberg model equation. We focus the analysis on pinned
fronts between domains with different symmetries by using amplitude equations and by considering the
small-scale structure in the pattern. The conditions for pinning effects and stable fronts are determined. This
study is completed with direct simulations of the generalized Swift-Hohenberg equation. The results agree
qualitatively with recent observations in convection and in ferrofluid instabilities.@S1063-651X~96!10707-8#

PACS number~s!: 47.27.Te, 47.54.1r, 44.25.1f

I. INTRODUCTION

Pattern formation is quite common in fluids, lasers, and
chemical reactions, where a huge amount of research work is
being done. Most efforts have been addressed to a universal
understanding of these phenomena, where notable advances
have been accomplished@1#. One of the topics that received
attention is the dynamics of defects and of fronts in these
nonequilibrium systems. Stationary fronts have been estab-
lished in the transition between roll and hexagonal patterns
in convection under non-Boussinesq conditions. The compe-
tition between hexagons and squares has been theoretically
analyzed@2,3# and experimentally observed@4# in interfacial
instabilities of ferrofluids under a vertical magnetic field@5#.
Just recently such a competition has also been observed in
Bénard-Marangoni convection@6,7#. This competition can
lead to interesting features: defects, grain boundaries, hyster-
etic effects, etc. In the present paper we will analyze the
stability conditions for fronts between square and hexagonal
structures. We will follow the outlines of Refs.@8, 9#, where
this specific problem was only partially solved.

In the vicinity of an instability threshold, a systematic
procedure allows us to reduce the evolution equation to lin-
early unstable modes~center manifold reduction!. Spatial
variations can also be included leading to generalized
Ginzburg-Landau equations~GLE’s! for the amplitude of
those modes@10,11#. However, this formalism is limited to a
finite number of spatial Fourier modes, since each mode re-
quires an extra envelope equation. Swift and Hohenberg@12#
proposed a model equation for a rapidly varying scalar func-
tion. This equation reflects, mainly, effects of a rotationally
invariant linear selection. It is possible to generalize this
model to include spatial derivatives in the nonlinearities that
can lead to square and hexagonal patterns@13#. We shall
refer to this generalized Swift-Hohenberg equation as GSHE.
This GSHE allows for numerical simulations that resemble
quite well the patterns found in several nonequilibrium sys-
tems.

The main aim of this paper is to present theoretical results
on pinned fronts between patches of different symmetries in
patterns where hexagonal and square cells coexist. In the first

section we discuss a minimal GSHE model to obtain those
kinds of patterns. As analytical studies on the GSHE are
quite difficult, we proceed in several steps. We derive the
amplitude equations for this GSHE model and we quote the
stability of the stationary solutions under spatially homoge-
neous perturbations. With these amplitude equations, the
value of the control parameter that leads to an immobile
~pinned! front between hexagons and squares can be ob-
tained. This parameter value must correspond to a solution in
the hysteric region where both hexagons and squares are
stable, and its derivation is performed in Sec. II. Using this
reference value, we shall use the GSHE to show that the
pinning effect is possible for a whole interval of parameter
values, due to the interplay between the small-scale structure
and the envelope field~nonadiabatic effects! @14#. An esti-
mation of this interval is given in Sec. III.

Numerical simulations of the GSHE are presented in Sec.
IV, thereby checking analytical results and evaluating the
constants for which calculations in previous sections only
give the order. We will bring phenomenological results that
support the grouping of the fronts in two different types.
Section V is devoted to a discussion of the results and to
present the main conclusions.

II. GENERALIZED SWIFT-HOHENBERG EQUATION

The Swift-Hohenberg equation was introduced to study
patterns of rolls in Rayleigh-Be´nard convection@12#. Beste-
horn and co-workers@15–17# have systematically general-
ized this equation to include more general planforms. The
GSHE can be thought of as an approximation in real space to
an order-parameter equation that is possible to deduce from
the basic equations. A GSHE that allows haxagons and
squares to evolve, takes the form@17,18,9#:

ċ5@«2~11D!2#c2ac22bc31dcDc22gcD2c2.
~1!

This is an equation for a real-order parameterc(r ,t), a
scalar variable proportional to the velocity and temperature
fields in convection or to deviations of the interface with
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respect to the midplane in ferrofluids;D is the Laplacian in
two dimensions. Here« is the control parameter defined as a
distance to criticality. We simplify further this last equation
keeping only the essential terms: one which makes the hex-
agonal symmetry possible and another responsible for the
squares. Then we propose the following equation as a mini-
mal model:

ċ5@«2~11D!2#c1ac22bc32gcD2c2. ~2!

Whena5g50 we recover the Swift-Hohenberg equation
discussed in Ref.@12#. From the linear stability analysis we
find that«5O~e! and we assume thata5O~Ae!. Usually the
following boundary conditions~BC’s! are assumed,

c5]nc50, ~3!

wheren is a unit vector normal to the sidewalls.

A. Stability analysis under spatially homogeneous
perturbations

We now consider situations where the system develops
almost perfect patterns with a well-defined symmetry. The
scalar variablec can be developed in terms of plane waves
that can lead to rolls, squares, or hexagons:

c~x,t !5(
j51

6

@Aj~Xj ,Yj ,T!eik j •x1c.c.#1O~Ai
2!, ~4!

whereXj[X•nj , Yj[X•tj , andnj and tj are mutually or-
thogonal unit vectors. As usual, two temporal and spatial
scales can be distinguished in the system: for the envelope
functionX andT are the slow variables, andx, t are the fast
variables for the underlying structure@19#. Aj (T),
j51,2, . . . ,6 are theamplitudes of the modes with wave
vectorsk j , j51,2, . . . ,6,corresponding to the directions of
the six principal modes@1#. These wave vectors are related
by k11k21k350, k41k51k650, k j•k j1350, j51,2,3, and
uk j u5kc . Here six orientations are included in order to allow
for two conjugated sets of hexagons and structures contain-
ing both hexagons and squares~see Fig. 2 and further expla-
nations in the text!. After introducing this development into
Eq. ~2! one obtains a set of amplitude equations:

Ȧ15«A114F ]

]X1
2

i

2kc

]2

]Y1
2G2A11a Ā2Ā3

2@b~ uA2u21uA3u2!1cuA1u21d~ uA5u21uA6u2!

1euA4u2#A1 ,

Ȧ45«A414F ]

]X4
2

i

2kc

]2

]Y4
2G2A41a Ā5Ā6

2@b~ uA5u21uA6u2!1cuA4u21d~ uA2u21uA3u2!

1euA1u2#A4 , ~5!

the rest are obtained by cyclic permutations of the indices,
indices 1,2,3, and 4,5,6. The BC’s, are

A5]nA50, ~6!

but we assume in the following that the system has an infi-
nite extent. In fact, these equations are theamplitude equa-
tionsof the GSHE, provided we identify the coefficients:

a52a, b56b120g, c53b116g,

d56b128g, e56b116g. ~7!

Now we are interested in the stability threshold for each
symmetry and not for a full stability analysis of that system.
Then we restrict the linear stability analysis to spatially ho-
mogeneous perturbations around stationary solutions.~The
stability analysis for nonhomogeneous perturbations can also
be performed@20,21#!. The results were obtained and dis-
cussed in previous works@8,23#. In summary, squares are
stable if

b,0`«.
4a2~9b132g!

~3b116g!2
5«s.0, ~8!

and hexagons are stable if

«c5
2a2

15b156g
,«,

16a2~3b113g!

~3b14g!2
5«h . ~9!

~We present these results in terms of parameters in the GSHE
for the sake of comparison with numerical simulations.! A
graphical scheme of the above results is given in Fig. 1.
Stability for hexagons requires a further condition, namely
that u~15b156g!/~18b172g!u<1. ~We will show that this
condition is fulfilled in our case, but generally this may not
be so.! This extra condition is a result of including perturba-
tions perpendicular to the hexagonal modes.

So far we have only considered hexagonal and square
patterns. From the form of the amplitude equations one can
deduce that the hexagonal pattern formed by a resonant triad
is independent of other interacting modes@22#. ~Mixed
modes as, for example,A15A2ÞA3 and A45A55A650
are always unstable in a system displaying hexagons.! It can
furthermore be shown that the roll pattern never is stable in a
system permitting a stable square pattern. Further analysis
shows also that rectangular as well as rhombic patterns are

FIG. 1. Stability of the hexagons and squares, as a function of«.
Note the hysteretic region for«s<«<«h .
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impossible or always unstable; in other words, the amplitude
equations do not provide planforms for any more of the usual
structures to be stable.

III. CONDITIONS FOR A FRONT

An important property of the amplitude equations is that
they are relaxational, i.e., they can be deduced from a
Lyapunov functionalF[A]:

F@A#5E dX dY(
j51

6 F2«uAj u21
c

2
uAj

2u4

14US ]

]Xj
2

i

2kc

]2

]Yj
2DAjU2G1 (

j ,l , jÞ l

6

gjl
c

2
uAj u2uAl u2

2a~Ā1Ā2Ā31Ā4Ā5Ā6!, ~10!

where gjl are the coupling coefficients seen in~5!. The
minima of this functional correspond to the stationary states,
andAj is a solution of

Ȧj52
dF@A#

dĀj

, ~11!

whered is a Fréchet derivative. For many values of the pa-
rameter, the functional has several local minima, all corre-
sponding to stable solutions. The comparison between the
energies of the minima ofF[A] allows for a prediction of
towards which state the system islikely to evolve, but the
actual evolution depends on the initial conditions.

To make the algebra more tractable we will consider from
now on primarily one spatial variablex ~assumed to be per-
pendicular to the front! and we average in they coordinate.
We rescale the amplitude equations in the usual way.~After
the averaging, ally-dependence can be taken as zero!:

Aj5
a

c
aj , T85

a2

c
T, X85

a

2Ac
X, Dj5~kj !x

2,

~12!

g15
b

c
, g25

d

c
, g35

e

c
, d5

«c

a2
. ~13!

Notice that now the control parameter isd. Stationary solu-
tions of hexagons, whereah5@11A114d(112g1)#/
@2(112g1)# and stationary squaresas5Ad/(11g2), have
the following stability intervals for the homogeneous pertur-
bations in this notation@see Eqs.~8! and ~9!#:

d.
11g2

~12g11g22g3!
2 for squares, ~14!

21

4~112g1!
<d<

g112

~g121!2
for hexagons, ~15!

with the extra conditionu(2g111)/(2g21g3)u<1.
To study a mobile-front solution with constant velocityc,

we write aj as aj ~j!, j5X82cT8. The functionsaj ~j! are
then determined by the equations

D1a191ca181da11a2a32a1@a1
21g1~a2

21a3
2!1g2a4

2

1g3~a5
21a6

2!#50,

D4a491ca481da41a5a62a4@a4
21g1~a5

21a6
2!1g2a1

2

1g3~a2
21a3

2!#50, ~16!

with the BC’s

ua1u5ua2u5ua3u5ahÞ0, a45a55a650 for x52`,

ua1u5ua4u5asÞ0, aj50, j52,3,5,6 for x5`,
~17!

where

D15cos2u, D25
1
4 ~cosu2) sinu!2,

D35
1
4 ~cosu1) sinu!2, ~18!

D45sin2u, D55
1
4 ~) cosu1sinu!2,

D65
1
4 ~) cosu2sinu!2, ~19!

Dj are in units ofkc51, andu is the angle betweenk1 and a
vector normal to the front~see Fig. 2 where the front is
assumed to be vertical!. The stationary versions of Eqs.~16!
~c50! can be considered as the equation of motion of a
mechanical system with a LagrangianL:

L5(
j51

6
1
2Dj~a18!22V, ~20!

V5(
j51

6

~ 1
2daj

22 1
4aj

4!2 (
j ,l , j, l

gj l
2

aj
2al

21a1a2a31a4a5a6 .

~21!

An immobile front corresponds to a trajectory of the me-
chanical system joining two local maxima of the effective
potentialV, which corresponds to two different structures. A
maximum of the effective potential corresponds to a mini-
mum ofL and of the Lyapunov functionalF[A]. This struc-

FIG. 2. The six modes considered in the study shown with the
angle u as mentioned in the text. 1,2,3 and 4,5,6 form resonant
triads and 1 and 4 are perpendicular.
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ture can exist only if the values of the potentialV in both
points are equal. The front moves to the ‘‘right’’ ifL(2`)
.L(`), i.e., the structure with the lower value ofF[A] in-
vades the one with the larger value. For two given homoge-
neous stationary structures, there is a unique value of the
control parameterd1 that fulfils this condition. Usually this
value can be found only numerically@9#, but it can be given
analytically in some particular cases considered in the fol-
lowing.

Two extreme cases of possible orientation in the front can
be considered. A scheme of these two types of fronts is
shown in Fourier space in Fig. 3. These two fronts are the
simplest to describe, but fronts with arbitrary anglesu can
also be studied. Type I corresponds to fronts withu close to
zero, and type II to those withu different from zero. The
calculations will only be performed for the type-I front~u
50!, since for the type-II front the short-scale effects elimi-
nate the possibility of pinning.

An analytical solution can be found for 0,g121!1,
small d2d1 andg221, as well as settingg35

3
41g2 in Eqs.

~16!. If u50, thenD25D3 , and there is a solution with
a25a3 and a55a650. In this case, a front between the
solutionsa45a55a650, a1Þ0, a25a3Þ0 at x→2`, and
a15a4Þ0, a25a35a55a650 at x→` can stabilize if the
potential given in expression@21# obeys uV(2`)2V(`)u
50. This condition is fulfilled for the following value of the
control parameterd:

d5~4/3g21
2
3 !~g121!22. ~22!

~The detailed calculations are given in Appendix A.!

A. Nonadiabatic pinning effects

The possibility of a stable front has been determined by
amplitude equations in Sec. II. We determined the value of
the control parameter to have such a front with a condition
similar to the Maxwell construction in phase transitions. But
this value is not exact because it does not take into account
small-scale effects. When these effects are included,x andX
are no longer independent, giving rise to exponentially small
~nonadiabatic! effects. In Ref.@14# it has been shown that
interaction of a mobile front with these small-scale structures
can give rise to the pinning of the front with an adjusting
wave-number field in the pattern. In the case of hexagons vs
rolls, it has furthermore been shown that if the front is almost
perpendicular to one of the wave vectorsk j of the hexagons,
a pinning is possible without requiring a change in the un-
derlying wave number@8#.

The GSHE includes the two scales and is therefore a suit-
able model for a study of the full interval for pinning effects.
With the rescaled coefficients the GSHE reads as

ċ5@ed2~11D!2#c1ac22
b

3
c32gcD2c2. ~23!

A front between hexagons and squares can be described as a
scalar field:

c52Ae (
j51

4

ajcosk j•x1O~e!, ~24!

where the amplitudesaj are solutions of the rescaled
Ginzburg-Landau~GL! equation ~16! when u50. In this
case, we haveD151, D25D35

1
4 , D450, D55D65

3
4 , and

a25a3 The front does not move ford[d1@1.
Of course the last equation is not an exact solution of the

GSHE, even though the amplitudes were exact solutions of
the GL equations~5!. We are looking for a corrected solution
~at lowest order! for small ud2d1u, such that

c5c01c̄, ~25!

where

c052Ae(
j51

4

aj„Ae@x2j~et !#…cosk j•x, ~26!

and c̃ has its origin in nonadiabatic effects and in the small
differencesud2d1u, i.e., c̃5O(e).

A linear perturbative analysis around the solutionc0 gives
the following linearized equation forc̃:

d1c̃2~11D!2c̃12ac0c̃2bc0
2c̃2g2c0D

2~c0c̃ !

2gc̃D2c0
25

]c0

]j

dj

dt
2~d2d1!c02G, ~27!

whereG contains the fast dependence onx in cos~k j•x! that
is the source of nonadiabaticity. Explicit calculation ofG is
too cumbersome a task to be included here. We include an
outline of this calculation in Appendix B.

The main result of the calculation that we get from~B10!
is the following estimate of the interval aroundd1 for which
the front between hexagons and squares is immobile:

ud2d1u,C3expF2
)21

8
pS 3~g121!

e D 1/2G , ~28!

whereC3 is a constant. This means that a front between
squares and hexagons is observable for this full range of the
control parameter. It is important that, close to the critical
value g151, e!g121!1, since in this case the fact ofe
being small may be compensated byg121. In the limit
e.g121, the interval of pinning isnot exponentially small
and the analysis is no longer valid, since the characteristic
width of the front is comparable with the period of the struc-
ture at small scale. A more careful analysis is necessary to
find an estimation in this case.~See Appendix A for details.!

The above interval is obtained becauseG has parts inde-
pendent ofy from a mode in~26! parallel with thex axis. In
principle, one might think that equivalent calculations can be
performed for the type-II front, but Malomedet al. in @8#
proved that pinning effects are not possible under these con-
ditions. This argument can be generalized by imposing that a

FIG. 3. Fronts of types I and II, respectively.
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dependence ony close to 0 inG is necessary for pinning.
The y dependence in our case takes the form sin(kcLu),
where kcLu!1, i.e., that the pinning may be seen for
u!(kcL)

21, whereL is the system length in they direction.

IV. NUMERICAL RESULTS

In order to simulate the evolution of the GSHE, we used a
pseudospectral method and a semi-implicit time integration
scheme in a 1283128 point grid. All the following results
have been obtained with parameter values:a50.036,
g50.24, andDt51 @in units of Eq.~2!#. We have modeled a
circular dish with an aspect ratioG defined as the quotient
between the diameter,D5128DX5128p/4532p and the
depth of the boxd. In this case, we haveuku51, which leads
to a wavelength ofl52p/uku52p. Therefore, we haveG
5D/d532. The BC’s used are those commented in Sec. II
~c50 and ]nc50 on the sidewalls!. All two-dimensional
~2D! plots are contour plots. From@4# we have setc53,
which gives b520.28, a50.072, b53.12, d55.04, and
e52.16. With these values we getg15b/c51.04,g251.68,
andg350.72, which are values in good agreement with those
used in Sec. III. Calculating (2g111)/(2g21g3) we get
3.08/4.08,1, showing that we are dealing with the full sta-
bility interval of the hexagons.

In Sec. III we used the Lyapunov functionalF[A] of the
amplitude equations~10!. But the GSHE equation~and
BC’s! also has a potential~Lyapunov functional! F@c# of the
form

F@c#5E dx dyH 2
«

2
c22

a

3
c31

b

4
c41 1

2 @~D11!c#2

1
g

4
c2D2c2J , ~29!

a feature that can be used to address some general statements
on possible solutions of the GSHE.

A. Coexisting solutions and sidewall effects

It is easily realized that the circular finite boundary must
have an effect on the results obtained. The solutions are
forced to contain defects because neither hexagons nor
squares can fill a circle without defects. Our first aim is to

determine numerically the parameter range of stability of
both hexagons and squares, i.e., find the range in which we
may find pinning. This has been done by taking an initially
imposed pattern of hexagons and determining the minimal
and maximal values of« for which they are stable. Thereaf-
ter, this range of parameter values has been studied with an
initial pattern of squares. The result is«s50.045<«
<0.135«h . In these simulations we obtain stable hexagonal
pattern at parameter values whereF@c# has the lower value
for squares. It has earlier been argued that in this case the
squares would invade the hexagons@14#, but this is only true
for systems where both structures are present,~see e.g., Fig.
4!. Furthermore, it has been shown that in a range just below
the above-mentioned values, the hexagons are stable, and
directly above, the squares are stable. The transition is there-
fore hysteretic~see Fig. 1! as we previously found analyti-
cally.

An important feature of a positive defined Lyapunov
functional is that for a given solution of the system, it is an
ever constant or decreasing function of time. This math-
ematical result has an experimental interpretation as well. As
is known from the literature@25# the presence of defects
~which as earlier stated are unavoidable in our system! con-
tributes by increasing the Lyapunov functional. The evolu-
tion of the system will eliminate defects and thereby lower
the Lyapunov functional until a stationary state is reached.
This means that the only stable solutions of the equation are
local minima of the functional or metastable solutions, but
since we are working with a numerical approximation the
latter is not possible due to unavoidable perturbations. Fur-
thermore, the sidewalls are known to be responsible for
wave-number selection mechanisms, etc.

Due to sidewall effects, a front moves faster in a finite
system than in an infinite one. In a moving front we get rolls
that are far from perpendicular to the sidewalls. These rolls,
together with those on the other side of the boundaries, form
squarelike structures.~¹nc50 is a symmetric, reflective BC!.
This means that we have squarelike defects on the bound-
aries in a front moving from a structure of squares invading
a hexagonal region. As shown in Ref.@23# this type of defect
helps to increase the velocity of the transition. The effect on
the interval of pinning is very complicated. The boundaries
help stabilize the rolls of the front, thereby widening the
interval, but the presence of squarelike defects at the bound-

FIG. 4. A transient front at«50.0497 shown at the timesT1520 000,T2560 000, andT3570 000 correspondingly. One can see how
small-scale squares are formed in the roll-dominated front, eventually leading to destabilization of the front.
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aries of the hexagonal region~see Fig. 5! will most likely
have the opposite effect.

We will search in Sec. IV B for solutions of the system
containing a front with zero velocity, i.e., a pinning effect
@8#. Such a solution may appear when the two potential
minima have~almost! equal values.

B. Pinning effects

In a previous section we showed that the pinning is pos-
sible for an interval of«. By using a low constant amplitude
initial surface for the simulation of the GSHE we found pin-
ning effects at least between 0.04845<«<0.0495. The whole
interval may be larger, since we took only a few initial con-
ditions, and the basin of attraction of the pinned front can be
wider. If we compare the length of this interval for«50.01
in Eq. ~28!, we find thatC350.0017. This can be considered
O~e!. Pinned fronts of type I can be observed in Fig. 5, for
the two border values of«. The system has also been run
using a 2563256 grid. In this case the fronts formed in a
different direction, but apart from this, they formed similarly
to the ones shown.

We would like to point out that at times it is necessary to
watch out for very long transients. In Fig. 4 something simi-
lar to a stable pinned front appears as far asT560 000, but at
T570 000 the front is gone and the squares have invaded the
whole surface. From this we can infer that the small-scale
structures slowly form squares in the area dominated by un-

derlying rolls, and that this process slowly eliminates the
stability of the pinning.

In Fig. 6 we have initialized our system with the two
types of fronts, I and II, in order to compare their stability.
From the figures it is very clear that the type-II front is not
pinned, and is indeed rather unstable. This confirms the ana-
lytical conclusion that the front has to be close to perpen-
dicular to one of the modes in both structures in order to
possibly be pinned.

A scheme of the interacting modes in a pinned front is
presented in Fig. 3. For the type-I front one can easily de-
duce that in the region of the front the disappearing mode of
the squares is the parallel one. The perpendicular one exists
in both squares and hexagons and by looking at, e.g., Fig. 5
one realizes that it indeed also exists in the front. The same
result has been obtained from the analytical calculations,
where a front is obtained without changing the four interact-
ing modes@indeed, a mode may exist in the front~AÞ0!#.
This is a roll mode, which under the conditions considered
here is unstable. In this there is no contradiction, and actually
this is in good agreement with earlier results, where a roll
survives in the typical defect~penta-hepta pair! in a hexago-
nal pattern@23#.

For values of« just outside the pinning interval, the ve-
locity of the front ~which we estimate as the velocity with
which the domain of hexagons decreases! is rather large, in
the sense that the transition is an abrupt one.

FIG. 5. A pinned front for«50.048 45~top! shown at the timesT1515,T2510 000, andT3550 000 and for«50.0495~bottom! shown
at the timesT1510, T2520 000, andT35100 000. Note the rolls in the front area and squarelike patterns near the boundaries in the
hexagonal region.
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V. CONCLUSIONS

In the present paper we have studied the competition be-
tween hexagons and squares in a generalized Swift-
Hohenberg equation. This equation has been proposed as a
model for Bénard-Marangoni convection and for ferrofluids
under the influence of a vertical magnetic field. Using the
model, we have derived amplitude equations and we have
performed a stability analysis under homogeneous perturba-
tions. A Lyapunov functional has been found for the ampli-
tude equations, and with it a potential was derived. Using
this we calculated a value of the control parameter for which
our hexagon-square front is pinned. A thorough analysis of
fronts between two structures containing more than one
mode~here three and two! has been reported. This analysis
has been enhanced taking into account the nonadiabatic ef-
fects of the small scales. The pinning is possible in a whole
parameter interval, and we have provided a further criterion
necessary to see pinning: The fronts need to be perpendicular
to a fundamental mode of both competing patterns in order
to be stable.

The analytical study is in agreement with numerical simu-
lations of GSHE. In this analysis, a Lyapunov functional for
the generalized Swift-Hohenberg equation has also been
found, insuring the relaxational nature of a system with infi-
nite extent. This numerical study has demonstrated the great
influence of the sidewalls. Fronts have indeed been found in

an interval of parameter values, and it has been shown that
these fronts consist of rolls, though such solutions are un-
stable in our system. Proof of very long transients in systems
close to pinning conditions have been shown as well.

All these results are in qualitative agreement with recent
experimental observations by Nitschke and Thess@6# and
Schatz@7# on Bénard-Marangoni convection and by Wes-
freid @4# on interfacial instabilities in ferrofluids, where hexa-
gons and squares coexist for a full range of the control pa-
rameter. Even though sidewall effects are crucial in
explaining the patterns observed in these experiments@6#,
these effects do not prevent the obtaining of stable type-I
fronts between squares and hexagons. Some work is planned
in order to make a closer comparison with these results.
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APPENDIX A

In this appendix we calculate analytically the value of the
control parameterd1 to have a stable front. This can be per-

FIG. 6. Fronts of type I~top! and type II~bottom! at «50.049 shown at the timesT151, T25250, andT35800, respectively. The type-I
front is clearly stable and rolls are forming in the front. In the lower evolution series the square pattern will slowly overtake the whole
surface.
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formed with the following hypotheses: 0,g121!1, g221
small, and by takingg35

3
41g2 in Eqs. ~16!, u50, then

D25D3 . We calculate a first integral of the system that will
represent a constant energy, something necessary to obtain
pinned fronts:

E5L2(
j51

6

aj8
]L

]aj8

52 1
2 a18

22 1
4 a28

22
d

2
a1
22da2

22
d

2
a4
2

1 1
4 a1

41 1
2 a2

41 1
4 a4

41
g1
2

~2a2
2a1

21a2
4!1

g2
2

~a4
2a1

2!

1g3a2
2a4

22a1a2
2. ~A1!

In order to represent the spatial dependence of~16! in a more
adequate way we perform the following transformations:

a15
2r cosx

)~g121!
, a25a35~ 2

3 !1/2
r sinx

g121
,

a45
r

g121
A2~cos2x2 1

3 !, z5
2

A3~g121!
X8,

~A2!

where r511O(g121). ~In the transformation ofa4 we
have used the BC’sa450 at z→2` anda45a1 at z→`.!
We introduce~A2! in ~A1! and find that the extra amplitude
introduced in the calculations in fact does not affect the
equation obtained in@8# for x and corresponding BC’s. For a
front between hexagons and squares we get:

dx

dz
5sinx

12) cosx

~423 cos2x!1/2
, ~A3!

x→cos21~1/) ! when z→2`, ~A4!

x→0 when z→`.

The solution of this differential equation can be written in an
implicit form ~see Malomedet al. @8#!:

z2z05
)21

4
ln
413 cosx1~423 cos2x!1/2

11cosx

1
)11

4
ln
423 cosx1~423 cos2x!1/2

12cosx

2 3
2 ln

4/)2cosx1~423 cos2x!1/2

) cosx21
, ~A5!

wherez0 is a reference point. In the above calculations we
have used two assumptions without explanation, namely
r511O(g121) and d5d2(g121)225(4/3g21

2
3 )(g1

21)22. We may check the validity of these assumptionsa
posteriori: we introduce the values in expression@21# and
calculate uV(2`)2V(`)u. For d5d15d2~g121!22 we
should have pinning, i.e., we should obtainuV(2`)
2V(`)u!1. An explicit calculation gives

V~2`!2V~`!5 3
2dah

22 3
4ah

42 3
2g1ah

41ah
32dac

21 1
2ac

4

1 1
2g2ac

4

5@ 2
3d22

4
272 8

272 8
27 ~g121!

1 8
27 ~g121!#

1

~g121!4

2@ 4
3d22

8
92 8

9g2#
1

~g121!4
50, ~A6!

which clearly indicates that these assumptions are justified.

APPENDIX B

In this appendix we present detailed calculations to obtain
the range of the control parameter for which the pinning of a
front is possible. Our starting point is the perturbation equa-
tion ~27!. The linear operator of the left-hand side~lhs! of
this equation has a null eigenfunction]c0/]j, sincec0 is a
solution at leading order. Equation~27! has a solution if the
right-hand side~rhs! of the equation is orthogonal to this
eigenfunction~solvability condition!:

dj

dt E2`

` S ]c0

]j D 2dx dy5~d2d1!E
2`

`

c0

]c0

]j
dx dy

1E
2`

`

G~x,y!
]c0

]j
dx dy,

~B1!

where

G5 (
n51

4

Gn~X!cosS n~j11X!

Ae
D . ~B2!

We write some of the terms ofG1 to give an idea of its
shape, but it is too cumbersome an expression to be written
completely:

FIG. 7. Schematic behavior of the functionj̇~j,d!. This function
j̇ has ~vertical! translational dependence ond, showing that we
have stable solutions for a whole interval of values.
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G152a1d11aF ~6a1214a2
214a3

214a4
2!
da1
dX

~B3!

18a1a2
da2
dX

18a1a3
da3
dX

18a1a4
da4
dX G

1••• . ~B4!

We average, once again, in they direction in this expression,
and every integral that hasy dependence is equal to zero.
Changing to slow variables in the amplitudes,

X5Aex, j15Aej, T5et, ~B5!

we get the equation

dj1
dT

5H E
2`

` F S da1dX D 212S da2dX D 21S da4dX D 2GdXJ 21S 2~d2d1!C1 (
n51

4 E
2`

`

Gn~X!cos
n~j11X!

Ae
dXD , ~B6!

whereC takes the form

C5
3~11g2!@112d14dg11A114d~112g1!#24d~112g1!

2

2~112g1!
2~11g2!

. ~B7!

If we consider the analytical continuation ofG(X) for
complexX and denoted byXs the singularity of this function
closest to the real axis, then applying the theorem of the
residues the latter of the integrals is

(
n51

4

Cnexp~2n ImXs /Ae!cos@n~j11ReXs!/Ae#.

~B8!

~This can be done because the contribution ofXs is the domi-
nating part of the integral@24#.! Equation~B6! can be written
as

dj1
dT

5C0~d2d1!1 (
n51

4

Cn

3expS 2
n ImXs

Ae
D cosn j11ReXs

Ae
. ~B9!

The above equation is the equation of motion of a front in
the case of smallud2d1u. The fixed points of this equation
correspond to immobile fronts between hexagons and
squares. The fixed points of~B9! can now easily be shown to
have the following property:

ud2d1u,C expS 2
ImXs

Ae
D . ~B10!

This property is easier to demonstrate withn51 only and the
equationj̇5a1b cos~j!. For this equation we have

j̈50⇒j5mp, mPZ. ~B11!

The minimal and maximal values of j̇1 are
C0~d2d1!6C1 exp~2ImXs/Ae!, where both constants are
positive. To have pinning, the maxima have to be positive
and the minima negative. The above situation is given sche-
matically in Fig. 7, in which it can be seen that ford.d1,
there exist stable solutions~i.e., points wherej50 andj̈,0!,
a similar situation occurs in the general casen54. We will
estimate the interval for the solution obtained in Appendix A
in the case 0,g121!1, g35

3
41g2 andg221 small.

The singularities of~B10! are also forx anddx/dz; since
the singularity ofdx/dz is such that 423 cos2 x(zs)50, then
cosx(zs)5A4/3, and from the implicit solution forx ~A5! we
deduce:

Imzs5
)21

4
p. ~B12!

Then the interval aroundd1 for which the front between
hexagons and squares is immobile is given by

ud2d1u,C expF2
)21

8
pS 3~g121!

e D 1/2G , ~B13!

whereC is a constant.
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