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In many nonequilibrium dynamical situations delays are crucial in inducing chaotic scenarios.
particular, a delayed feedback in an oscillator can break the regular oscillation into trains mutu
uncorrelated in phase, whereby the phase jumps are localized as defects in an extended s
We show that an adaptive control procedure is effective in suppressing these defects and stab
the regular oscillations. The analysis of the transient times for achieving control demonstrates
stabilization is obtained within an amplitude turbulent regime, analogous to what is present in spa
distributed systems. The control technique is robust against the presence of large amounts of
[S0031-9007(97)04933-8]
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Since the original idea of Ott, Grebogi, and Yorke [1]
many different theoretical schemes [2] and experimen
applications [3] have faced the problem of controllin
unstable periodic orbits (UPO’s) in chaotic concentrate
systems, i.e., in systems modeled by ordinary different
equations.

Some proposals of controlling spatially extended sy
tems, i.e., systems ruled by partial differential equation
whose order parametery is a m dimensional vector (m $

1) in phase space, withk components (k $ 1) in real space,
have been put forward for the casek  2 [4]. However,
experimentally implementable tools have not yet been i
troduced for controlling unstable periodic patterns (UPP
in extended systems.

The essential problems arising in the passage fro
concentrated to extended systems are already presen
delayed dynamical systems, i.e., systems ruled by

Ùy  F s y, ydd , (1)
where y  ystd [ Rm, dot denotes temporal derivative
F is a nonlinear function, andyd ; yst 2 T d, T being a
time delay.

Experimental evidence of the analogy between delay
and extended systems was provided for a CO2 laser with
delayed feedback [5] and supported by a theoretical mo
[6]. Most of the statistical indicators for delayed system
such as the fractal dimensions, are extensive parame
proportional toT , which thus plays a role analogous to
the size for the extended case [7].

The conversion from the former to the latter case
based on a two variable time representation, defined by

t  s 1 uT , (2)
where0 # s # T is a continuous spacelike variable an
u [ N plays the role of a discrete temporal variable [5
By such a representation the long range interactions int
duced by the delay are reinterpreted as short range inter
tions along theu direction, since nowyd ; yss, u 2 1d.
In this framework, the formation and propagation o
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space-timestructures, as defects and/or spatiotemporal
termittency can be identified [5,6].

When T is larger than the oscillating period of the
system, the behavior of a delayed system is analogou
an extended one withk  1. In particular, it may display
phase defects, i.e., points where the phase sudde
changes its value and the amplitude goes to zero.

In this Letter we introduce a control technique to su
press these defects, stabilizing the oscillations of a dela
system. The control restores regular patterns in two d
ferent chaotic regimes, namely, phase turbulence and
plitude turbulence, this last one implying the presence
a large number of defects. The control efficiency persi
even in the presence of a large amount of noise.

For the sake of exemplification, we make reference
the following delayed dynamics:

ÙA  ´A 1 b1A2st 2 T dA 1 b2A4st 2 TdA , (3)

Ù́  m

µ
S 2

m1

m
´ 2 kA2

∂
. (4)

Here, all quantities are real.A is an order parameter,
´ is the time-dependent linear gain,b1, b2, m1, k are
suitable fixed parameters,m is a measure of the ratio
between the characteristic time scales forA and ´, and
S is a measure of the power provided to the system.

Equations (3) and (4) are rather general. For instan
when T  0, S , 0, b1 . 0, b2 , 0, m . 0, m1 . 0,
k . 0 they model an excitable system, producing the
calledLeontovitchbifurcation, evidence of which has bee
shown experimentally on a CO2 laser with intracavity satu-
rable absorber [8]. ForT fi 0, they are similar to the mod-
els already used to describe self-sustained oscillations
confined jets [9], or memory induced low frequency osc
lations in closed convection boxes [10], or even the puls
dynamics of a fountain [11]. Equations (3) and (4) hav
been found also to be a good model for the temperat
evolution in a well controlled time-dependent convectio
© 1997 The American Physical Society
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experiment [12]. For convenience we spend a few word
to recall the main features of such an experiment, since
provides evidence of the defects we want to control.

A cylindrical layer (diameter 128 mm) of silicon oil
(depth 15 mm) is heated from below by a square hea
limited to the central part of the container [side 68 mm
cross section in Fig. 1(a)]. The heater is surrounded by t
same insulating material of the vessel. A convective inst
bility driven simultaneously by buoyancy and temperatur
dependent surface tension (80% and 20%, respective
called Bénard-Marangoni convection, grows as the hea
ing is increased. A steady state is reached and a station
pattern composed of four convective cells appears in t
hot region. Additional details on this experiment can b
found in Ref. [12].

If the heating is further increased, a time-depende
regime arises consisting in spatiotemporal modulation
or thermals,generated at the bottom boundary layer an
then dragged by the flow along the cell as can be seen
Fig. 1(a). This configuration provides a natural delaye
interaction insofar as it reiterates at each position the loc
value of the order parameter after a delayT, corresponding
to the time lag necessary for the trip of the cell. In thi
situation, an experimental measurement of the temperat
at the pointP of Fig. 1(a) yields the data of Fig. 1(b). The
vertical axis (temperature) is taken as representative of t
order parameterA. The main feature of this experiment
consists of trains of modulated oscillations, interrupte
by localized events (phase defects), wherein the phase
the signal changes suddenly and the amplitude decrea
to zero.

The relaxation oscillations are represented by the norm
form of a Hopf bifurcation [Eq. (3)], in which the saturat-
ing terms are delayed to account for the transport of th
convective cell. Equation (4) represents the slow evol
tion (m , 1) of the control parameteŕ, which is enhanced
by the external pumpS and depressed by the convective
motion (2kA2) which tends to uniformize top and bottom
temperatures. Equations (3) and (4) reproduce satisfac
rily the experimental signal for rather long delays, and ca
be considered as an adequate model of the situation
want to control.

The adaptive method we are going to apply is by n
means restricted to Eqs. (3) and (4). In fact, it applie
successfully to much simpler models as the one in Ref. [
for a CO2 laser with delayed feedback, which indeed
displays phase defects as those reported on Fig. 1.

Let us see how phase defects emerge. We adjust
pump and delay parametersS and T of Eqs. (3) and (4)
so that the system enters the chaotic region. This regio
in fact, is split into two different regimes. For lowT
values, chaos is due to a local chaotic evolution of th
phase, whereas no appreciable amplitude fluctuations
observed. We call this regimephase turbulence(PT). By
increasingT , we observe a transition towardamplitude
turbulence(AT), wherein the dynamics is dominated by
the amplitude fluctuations, and a large number of defec
s
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FIG. 1. (a) Cross section of the experimental setup. A ho
drop (thermal) is dragged by the flow and then reinjected
into the heating region after having completed a round trip
of the cell in a mean timeT . P indicates the point where
temperature is measured. (b) Experimental time behavior of th
temperature at the pointP. Vertical axis reports the temperature
in arbitrary units, horizontal axis reports the time in second
(T  330 sec). (c) Expanded view of the signal within the
arrows which exhibits a phase jump (solid line) and referenc
signal translated byT (dashed line).

is present. Both PT and AT have counterparts in a one
dimensional complex Ginzburg-Landau equation. Her
the parameter space shows a transition from a regime
stable plane waves toward PT (Benjamin-Fair instability)
followed by another transition to AT with evidence of
space-time defects [13].

We succeed in controlling both regimes by an adaptiv
technique recently introduced for chaos recognition [14]
and applied to chaos control on concentrated systems [15
chaos synchronization [16], targeting of chaos [17], and fil
tering of noise from chaotic data sets [18]. This techniqu
adds iteratively a small correctionUstd to Eq. (3), as fol-
lows. At time tn11  tn 1 tn (tn being an adaptive ob-
servation time interval to be later specified), the observe
defines the variationAstn11 2 THd 2 Astn11d between the
actual value ofA and the value delayed by the period of
the UPO to be controlled (TH being the Hopf period). The
5247
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corresponding variation rate

ln11 
1
tn

log

Ç
Astn11 2 THd 2 Astn11d

Astn 2 THd 2 Astnd

Ç
(5)

allows one to select a new time interval, through the rul

tn11  tnf1 2 tanhsgln11dg, g . 0 , (6)

and, consequently, a new observation at the timetn12 
tn11 1 tn11. The controlling term is given by

Ustd 
1

tn11
fAst 2 TH d 2 Astdg . (7)

The details of the algorithm have been given
Refs. [14–18]. For practical purposes, the followin
approximation holds. Letktl denote the average of the
tn set, then Eq. (6) can be written as

tn11 . ktl s1 2 gln11d , (8)

where (i)tn has been replaced with its ensemble avera
and (ii) the tanh function has been linearized. Point
corresponds to fixing once forever a reference time sc
for the process under study, while point (ii) correspon
to selecting a conveniently smallg to keepgln11 always
within the linear region of the tanh function. In the sam
way, Eq. (5) can also be linearized as

lstd .
1

ktl

ÙAstd 2 ÙAst 2 TH d
Astd 2 Ast 2 TH d

, (9)

where we have further approximated the discretized st
boscopic observations with a continuous inspection. Co
bining Eqs. (8) and (9) into Eq. (7), this reduces to

Ustd  K1fAst 2 THd 2 Astdg
1 K2f ÙAst 2 THd 2 ÙAstdg , (10)

with K1 
1

ktl and K2 
g

ktl2 . The consequences of this
approximation are interesting. First of all, forK2  0 one
recovers the Pyragas control method [19]. However,
our case,K1 and K2 can be independently selected, an
this introduces an extra degree of freedom with respec
Ref. [19]. Now, the control is more active when the e
ror is increasing and vice versa, so reducing oscillatio
Indeed, Eq. (10) performs as a proportional derivative co
troller, the more usual action for stabilizing feedback line
systems, due to its effect which consists of increasing
phase of the compensated system in a suitable freque
band [20].

In Fig. 2 we report the application of our method t
Eqs. (3) and (4). The desired oscillation, which in th
space-time representation gives rise to a roll set, is c
trolled in PT [Fig. 2(a)] and in AT [Fig. 2(b)]. Going
back to the above discussion, the results show that, wh
the choiceK1  K2  0.2 assures the roll stabilization for
small perturbations (theA dynamics ranges from 0 to 2)
fixing K2  0 as in the Pyragas’ case would have implie
prohibitively largeK1 values for obtaining the same stabi
ization (in our tests, ifK2  0, K1 should be 10), resulting
in very large perturbations of the system, which event
5248
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FIG. 2. Space(s)-time(u) representation of the controlling
process for Eqs. (3) and (4).b1  1, b2  21y16, m  0.8,
m1  0.8, k  11, S  5.5, TH  1.95. (a) T  15, PT
regime. The chaotic dynamics results in a local turbulen
phase of the Hopf oscillation which is corrected by the
controlling algorithm. K1  K2  0.2. Arrow indicates the
instant at which control is switched on. (b)T  50, AT
regime. The dynamics is dominated by amplitude fluctuations
with the presence of defects. The algorithm (K1  K2  0.2)
suppresses the defects and restores the regular oscillatio
Arrow indicates the instant at which control is switched on.
(c) Pyragas’ method.T  50, AT regime. The dynamics is
first perturbed withK1  0.2, K2  0 (first arrow). To achieve
control with K2  0 it is necessary to selectK1  10 (second
arrow), which, however, produces a large amplitude distortion
(the amplitude of the controlled oscillation is now one half of
the amplitude of the Hopf one).

ally give rise to relevant distortions of the roll amplitudes
[Fig. 2(c)].

The stabilization consists in suppressing the defect
present in the AT regime. Suppose, indeed, that som
defects are present at the beginning of the controllin
procedure. The spontaneous lifetimeTa of a defect can
be evaluated in a free running (no control) situation. The
scaling behavior ofTa as a function of the delay time
T depends on the nature of the turbulent process [5
Namely, in AT, Ta scales quadratically withT . When
a control is applied, we expect it to be effective after a
transient timeTt of the order ofTa. Thus a measurement
of Tt provides an estimate of the lifetimeTa.
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FIG. 3. Plot of the ratioTtyT as a function ofTyTH (see
text for definitions). The quadratic scaling ofTtsT d confirms
that control is achieved within AT. Same parameters as in th
caption of Fig. 2. For all casesK1  K2  0.2.

In Fig. 3 we have reported the scaling behavior ofTt

T

as a function ofT
TH

. Each point corresponds to aTt value
averaged over 20 independent realizations of the contr
process. The quadratic scaling ofTtsT d again confirms
that control is achieved within AT.

Finally, let us discuss the robustness of our procedu
against external noise. For this purpose, we add whi
noise to the measuredA values before the onset of the
adaptive feedback control. Notice that the noise does n
act additively, insofar as it is reinjected into the nonlinea

FIG. 4. T  50, AT with 10% noise (a) and 20% noise
(b). Control with K1  K2  0.2. Same stipulations and
parameters as in the caption of Fig. 2. Arrows indicate th
instant at which control is switched on.
e
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equations through the control feedback, hence affectin
dynamically the evolution of the system. A relevant resu
is that our method is robust against large amounts of nois
In Fig. 4 the control is achieved within AT for 10% noise
[Fig. 4(a)] and for 20% noise [Fig. 4(b)]. The controlled
UPO is slightly distorted by the action of the noise fed bac
into the system.

In conclusion, we have introduced a control scheme fo
stabilizing delayed systems. Its implementation is eas
and experimental application is in progress and it will be
reported elsewhere.
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