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Primary instabilities in convective cells due to nonuniform heating
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We study a convection problem in a container with a surface open to the air and heated by a long wire placed
at the bottom. Coupled buoyancy and thermocapillarity effects are taken into account. A basic convective state
appears as soon as a temperature gradient with horizontal component different from zero is applied. It consists
of two big rolls that fill the convective cell and are parallel to the heater. A numerical solution allows us to
determine this basic state. A linear stability analysis on this solution is carried out. For different values of the
applied temperature gradient the basic rolls undergo a stationary bifurcation. The thresholds depend on the
fluid properties, on the geometry of the heater, and on the heat exchange on the free surface. This confirms the
results obtained in recent experiments.@S1063-651X~97!00609-0#

PACS number~s!: 47.11.1j, 47.20.Dr, 47.20.Bp
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I. INTRODUCTION

Convection provides one of the best physical systems
of equilibrium in which pattern formation and spatiotempo
complexities can be studied. Depending on the liquid and
the container different mechanisms~buoyancy, thermocapil-
larity, geometry, non-Boussinesq effects, local heating,
so on! can be selected to obtain several transitions and
namic regimes@1,2#. For example, buoyancy and thermoca
illarity effects are considered in the Be´nard-Marangoni prob-
lem ~BM!. This instability arises in various importan
technological processes and has been the subject of a co
erable amount of research work@3,4#. Typically, the heating
is uniform through the bottom surface and the correspond
temperature gradient is vertical, but interest has rece
arisen in applying the heating in a different way. For i
stance, heating on a lateral wall has been studied, ma
motivated by the need to understand the hydrodynamic
pects of crystal growth in a low-gravity environment@5#. We
analyze localized heating on the bottom surface so that
temperature gradient is not purely vertical or horizontal. T
study of localized effects in the general problem of turb
lence is important in order to understand the processes
volved at different scales because it is known that structu
formed in a large scale are due to effects at a lower sc
i.e., localized effects, which traditionally are not taken in
account but may generate significant differences in the
processes. In the present paper we study BM convection
to non-uniform heating which has a Gaussian shape in
transversal direction. This problem is related to the conv
tion from a quasi-one-dimensional heater that has been
lyzed experimentally in recent years@6–13#. In Ref. @6#
when a slight temperature difference is applied between
heater and the top open surface, a pair of rolls appears w
out threshold. Their axes are parallel to the heater, i.e.,
pendicular to the horizontal component of the temperat
gradient. When the temperature difference is increased
ther, a bifurcation towards a structure of rolls perpendicu
to the heater takes place. If the temperature differenc
increased again, secondary oscillatory bifurcations app
and the resulting patterns have a wave number that is
561063-651X/97/56~3!/2916~8!/$10.00
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half of that of the stationary bifurcation. In Refs.@7–13# the
basic motions are hardly visible and the primary motio
correspond to some traveling waves; stationary patterns
not observed. Some theoretical results from these exp
ments are in Ref.@15#. In all these studies the heaters ha
low ‘‘heat capacity’’ and therefore it is conceivable that
coupling between the temperature distributions of the he
and the fluid exists@12#. This coupling has been avoided i
Ref. @6#, which corresponds to the situation treated here.

It could be thought that these problems are related to
eral heating, but experiences show different behaviors,
cause the instability observed in lateral heating cons
mainly of stationary rolls that get unstable as hydrotherm
waves. Their axes are perpendicular to the temperature
dient @16,17#. In one-dimensional~1D! heaters the instability
of the basic state has the form of longitudinal rolls with th
axes perpendicular to the heater, i.e., parallel to the horiz
tal component of the temperature gradient. There is a
evant theoretical paper by Smith and Davis@18# in which
they study nonuniform lateral heating. The inhomogene
consists of the application of a higher temperature near
bottom than near the top surface. They find longitudinal ro
like those observed with 1D heaters and those in our stu

The main aim of this paper is to study theoretically t
effect produced by inhomogeneous heating, with a Gaus
shape in one direction, in a BM instability. The width of th
Gaussian profile is measured by a parameterb in such a way
that large b implies homogeneous heating and smallb
means quasi-1D heating as described in Ref.@6#, although in
fact there are no experimental results accounting for a c
tinuous change inb, because this parameter is difficult t
control. We distinguish two situations depending onb: the
smooth inhomogeneity for largeb and the sharp inhomoge
neity for smallb. In both cases the curves of marginal st
bility are calculated for the primary bifurcation. The bas
equations and the basic convective pattern are discusse
the second section of this article. The reference flow is
tained numerically because an analytical expression of
solution of the hydrodynamic equations does not exist. S
tion III is devoted to the linear stability analysis of this bas
solution: the derivation of the equations and boundary c
2916 © 1997 The American Physical Society
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56 2917PRIMARY INSTABILITIES IN CONVECTIVE CELLS . . .
ditions ~BC! for the perturbations and resolution of the co
responding eigenvalue problem. The results are prese
distinguishing between the two cases explained previou
In Sec. IV we discuss the mechanisms of the instability,
main numerical results, and some conclusions. The num
cal techniques used are explained in the Appendix.

II. FORMULATION OF THE PROBLEM

The physical situation that we consider is shown in Fig
There is a horizontal fluid layer of depthd (z coordinate! in
a container of lengthL (y coordinate! and width l (x coor-
dinate!. As shown in the figureL@ l and for this reasonL
can be considered to be infinite. The container has a r
bottom plate and an upper surface open to the atmosphe
heater is located in the middle of the bottom plate
x5 l /2, along they direction. The width of this heater i
much smaller than the width of the container. The heater i
T0, and the temperature of the environment isT1 (,T0).
ThenDT5T02T1 is the local difference of temperatures
the liquid layer just over the heater.

Starting from the general hydrodynamic problem seve
assumptions are convenient in order to perform a more t
table analysis. These are~1! the Oberbeck-Boussinesq a
proximation as usually assumed in convective problems.~2!
The variation of the surface tension as a function of the te
perature is approximated bys(T)5s02g(T2T0), where
s0 is the surface tension at temperatureT0, g is the constant
rate of change of surface tension with temperature (g is posi-
tive for most current liquids!. ~3! The length in they direc-
tion is considered infinite.~4! The free surface is assumed
be undeformable. This assumption is not strictly true, es
cially just over the 1D heater, but the deformation is ve
small as shown in the experiments of Kayser and Berg@7#.

The system evolves according to the momentum bala
equations and to the energy conservation principle. In
equations governing the systemux , uy , anduz denote the
components of the velocity fieldu of the fluid, t the time,
and p the pressure. The spatial coordinates (x,y,z) are rep-
resented byr . These variables are expressed in dimensi
less form after rescaling in the following form
r 85r /d, t85kt/d2, u85du/k, Q5(T2T1)/(DT), p8
5d2p/(r0kn). ~Here k is the thermal diffusivity,r0 the
mean density, andn the kinematic viscosity of the liquid.!
This normalization transforms the original spatial interv
@2 l /2,l /2#3R3@0,d#, into another one in which the limits
are @2G,G#3R3@0,1#. HereG is the aspect ratio which is
defined asG5 l /(2d). Within Boussinesq’s approximation
the governing dimensionless equations~the primes in the

FIG. 1. Problem setup.
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corresponding fields have been dropped! are the continuity
equation

¹•u50, ~1!

the Navier-Stokes equation

] tu1~u•¹!u5PrS 2¹p1Du1
Rr

ar0DT
ezD , ~2!

the energy balance equation

] tQ1u•¹Q5DQ. ~3!

¹ andD are the nabla and the Laplacian operators, resp
tively, a is the thermal expansion coefficient,r the density,
and ez is the unit vector in thez direction. The following
dimensionless numbers have been introduced:

Pr5
n

k
, R5

gaDTd3

kn
, ~4!

Pr is the Prandtl number, andR the Rayleigh number, with
g the gravity. The Rayleigh number is representative of
buoyancy effect.

The above constants take the following values for
considered liquid~silicon oil!:

n5531026 m2/s,

k51.2431027 m2/s

a51.0531023 °C21,

r05910 K g/m3

g58.51025 N m21 °C21.

For this liquid Pr540.32, which is large enough to be co
sidered as infinite.

III. BASIC STATE

When the wire heater is on, a temperature distribution
the bottom plate appears and as soon as the imposed gra
has a nonzerox component, a convective motion sets in.
contrast to the classical BM problem with homogeneo
heating on the bottom surface, the basic steady state in
case is not a conductive state, but a convective one. T
motion has translational invariance in they direction and
therefore the basic state has no dependence on they coordi-
nate.

A very useful approach is to express the velocity fieldu in
terms of a potential as follows@19#: u5¹3¹3f ez
1¹3j ez , where ¹3¹3f ez is the poloidal part and
¹3j ez is the toroidal part, but if the fluid has an infinit
Prandtl number, the equation forj has only the solution
j50 and it is sufficient to consider the poloidal part. Ther
fore the final expression for the velocity field
u5(]x]zf, ]y]zf, 2D1f), whereD15]x

21]y
2 . The trans-

lational symmetry in they direction for the basic state im
plies that all the derivatives in this coordinate are zero. S
is possible in this case to obtain a simpler expression for
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2918 56A. M. MANCHO, H. HERRERO, AND J. BURGUETE
velocity field. If we callc5]xf, we haveu5(]zc,0,]xc).
This replacement allows us to reduce the order of the pa
differential equations for the potential. Now the number
boundary conditions we have is appropriate to pose a cor
problem.

For computational convenience, the coordinate trans
mationsx85x/G and z852z21 have been performed~we
drop the prime in the following!, which transforms the do
main in thex-z directions into the square@21,1#3@21,1#.

After eliminating the pressure and as Pr5`, the momen-
tum and energy equations in the steady state are

2

G
]zc]xQ2

2

G
]xc]zQ5DQ, ~5!

D2c2
1

G
R]xQ50, ~6!

whereD5(1/G2)]x
214]z

2 .

A. Boundary conditions

As shown in experiments, there exists a Gaussian t
perature distribution centered on the heater along thex axis
and atz521.

Q~z521!5exp@2~39x!2/b#, ~7!

where21<x<1 andb/392 is the width of the distribution.
Therefore the values ofb taken in this paper correspond
the width of a Gaussian heating (exp@2x2/b#) in a cell whose
normalization is@239,39# in the x direction. In order to
keep the integer values ofb we do not rescale them.

The following BC ought to be fulfilled.z521,

c50, ~8!

]zc50, ~9!

~rigid bottom plate!

Q5exp@2~39x!2/b# ~10!

for the heating on the bottom surface.z51,

BQ522]zQ. ~11!

This condition accounts for the heat exchange on the
surface. B is the Biot number which is defined b
B5hd/K, whereh is the thermal surface conductance a
K is the thermal conductivity.

The surface tension due to temperature differences ge
ates shear stresses on the liquid open surface. This cond
may be expressed as@9#

nr0~D1uz2]z
2uz!52D1s. ~12!

The linear dependence of the surface tensions with the tem-
perature allows us to write

nr0~D1uz2]z
2uz!52]TsD1T. ~13!
al
f
ct

r-

-

e

er-
ion

After using a suitable rescaling and keeping in mind th
there is no dependence on they coordinate, that condition
transforms into

S 1

G2
]x

224]z
2D uz52

M

G2
]x

2Q, ~14!

where M5(gDTd)/(knr0) is the Marangoni number tha
describes the thermocapillarity effects. After assumption~4!
there is no deflection on the free surface, and theref
uz50 on z51 or ]x

2uz50 on z51. After replacing
uz5(1/G)]xc the final form for the viscous condition on th
open free surface can be taken as

24]z
2c5

M

G
]xQ. ~15!

This is the viscous condition on the open free surface.
Now we shall discuss the BC in thex direction

(21<x<1). x561.

BsdQ52
1

G
]xQ, ~16!

c50, ~17!

]xc50, ~18!

whereBsd accounts for heat exchanges on the vertical wa
which are assumed to be insulating and thereforeBsd is taken
to be zero.

B. Numerical results of the basic state

We solved numerically Eqs.~5! and~6! with the boundary
conditions~8!–~18! discussed previously and we found th
the solution converges to a roll that fills the box with a flo
rising at the center of the cell and moving towards the si
walls. Here we only discuss the results obtained since
details about the numerical method are described in the
pendix.

As experimental results are mainly given in terms ofd
and DT, we use the liquid properties quoted in Ref.@6# to
show our results in this representation.„Notice that only the
kinematic viscosity changes from experiments in Ref.@6#
@5cS(1cS51022 cm2/s)# and that in Refs.@10,11# ~10 cS!….
Some representative solutions are presented in Figs. 2 a
The temperature and the velocity profiles strongly depend
the heat exchanges across the open surface~measured by
h), on b, and, of course, on the applied difference of te
peratures at the wire. For a fixedb, the larger the interchang
of heat~largeh), the larger the temperature difference acro
the layer atx50 @compare Figs. 2~a! and 2~b!#. For a fixed
h, by decreasingb the temperature field and the streamlin
become localized nearx50 @see Figs. 2 and 3~a! and 3~d!#.
If we increase the applied difference of temperature at
origin, both fields expand in the cell@see Figs. 2 and 3~a! and
3~c!#. In short, smallb andh generate small differences o
temperature at the origin and therefore make the instab
more difficult.
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IV. LINEAR STABILITY OF THE BASIC STATE

To perform the linear stability analysis of the basic st
calculated in the preceding section, it is perturbed with
vector field depending on thex, y, and z coordinates, in a
fully 3D analysis:

ub~x,z!1 ũ~x,z!elt1 iky, ~19!

Qb~x,z!1Q̃~x,z!elt1 iky. ~20!

In this expression the subscriptb indicates the correspondin
quantity in the basic state and a tilde refers to perturbatio
Notice that, as there are no boundary conditions in thy
direction, which is taken as infinite, it is possible to take t

FIG. 2. Isotherms of the basic state before the instability
d51 and differentb, h numbers and temperature differencesDTc ,
the axes arex and z. ~a! b5200, h512.4 (W/m2)/°C, and
DT51°C; ~b! b5200, h5124 (W/m2)/°C and DT51°C; ~c!
b5200, h512.4 (W/m2)/°C and DT57.57°C; ~d! b52500,
h512.4 ~W/m2)/°C, andDT51°C.

FIG. 3. Streamlines of the basic state ford51 and differentb,
h numbers, and temperature gradients, the axes arex and z. ~a!
b5200, h512.4 (W/m2)/°C and DT51 °C; ~b! b5200,
h5124 (W/m2)/°C, and DT51°C; ~c! b5200, h512.4
(W/m2)/°C, andDT57.57 °C;~d! b52500, h512.4 (W/m2)/°C
andDT51 °C.
e
a

s.

Fourier modes in this direction, but the cell is finite in thex
andz directions and the eigenfunctions are more difficult
calculate in this plane, so a development in series of Che
shev polynomials was chosen in this case.

After replacing the expressions~19! and~20! into the hy-
drodynamic equations the following linear eigenvalue pro
lem results:

S l2D1ux

]x

G
12uz]zD Q̃~x,z!1]xQ ũx~x,z!1]zQ ũz~x,z!

50, ~21!

D2ũz~x,z!1RD1Q̃~x,z!50. ~22!

Using the potentialf̃ instead of the velocityũ one arrives at

S l2D1ux

]x

G
12uz]zD Q̃1S 2

G
]xQ]x]z2]zQD1D f̃50,

~23!

2D2D1f̃1RD1Q̃50. ~24!

The equations and boundary conditions result then in
following eigenvalue problem:

S l2D1ux

]x

G
12uz]zD Q̃1S 2

G
]xQ]x]z2]zQD1D f̃50,

~25!

2D2D1f̃1RD1Q̃50, ~26!

24]z
2f̃2MQ̃50 at z51, ~27!

f̃50 at z521,1, ~28!

]zf̃50 at z521, ~29!

22]zQ̃2BQ̃50 at z51, ~30!

Q̃50 at z521, ~31!

f̃50 at x521,1, ~32!

]xQ̃50 at x521,1, ~33!

]xf̃50 at x521,1, ~34!

]x
2f̃50 at x521,1, ~35!

where the Laplacians areD5(1/G2)]x
214]z

22k2 and
D15(1/G2)]x

22k2.

A. Convergence of the numerical method for stability analysis

The numerical method used in this section is explained
the Appendix. We discuss here the validity and converge
of the results obtained. In order to contrast the results p
vided by our algorithm we compare the temperature thre
olds for the instability in the limitb→` with the very simi-
lar situation of classical BM convection in an infinite vess
for a fluid with the same physical properties as ours. Th

r
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2920 56A. M. MANCHO, H. HERRERO, AND J. BURGUETE
we draw up Table I, which shows no practical differenc
between the two algorithms, i.e., our numerical approach
covers known results.

In order to test convergence when we move away fr
known situations, we study the dependence of the thresh
of temperature (DTc) for the instability of the basic stat
while the order of terms in the expansion of the perturbat
fields increases. As the influence of increasing the orde
the z-direction expansions (M ) is very small, we only con-
sider the increasing order inx-direction expansions (N). We
consider that convergence is reached if differences of c
secutive aproximations satisfy two conditions: these diff
ences decrease for increasing order of the expansions an
difference between theDTc calculated with consecutive ap
proximations is less than 0.05 °C. We think this is enough
provide an accurate value forDTc .

In Table II the values of the thresholdsDTc for
h512.4 (W/m2)/°C, two values ofb, and increasingN are
quoted. These results satisfy the convergence conditions.
clear also from the table that it is harder to obtain conv
gence whenb decreases, which means sharp inhomogene
For example, in Table III the same situation has been ca
lated for smaller values ofb and the results suggest th
convergence has not been reached. This behavior is du
the chosen set of functions that is not adequate to perc
the details of a too localized boundary condition. In Tab
IV and V and the same kind of calculations have been
veloped for increasing values ofh @124 ~W/m2)/°C] and
1240 W/m2/°C), from which one can state that convergen
improves ifh increases and convergence has been reache
the expansions considered, no matter the value ofb.

B. Stability results

The results of the linear stability analysis show that
thresholds have a clear dependence on the shape of th

TABLE I. Thresholds of instability for different orders in
pseudospectral approximation for finite and infinite vessels.
value ofh is 12.4 W m22 °C21.

1137 2139 G5`

d ~mm! kc DTc kc DTc kc DTc

1 2.05 5.97 2.05 5.97 2.10 5.88

TABLE II. Critical temperature differencesDTc and wave num-
berskc for h512.4 ~W/m2)/°C anddifferent values ofb increas-
ing the numberN of Chebyshev polynomials used in the expans
of the perturbation fields.

h512.4 ~W/m2)/°C
M3N b5200 b52500

DTc DT(N)2(N22) DTc DT(N)2(N22)

739 6.72 6.00
7311 6.81 0.11 6.20 0.20
7319 7.23 6.16
7321 7.32 0.09 6.09 -0.07
7325 7.50 6.12
7327 7.57 0.07 6.12 0.00
s
e-

ds

n
in

n-
-
the

o
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-
y.
u-

to
ve
s
-

e
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e
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sumed local heating, measured byb. From Fig. 4 and Table
VI it is possible to conclude that the critical temperature
the stationary bifurcation decreases whenb increases so in
the limit b5` the instability threshold is minimum and
coincides with the usual BM problem@20#. In Fig. 5 we
show the maximum eigenvalues of the stability analysis w
h512.4 ~W/m2)/°C for b5200 and b52500 at
DTc'6.12 °C which shows that in the former situation
higher DTc (DTc'7.57 °C) is needed to reach instabilit
The value ofb affects not only the value of the critica
temperature but also the value of the critical wave numb
Figure 6 shows that the critical wave number increases
decreasingb.

The h number on the top surface has a considerable
fluence. In Fig. 7~a! a curveDTc vs h for the stationary
bifurcation and for a value ofb52500 is shown. There is a
minimum threshold for mediumh while large and small ther-
mal surface conductance inhibit instability. As for the critic
wave number, it increases withh @see Fig. 7~b!#.

From Table VI we can appreciate the difference betwe
the critical numbers forb52500 ~Fig. 7! and the ones ob-
tained forb5200. We can see that the differences of te
perature thresholds and critical wave numbers are larger
b smaller. In this table the error inkc is 60.05.

The form of the growing perturbation for temperature a
velocity fields is also provided by our analysis. Just after
instability the velocity and temperature in the cell are d
scribed by adding these perturbations times some small
rameter to the basic state. Forb5200 h512.4~W/m2)/°C
andDT57.50 °C Figs. 8 and 9 show the projections in t
y-z and x-z planes, respectively, for the basic state, t
growing perturbation, and the resultant temperature field

In our stability analysis no oscillatory motions are o
tained. On the other hand, the eigenvalue problem pose

e
TABLE III. Critical temperature differencesDTc for

h512.4 ~W/m2)/°C and twodifferent values ofb, for which con-
vergence is not good, increasing the numberN of Chebyshev poly-
nomials used in the expansion of the perturbation fields.

h512.4 ~W/m2)/°C

M3N b5100 b520
739 6.95 7.05
7311 7.26 7.70
7319 8.22 11.16
7321 8.46 12.09
7325 9.04 13.98
7327 9.34 14.36

TABLE IV. Critical temperature differencesDTc for
h51240 ~W/m2)/°C anddifferent values ofb increasing the num-
ber N of Chebyshev polynomials used in the expansion of the p
turbation fields.

h5124 ~W/m2)/°C

M3N b5200 b52500
7325 1.58 1.53
7327 1.58 1.53
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56 2921PRIMARY INSTABILITIES IN CONVECTIVE CELLS . . .
Eq. ~A3! does not have a self-adjoint operatorA, so one
could expect the appearance of complex eigenvalues@14#.
However, for the considered parameters that does not
pen. A similar situation occurs for the classical Be´nard-
Marangoni problem. The stability problem is defined
terms of a generalized eigenvalue problem in which ther
not a self-adjoint operator. This is due to the presence of
Marangoni condition at the surface. However, only real
genvalues appear in it. Now there is a similar situation e
reinforced due to the presence of a nontrivial basic state
brings more factors that break self-adjointness in the oper
of the problem. In spite of it no complex eigenvalues app
either.

C. Comparison with the experimental results

It is not possible to make a direct quantitative comparis
because in the experiments several parameters are unkn
i.e., theh andb numbers. In Ref.@6# for d51 a transition to
longitudinal rolls appears forDTc'17 °C and we obtain this
transition for b5200 and h512.4 ~W/m2)/°C,
DTc57.57 °C. As the thresholds increase whenb decreases
it is conceivable to think that it corresponds to a sma
value ofb that cannot be reached with our current numeri
method.

As can be appreciated in Figs. 4 and 7~a!, the results
depend strongly on theh number and on theb number,
which are unknown in these experiments, and theoretica
sults could fit with experimental ones for appropriate valu
of these parameters.

TABLE V. Critical temperature differencesDTc for
h51240 W/m2/°C and different values ofb increasing the numbe
N of Chebyshev polynomials used in the expansion of the per
bation fields.

h51240 (W/m2)/°C

M3N b5200 b52500
7325 2.96 2.89
7327 2.96 2.89

FIG. 4. Critical temperature thresholdsDTc as a function of the
b number forh512.4 (W/m2)/°C. Circles correspond to value
obtained with the method in which convergence was tested
asterisks correspond to values obtained without tested converg
p-

is
e
-
n
at
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r

n
wn,

r
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e-
s

Our results indicate that the stationary patterns are
interface motions which are excluded from the beginn
@assumption~4! of Sec. II which is used in the derivation o
the Marangoni equation in the open surface#, but bulk mo-
tions. The mechanisms of the instability are buoyancy a
thermocapillarity, but the patterns are not produced only
the surface, but influence the whole layer of fluid. In o
opinion a quantitative explanation of the experiments
Refs.@10,11# would require a detailed knowledge of the fu
convective flow that appears before~or simultaneously to!
the pattern of traveling waves. They seem to have a differ
physical origin, it could depend on interfacial motions whi
have been excluded in this analysis.

V. CONCLUSIONS

We performed a numerical analysis of convection due
an inhomogeneous heating, which has Gaussian shape in
direction, in a container with a surface open to the atm
sphere. As the convective layer is open to the atmosph
both buoyancy and thermocapillarity mechanisms contrib
to the instability, although as depth is small, buoyancy
fects are small also and the mechanism is mainly thermoc

r-

TABLE VI. Critical temperature differencesDTc and wave
numberskc for the two significant values ofb and different values
of h.

h (W/m2/°C) b5200 b52500

DTc kc DTc kc

12.4 7.50 2.20 6.09 2.05
49.6 2.31 2.20 2.18 2.15
86.8 1.75 2.25 1.69 2.25
124 1.58 2.30 1.53 2.30
217 1.50 2.40 1.46 2.40
310 1.57 2.50 1.53 2.50
403 1.68 2.55 1.64 2.55
682 2.08 2.65 2.04 2.65
961 2.52 2.75 2.46 2.70
1240 2.96 2.85 2.89 2.75

d
ce.

FIG. 5. The maximum eigenvaluesl of the stability analysis for
h512.4 ~W/m2)/ °C, DT56.12 °C and two different values o
b (200 and 2500).
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illary. The basic state has been calculated numerically
consists of a pair of rolls which go up over the heater a
down near the sidewalls. It has been characterized for dif
ent shapes of the heating at the bottom plate~as measured by
b) and for different values of the thermal surface cond
tanceh.

An instability forming stationary rolls perpendicular t
the basic ones is observed when the temperature differen
the origin is increased. In order to obtain this flow a line
stability analysis around the basic state has been perform
This implies a full 3D analysis of very heterogeneous fie
which complicates the numerical analysis. The influence
the parameters affecting the problem is very different, th
the shape of the assumed Gaussian at the bottom layer o
fluid (b) has an important influence on the critical differen
of temperature thresholds and largeb favors the instability;
the role played by theh number at the top surface is ver
strong: the dependence of the critical temperature differe
on h is not monotonous and small and largeh numbers make
instability more difficult than moderate ones. It also infl
ences the critical wave number which increases mon
nously withh. All the thresholds changing theh number are
increased for decreasing values ofb.

Comparing these results with the events in BM conv
tion with uniform heating, the BM instability is inhibited b
the presence of a basic convective state. This is evident

FIG. 6. Critical wave numberkc as a function of theb number
for h512.4 (W/m2)/°C. Circles correspond to values obtaine
with the method in which convergence was tested and aste
correspond to values obtained without tested convergence.

FIG. 7. ~a! Critical temperature thresholdsDTc as a function of
the h number forb52500 and~b! critical wave numberskc as a
function of the h number for the same value ofb. The circles
correspond to the points calculated numerically.
It
d
r-
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d.

s
f
s
the

ce

o-

-

e-

cause the more the heating is localized the more the thr
old for the stationary instability grows and in the limit with
out localization (b5`) the thresholds coincide.

The agreement of our calculations and the experiment
Ref. @6# can be only qualitative since the results depend
the h number and on theb number, which are unknown in
this experiment, and theoretical results could fit with expe
mental ones for appropriate values of these parameter
this is compared to the experimental results in Refs.@10,11#,
they do not observe either the stationary patterns or the c
vective basic state, but only the oscillatory motions, but
think that the situation described in the present paper d
not correspond to their situation owing to the coupling b
tween the temperature distributions of the heater and
fluid and also to the fact that there can be interface motio
Our results reinforce the hypothesis that stationary bifurc
ing motions can be explained by bulk mechanisms and
by surface motions.

ks

FIG. 8. Projection in they-z plane of the temperature field ob
tained for b5200, h512.4 (W/m2)/°C, and DT57.50 °C. ~a!
The basic state;~b! the unstable eigenfunction times a small para
eter (e50.5); ~c! the temperature field after the instability. It i
obtained by sumperimposing the plots~a! and ~b!.

FIG. 9. Projection in thex-z plane of the temperature field ob
tained forb5200,h512.4 (W/m2)/°C, andDT57.50 °C.~a! The
basic state;~b! the unstable eigenfunction times a small parame
(e50.5); ~c! the temperature field after the instability. It is obtaine
by sumperimposing the plots~a! and ~b!.
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APPENDIX

A. The numerical method for basic state

We have solved numerically Eqs.~5! and~6! in a first step
with a finite difference scheme to obtain an initial soluti
for a Chebyshev-collocation method that is the same as
used for the stability analysis calculations. To use t
method we have linearized the equations expanding th
around their solution at the previous time. This allows us
find the corrections to the successive approximations
solving linear systems. The criterion of convergence con
ered is that the difference between two consecutive step
each point is smaller than 10211.

B. The numerical method for stability analysis

The numerical method used to solve Eqs.~25!–~35! is a
Chebyshev-collocation method. Following this approach,
perturbation fieldsQ̃ and f̃ are expanded in a truncated s
ries of orthonormal Chebyshev polynomialsTn(x)Tm(z):

f̃~x,z!5 (
n50

N21

(
m50

M21

anmTn~x!Tm~z!, ~A1!
y

J.

.
i
a

ei
d
,

at
s
m
o
y
-
at

e

Q̃~x,z!5 (
n50

N21

(
m50

M21

bnmTn~x!Tm~z!. ~A2!

Expressions~A1! and~A2!, are replaced into the linear equa
tions, Eqs. ~25! and ~26!, and boundary conditions Eqs
~27!–~35!. The N Gauss-Lobatto points „xj
5cos$@211(j21)/(N21)#p%, j51, . . . ,N… in the x axis,
and the M Gauss-Lobatto points „zi
5cos$@211( i 21)/(M21)#p%, i 51, . . . ,M … in the z
axis are calculated and the previous equations are evalu
at these points according to the following rules: Eq.~25! is
evaluated at the points (xj ,zi) for
j 54, . . . ,N23, i 53, . . . ,M22, and Eq.~26! at the points
for j 52, . . . ,N21, i 52, . . . ,M21. The boundary condi-
tions at z51, Eq. ~27! and ~28!, are evaluated a
i 5M , j 54, . . . ,N23, and Eq. ~30! at
i 5M , j 52, . . . ,N21. The boundary conditions atz521
are evaluated as follows: Eqs.~28! and ~29! at
i 51, j 54, . . . ,N23 and Eq.~31! at i 51, j 52, . . . ,N21.
The boundary conditions atx51, Eqs. ~32!–~35! at
j 5N, i 51, . . . ,M and at x521 Eqs. ~32!–~35! at
j 51, i 51, . . . ,M .

There is a total of 23N3M algebraic equations with the
same amount of unknowns (anm and bnm ,
n50, . . . ,N21; m50, . . . ,M21). If the coefficients of
the unknowns which form the matricesA andB satisfy det
(A2lB)50, a nontrivial solution of this linear homoge
neous system exists. This condition generates a disper
relation l[l(k,R,M ,B,ub ,Qb), equivalent to calculating
directly the eigenvalues from the system

AX5lBX, ~A3!

whereX is the vector which contains the coefficients of t
polynomialsanm andbnm .
G.
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